Skip to main content

The MiningMart Approach to Knowledge Discovery in Databases

  • Chapter

Abstract

Although preprocessing is one of the key issues in data analysis, it is still common practice to address this task by manually entering SQL statements and using a variety of stand-alone tools. The results are not properly documented and hardly re-usable. The MiningMart system presented in this chapter focuses on setting up and re-using best practice cases of preprocessing data stored in very large databases. A metadata model named M4 is used to declaratively define and document both, all steps of such a preprocessing chain and all the data involved. For data and applied operators there is an abstract level, understandable by human users, and an executable level, used by the metadata compiler to run cases for given data sets. An integrated environment allows for rapid development of preprocessing chains. Adaptation to different environments is supported simply by specifying all involved database entities in the target DBMS. This allows reuse of best practice cases published on the Internet.

Keywords

  • Data Mining Algorithm
  • Business Level
  • Output Concept
  • Conceptual Data Model
  • Input Concept

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-07952-2_3
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-07952-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bernstein, S. Hill, F. Provost: An Intelligent Assistant for the Knowledge Discovery Process. Technical Report IS02–02, New York University, Leonard Stern School of Business (2002)

    Google Scholar 

  2. P. Brazdil: Data Transformation and Model Selection by Experimentation and Meta-Learning. In: C.G. Carrier, M. Hilario (eds.), Workshop Notes-Upgrading Learning to the Meta-Level: Model Selection and Data Transformation (Technical University Chemnitz, April 1998), number CSR-98–02 in Technical Report, pp. 11–17

    Google Scholar 

  3. K. Causse, M. Csernel, K. Morik, C. Rouveirol: MLT Deliverable 2.2: Specification of the Common Knowledge Representation Language of the MLToolbox. GMD (German Natl. Research Center for Computer Science, P.O.Box 1240, W-5205 St. Augustin 1, Germany, September 1990 )

    Google Scholar 

  4. R. Engels: Planning Tasks for Knowledge Discovery in Databases; Performing Task-Oriented User-Guidance. In: Proc. of th 2nd Int. Conf. on Knowledge Discovery in Databases, August 1996

    Google Scholar 

  5. R. Engels, G. Lindner, R. Studer: A Guided Tour through the Data Mining Jungle. In: Proceedings of the 3rd International Conference on Knowledge Discovery in Databases (KDD-97) pp. 14–17 (August, 1997 )

    Google Scholar 

  6. S. Fischer, R. Klinkenberg, I. Mierswa, O. Ritthoff: Yale: Yet Another Learning Environment-Tutorial. Technical Report CI-136/02, Collaborative Research Center 531, University of Dortmund, Dortmund, Germany, 2002. ISSN 14333325

    Google Scholar 

  7. J.U. Kietz, R. Züecker, A. Fiammengo, G. Beccari: Data Sets, Metadata and Preprocessing Operators at Swiss Life and CSELT. Deliverable D6.2, IST Project MiningMart, IST-11993 (2000)

    Google Scholar 

  8. J.U. Kietz, R. Züecker, A. Vaduva: Mining Mart: Combining Case-BasedReasoning and Multi-Strategy Learning into a Framework to reuse KDDApplication. In: R.S. Michalski, P. Brazdil (eds.), Proceedings of the fifth International Workshop on Multistrategy Learning (MSL2000) ( Guimares, Portugal, May 2000 )

    Google Scholar 

  9. H. Liu, H. Motoda: Feature Selection for Knowledge Discovery and Data Mining (Kluwer Academic Publishers, 1998 )

    Google Scholar 

  10. D. Michie, D.J. Spiegelhalter, C.C. Taylor: Machine Learning, Neural and Statistical Classification ( Ellis Horwood, New York u.a., 1994 )

    Google Scholar 

  11. K. Morik, K. Causse, R. Boswell: A Common Knowledge Representation Integrating Learning Tools. In: Proc. of the 1st International Workshop on Multistrategy Learning (Harpers Ferry, 1991 )

    Google Scholar 

  12. S. Rüeping: Zeitreihenprognose für Warenwirtschaftssysteme unter Berücksichtigung asymmetrischer Kostenfunktionen. Master’s thesis, Universität Dortmund (1999)

    Google Scholar 

  13. D. Sleeman, R. Oehlman, R. Davidge: Specification of Consultant-0 and a Comparision of Several Learning Algorithms Deliverable D5.1, Esprit Project, pp. 2154 (1989)

    Google Scholar 

  14. C. Theusinger, G. Lindner: Benutzerunterstützung eines KDD-Prozesses anhand von Datencharakteristiken. In: F. Wysotzki, P. Geibel, K. Schädler (eds.), Beiträge zum Treffen der GI-Fachgruppe 1.1.3 Machinelles Lernen (FGML-98) (Technical University Berlin, 1998) volume 98/11 of Technical Report

    Google Scholar 

  15. I. Witten, E. Frank: Data Mining-Practical Machine Learning Tools and Techniques with JAVA Implementations (Morgan Kaufmann, 2000 )

    Google Scholar 

  16. N. Zhong, C. Liu, S. Ohsuga: A Way of Increasing both Autonomy and Versatility of a KDD System. In: Z.W. Ras, A. Skowron (eds.), Foundations of Intelligent Systems (Springer, 1997 ) pp. 94–105

    Google Scholar 

  17. N. Zhong, C. Liu, S. Ohsuga: Dynamically Organizing KDD Processes. International Journal of Pattern Recognition and Artificial Intelligence, 15 (3), 451–473 (2001)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morik, K., Scholz, M. (2004). The MiningMart Approach to Knowledge Discovery in Databases. In: Intelligent Technologies for Information Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07952-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07952-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07378-6

  • Online ISBN: 978-3-662-07952-2

  • eBook Packages: Springer Book Archive