Skip to main content

Dominance-Based Rough Set Approach to Knowledge Discovery (I): General Perspective

  • Chapter

Abstract

This chapter is devoted to knowledge discovery from data, taking into account prior knowledge about preference semantics in patterns to be discovered. The data concern a set of objects (situations, states, examples) described by a set of attributes (properties, features, characteristics). The attributes are, in general, divided into condition and decision attributes, corresponding to input and output descriptions of an object. The set of objects is partitioned by decision attributes into decision classes. A pattern discovered from the data has a symbolic form of decision rule or decision tree. In many practical problems, some condition attributes are defined on preference ordered scales, and the decision classes are also preference ordered. The known methods of knowledge discovery unfortunately ignore this preference information, risking drawing wrong patterns. To deal with preference-ordered data, we propose to use a new approach called Dominance-based Rough Set Approach (DRSA). Given a set of objects described by at least one condition attribute with preference-ordered scale and partitioned into preference-ordered classes, the new rough set approach is able to approximate this partition by means of dominance relations. The rough approximation of this partition is a starting point for induction of “if..., then...” decision rules. The syntax of these rules is adapted to represent preference orders. The DRSA analyzes only facts present in data, and possible inconsistencies are identified. It preserves the concept of granular computing; however, the granules are dominance cones in evaluation space, and not bounded sets. It is also concordant with the paradigm of computing with words, as it exploits the ordinal, and not necessarily the cardinal, character of data. The basic DRSA and its major extensions are presented in two consecutive parts in this book. In the present part, we give a general perspective of DRSA, explaining its use in the context of multicriteria classification, choice, and ranking. Moreover, we present a variant of DRSA that handles missing values in data sets.

Keywords

  • Decision Rule
  • Decision Attribute
  • Granular Computing
  • Indiscernibility Relation
  • Dominance Principle

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-07952-2_20
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-07952-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Agrawal, H. Mannila, R. Srikant, H. Toivinen, I. Verkamo: Fast discovery of association rules. In: U.M.Fayyad et al. (eds.), Advances in Knowledge Discovery and Data Mining (AAAI Press, 1996 ) pp. 307–328

    Google Scholar 

  2. M. Allais: The so-called Allais paradox and rational decision under uncertainty. In: M. Allais, O. Hagen (eds.), Expected Utility Hypotheses and the Allias Paradox ( Reidel, Dordrecht, 1979 ) pp. 437–681

    CrossRef  Google Scholar 

  3. E.I. Altman: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 589–609 (1968)

    Google Scholar 

  4. T. Bilgic, I.B. Turksen: Measurement-theoretic justification of connectives in fuzzy set theory. Fuzzy Sets and Systems, 76, 289–308 (1995)

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. B. Bouchon-Mounier, J. Yao: Linguistic modifiers and gradual membership to a category. International Journal on Intelligent Systems, 7, 26–36 (1992)

    Google Scholar 

  6. N. Capon: Credit scoring systems: a critical analysis. Journal of Marketing, 46, 32–91 (1982)

    CrossRef  Google Scholar 

  7. G. Cattaneo: Fuzzy extension of rough sets theory. In: L. Polkowski, A. Skowron (eds.), Rough Sets and Current Trends in Computing ( LNAI 1424, Springer, Berlin, 1998 ) pp. 275–282

    CrossRef  Google Scholar 

  8. K. Dembczynski, S. Greco, R. Slowinski: Methodology of rough-set-based classification and sorting with hierarchical structure of attributes and criteria, Control & Cybernetics, 31 (2002) (to appear)

    Google Scholar 

  9. D. Dubois, H. Prade: Gradual inference rules in approximate reasoning. Information Sciences, 61, 103–122 (1992)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. D. Dubois, H. Prade: Putting rough sets and fuzzy sets together. In: R. Slowinski (ed.), Intelligent Decision Support: Handbook of Applications and Advances of the Sets Theory ( Kluwer, Dordrecht, 1992 ) pp. 203–232

    Google Scholar 

  11. D. Dubois, H. Prade, R. Yager: A Manifesto: Fuzzy Information Engineering. In: D. Dubois, H. Prade, R. Yager (eds.), Fuzzy Information Engineering ( J.Wiley, New York, 1997 ) pp. 1–8

    Google Scholar 

  12. J. Fodor, M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support ( Kluwer, Dordrecht, 1994 )

    MATH  Google Scholar 

  13. S. Giove, S. Greco, B. Matarazzo, R. Slowinski: Variable consistency monotonic decision trees. In: J.J. Alpigini, J.F. Peters, A. Skowron, N. Zhong (eds.), Rough Sets and Current Trends in Computing ( LNAI 2475, Springer-Verlag, Berlin, 2002 ) pp. 247–254

    CrossRef  Google Scholar 

  14. M. Grabisch: Fuzzy integral in multiple-criteria decision making. Fuzzy Sets and Systems, 69, 279–298 (1995)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. S. Greco, M. Inuiguchi, R. Slowinski: Dominance-based rough set approach using possibility and necessity measures. In: J.J. Alpigini, J.F. Peters, A. Skowron, N. Zhong (eds.), Rough Sets and Current Trends in Computing ( LNAI 2475, Springer-Verlag, Berlin, 2002 ) pp. 85–92

    CrossRef  Google Scholar 

  16. S. Greco, M. Inuiguchi, R. Slowinski: A new proposal for fuzzy rough approximations and gradual decision rule representation. In: D. Dubois, J. GrzymalaBusse, M. Inuiguchi, L. Polkowski (eds.), Rough Fuzzy and Fuzzy Rough Sets (Springer-Verlag, Berlin, 2003) (to appear)

    Google Scholar 

  17. S. Greco, B. Matarazzo, R. Slowinski: Fuzzy measures technique for rough set analysis. In: Proc. 6 th European Congress on Intelligent Techniques & Soft Computing (Aachen, 1998) 1, pp. 99–103

    Google Scholar 

  18. S. Greco, B. Matarazzo, R. Slowinski: A new rough set approach to evaluation of bankruptcy risk. In: C.Zopounidis (ed.), Operational Tools in the Management of Financial Risk ( Kluwer Academic Publishers, Boston, 1998 ) pp. 121–136

    CrossRef  Google Scholar 

  19. S. Greco, B. Matarazzo, R. Slowinski: Rough approximation of a preference relation by dominance relations. European Journal of Operational Research, 117, 63–83 (1999)

    MATH  CrossRef  Google Scholar 

  20. S. Greco, B. Matarazzo, R. Slowinski: The use of rough sets and fuzzy sets in MCDM. Chapter 14 in: T.Gal, T.Stewart, T.Hanne (eds.), Advances in Multiple Criteria Decision Making (Kluwer Academic Publishers, Boston, 1999) pp. 14. 1-14. 59

    Google Scholar 

  21. S. Greco, B. Matarazzo, R. Slowinski: Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems. In: N. Zhong, A. Skowron, S. Ohsuga (eds.), New Directions in Rough Sets, Data Mining and Granular-Soft Computing (LNAI 1711, Springer-Verlag, Berlin, 1999) pp. 146157

    Google Scholar 

  22. S. Greco, B. Matarazzo, R. Slowinski: Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems. In: S.H. Zanakis, G. Doukidis, C. Zopounidis (eds.), Decision Making: Recent Developments and Worldwide Applications ( Kluwer Academic Publishers, Boston, 2000 ) pp. 295–316

    Google Scholar 

  23. S. Greco, B. Matarazzo, R. Slowinski: Rough set processing of vague information using fuzzy similarity relations. In: C.S. Calude, G. Paun (eds.), Finite Versus Infinite–Contributions to an Eternal Dilemma)Springer-Verlag, London, 2000 ) pp. 149–173

    Google Scholar 

  24. S. Greco, B. Matarazzo, R. Slowinski: Fuzzy extension of the rough set approach to multicriteria and multiattribute sorting. In: J. Fodor, B. De Baets and P. Perny (eds.), Preferences and Decisions under Incomplete Knowledge ( Physica-Verlag, Heidelberg, 2000 ) pp. 131–151

    Google Scholar 

  25. S. Greco, B. Matarazzo, R. Slowinski: Extension of the rough set approach to multicriteria decision support. INFOR, 38, 161–196 (2000)

    Google Scholar 

  26. S. Greco, B. Matarazzo, R. Slowinski: Rough sets theory for multicriteria decision analysis. European J. of Operational Research, 129, 1–47 (2001)

    MathSciNet  MATH  CrossRef  Google Scholar 

  27. S.Greco, B. Matarazzo, R. Slowinski: Conjoint measurement and rough set approach for multicriteria sorting problems in presence of ordinal criteria. In: A.Colorni, M.Paruccini, B.Roy (eds.), A-MCD-A: Aide Multi Critère à la Décision–Multiple Criteria Decision Aiding, European Commission Report, EUR 19808 EN, ( Ispra, 2001 ) pp. 117–144

    Google Scholar 

  28. S.Greco, B. Matarazzo, R. Slowinski: Rule-based decision support in multi-criteria choice and ranking. In: S. Benferhat, Ph. Besnard (eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty ( LNAI 2143, Springer-Verlag, Berlin, 2001 ) pp. 29–47

    Google Scholar 

  29. S. Greco, B. Matarazzo, R. Slowinski: Assessment of a value of information using rough sets and fuzzy measures. In: J. Chojcan, J. Leski (eds.), Fuzzy Sets and their Applications ( Silesian University of Technology Press, Gliwice, 2001 ) pp. 185–193

    Google Scholar 

  30. S. Greco, B. Matarazzo, R. Slowinski: Rough set approach to decisions under risk. In: W.Ziarko, Y.Yao (eds.): Rough Sets and Current Trends in Computing ( LNAI 2005, Springer-Verlag, Berlin, 2001 ) pp. 160–169

    CrossRef  Google Scholar 

  31. S. Greco, B. Matarazzo, R. Slowinski: Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European J. of Operational Research, 138, 247–259 (2002)

    MathSciNet  MATH  CrossRef  Google Scholar 

  32. S. Greco, B. Matarazzo, R. Slowinski: Multicriteria classification. In: W. Kloesgen, J. Zytkow (eds.), Handbook of Data Mining and Knowledge Discovery (Oxford University Press, New York, 2002, chapter 16.1. 9 ) pp. 318–328

    Google Scholar 

  33. S. Greco, B. Matarazzo, R. Slowinski: Preference representation by means of conjoint measurement and decision rule model. In: D.Bouyssou, E.JacquetLagrèze, P.Perny, R.Slowinski, D.Vanderpooten, Ph.Vincke (eds.), Aiding Decisions with Multiple Criteria–Essays in Honor of Bernard Roy ( Kluwer Academic Publishers, Boston, 2002 ) pp. 263–313

    CrossRef  Google Scholar 

  34. S. Greco, B. Matarazzo, R. Slowinski, J. Stefanowski: Variable consistency model of dominance-based rough set approach. In: W.Ziarko, Y.Yao: Rough Sets and Current Trends in Computing (LNAI 2005, Springer-Verlag, Berlin, 2001 ) pp. 170–181

    Google Scholar 

  35. S. Greco, B. Matarazzo, R. Slowinski, J. Stefanowski: An algorithm for induction of decision rules consistent with dominance principle. In: W.Ziarko, Y.Yao (eds.): Rough Sets and Current Trends in Computing ( LNAI 2005, Springer-Verlag, Berlin, 2001b ) pp. 304–313

    CrossRef  Google Scholar 

  36. S. Greco, B. Matarazzo, R. Slowinski, J. Stefanowski: Mining association rules in preference-ordered data. In: M.-S. Hacid, Z.W. Ras, D.A. Zighed, Y. Kodratoff (eds.), Foundations of Intelligent Systems ( LNAI 2366, Springer-Verlag, Berlin, 2002 ) pp. 442–450

    Google Scholar 

  37. S. Greco, B. Matarazzo, R. Slowinski, A. Tsoukias: Exploitation of a rough approximation of the outranking relation in multicriteria choice and ranking. In: T.J.Stewart, R.C. van den Honert (eds.), Trends in Multicriteria Decision Making ( LNEMS 465, Springer-Verlag, Berlin, 1998 ) pp. 45–60

    Google Scholar 

  38. W.M. Goldstein: Decomposable threshold models. Journal of Mathematical Psychology, 35, 64–79 (1991)

    MathSciNet  MATH  CrossRef  Google Scholar 

  39. J.W. Grzymala-Busse: LERS–a system for learning from examples based on rough sets. In: R.Slowinski (ed.), Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theor (y. Kluwer, Dordrecht, 1992 ) pp. 3–18

    Google Scholar 

  40. M. Inuiguchi, S. Greco, R. Slowinski, T. Tanino: Possibility and necessity measure specification using modifiers for decision making under fuzziness. Fuzzy Sets and Systems, 137, 151–175 (2003)

    MathSciNet  MATH  CrossRef  Google Scholar 

  41. M. Inuiguchi, T. Tanino: New fuzzy rough sets based on certainty qualification. In: S. K. Pal, L. Polkowski, A. Skowron (eds.), Rough-Neuro-Computing: Techniques for Computing with Words (Springer-Verlag, Berlin, 2002) pp. 110–126

    Google Scholar 

  42. R.S. Michalski, I. Bratko, M. Kubat (eds.): Machine Learning and Data Mining–Methods and Applications ( Wiley, New York, 1998 )

    Google Scholar 

  43. G.A. Miller: The magical number seven, plus or minus two: some limits on our capacity for information processing. Psychological Review 63, 81–97 (1956)

    CrossRef  Google Scholar 

  44. F. Modave, M. Grabisch: Preference representation by the Choquet Integral: the commensurability hypothesis. In: Proc. 7th Int. Conference on Information Processing and Management of Uncertainty in Knowledge Based Systems ( Paris, La Sorbonne, 1998 ) pp. 164–171

    Google Scholar 

  45. A. Nakamura: Applications of fuzzy-rough classification to logics. In: R. Slowinski (ed.),Intelligent Decision Support: Handbook of Applications and Advances of the Sets Theory ( Kluwer, Dordrecht, 1992 ) pp. 233–250

    Google Scholar 

  46. A. Nakamura, J.M. Gao: A logic for fuzzy data analysis. Fuzzy Sets and Systems, 39, 127–132 (1991)

    MathSciNet  MATH  CrossRef  Google Scholar 

  47. E. Orlowska, Introduction: What you always wanted to know about rough sets. In: E. Orlowska (ed.), Incomplete Information, Rough Set Analysis (Physica-Verlag, Heidelberg, New York, 1998 ) pp. 1–20

    Google Scholar 

  48. Z. Pawlak: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht, 1991

    MATH  Google Scholar 

  49. Z. Pawlak, J.W. Grzymala-Busse, R. Slowinski, W. Ziarko: Rough sets. Communications of the ACM, 38, 89–95 (1995)

    Google Scholar 

  50. L. Polkowski: Rough Sets: Mathematical Foundations ( Physica-Verlag, Heidelberg, 2002 )

    MATH  Google Scholar 

  51. L. Polkowski, A. Skowron: Calculi of granules based on rough set theory: approximate distributed synthesis and granular semantics for computing with words. In: N.Zhong, A.Skowron, S.Ohsuga (eds.), New Directions in Rough sets, Data Mining and Soft-Granular Computing (LNAI 1711, Springer-Verlag, Berlin, 1999 ) pp. 20–28

    Google Scholar 

  52. F.S. Roberts: Measurement theory with applications to decision-making, utility and the social science ( Addison-Wesley Publ., Reading, MA, 1979 )

    Google Scholar 

  53. B. Roy, D. Bouyssou: Aide Multicritère à la Décision: Méthodes et Cas ( Eco-nomica, Paris, 1993 )

    MATH  Google Scholar 

  54. T. L. Saaty: The Analytic Hierarchy Process (McGraw-Hill, New York, 1980) 20.55 R. Slowinski: A generalization of the indiscernibility relation for rough set

    Google Scholar 

  55. analysis of quantitative information. Rivista di matematica per le scienze eco- nomiche e sociali, 15, 65–78 (1992)

    CrossRef  Google Scholar 

  56. R. Slowinski (ed.): Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory ( Kluwer Academic Publishers, Dordrecht, 1992 )

    MATH  Google Scholar 

  57. R. Slowinski: Rough set processing of fuzzy information. In: T.Y.Lin, A.Wildberger (eds.), Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery (Simulation Councils, Inc., San Diego, CA, 1995 ) pp. 142–145

    Google Scholar 

  58. R. Slowinski, S. Greco, B. Matarazzo: Rough set analysis of preference-ordered data. In: J.J. Alpigini, J.F. Peters, A. Skowron, N. Zhong (eds.), Rough Sets and Current Trends in Computing ( LNAI 2475, Springer-Verlag, Berlin, 2002 ) pp. 44–59

    Google Scholar 

  59. R. Slowinski, S. Greco, B. Matarazzo: Mining decision-rule preference model from rough approximation of preference relation. In: Proc. 26th IEEE Annual Int. Conference on Computer Software & Applications (COMPSAC 2002) ( Oxford, England, 2002 ) pp. 1129–1134

    Google Scholar 

  60. R. Slowinski, S. Greco, B. Matarazzo: Axiomatization of utility, outranking and decision-rule preference models for multiple-criteria classification problems under partial inconsistency with the dominance principle. Control and Cybernetics, 31 (4), 1005–1035 (2002)

    MATH  Google Scholar 

  61. R. Slowinski, J. Stefanowski: Rough set reasoning about uncertain data. Fundamenta Informaticae, 27, 229–243 (1996)

    MathSciNet  MATH  Google Scholar 

  62. R. Slowinski, J. Stefanowski, S. Greco, B. Matarazzo: Rough sets based processing of inconsistent information in decision analysis. Control and Cybernetics, 29, 379–404 (2000)

    MATH  Google Scholar 

  63. R. Slowinski, D. Vanderpooten: A generalised definition of rough approximations. IEEE Transactions on Data and Knowledge Engineering, 12, 331–336 (2000)

    CrossRef  Google Scholar 

  64. R. Slowinski, C. Zopounidis: Application of the rough set approach to evaluation of bankruptcy risk. Intelligent Systems in Accounting, Finance and Management, 4, 27–41 (1995)

    Google Scholar 

  65. J. Stefanowski: On rough set based approaches to induction of decision rules. In: L. Polkowski, A. Skowron (eds.), Rough Sets in Data Mining and Knowledge Discovery ( Physica-Verlag, Heidelberg, 1998 ) 1, pp. 500–529

    Google Scholar 

  66. J. Stepaniuk: Knowledge Discovery by Application of Rough Set Models, In: L. Polkowski, S. Tsumoto, T.Y. Lin (eds.): Rough Set Methods and Application ( Physica Verlag, Heidelberg, 2000 ) pp. 137–231

    CrossRef  Google Scholar 

  67. M. Sugeno: Theory of fuzzy integrals and its applications. Doctoral Thesis, Tokyo Institute of Technology, 1974

    Google Scholar 

  68. L.C. Thomas, J.N. Crook, D.B. Edelman (eds.): Credit Scoring and Credit Control ( Clarendon Press, Oxford, 1992 )

    Google Scholar 

  69. P.P. Wakker, H. Zank: State dependent expected utility for savage’s state space. Mathematics of Operations Research, 24, 8–34 (1999)

    MathSciNet  MATH  CrossRef  Google Scholar 

  70. L.L. White, A.G. Wilson, D. Wilson (eds.): Hierarchical Structures ( Elsevier, New York, 1969 )

    Google Scholar 

  71. Y.Y. Yao: Combination of rough and fuzzy sets based on a-level sets. In: T.Y. Lin and N. Cercone (eds.), Rough Sets and Data Mining: Analysis for Imprecise Data ( Kluwer, Boston, 1997 ) pp. 301–321

    CrossRef  Google Scholar 

  72. L.A. Zadeh: A fuzzy set-theoretic interpretation of linguistic hedges. Journal of Cybernetics, 2, 4–34 (1972)

    MathSciNet  CrossRef  Google Scholar 

  73. W. Ziarko: Variable precision rough sets model. Journal of Computer and Systems Sciences, 46, 39–59 (1993)

    MathSciNet  MATH  CrossRef  Google Scholar 

  74. W. Ziarko: Rough sets as a methodology for data mining. In: L.Polkowski, A.Skowron (eds.), Rough Sets in Knowledge Discovery ( Physica-Verlag, Heidelberg, 1998 ) 1, pp. 554–576

    Google Scholar 

  75. W. Ziarko, N. Shan: KDD-R, a comprehensive system for knowledge discovery in databases using rough sets. In: T.Y. Lin, A.M. Wildberg (eds.), Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery ( Simulation Council Inc., San Diego, 1995 ) pp. 93–96

    Google Scholar 

  76. C. Zopounidis, M. Doumpos: A multicriteria decision aid methodology for sorting decision problems: the case of financial distress. Computational Economics, 14, 197–218 (1999)

    MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greco, S., Matarazzo, B., Slowinski, R. (2004). Dominance-Based Rough Set Approach to Knowledge Discovery (I): General Perspective. In: Intelligent Technologies for Information Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07952-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07952-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07378-6

  • Online ISBN: 978-3-662-07952-2

  • eBook Packages: Springer Book Archive