Skip to main content

Mukosales, gastrointestinales Immunsystem (GIS)

  • Chapter
Immunsystem und Infektiologie

Part of the book series: Handbuch der Molekularen Medizin ((HDBMOLEK,volume 4))

  • 282 Accesses

Zusammenfassung

Die gastrointestinale Mukosa weist die enorme Oberfläche von etwa 100–400 m2 auf. Aufgrund der Vielzahl von verschiedenenen Keimen und Antigenen im Darmlumen muß die intestinale Mukosa wesentliche Schrankenfunktionen erfüllen. Sie stellt somit eine der wichtigsten Körperoberflächen dar. Das gastrointestinale Immunsystem (GALT, gut associated lymphoid tissue) übt an dieser Nahtstelle zwischen Körperinnerem und Umgebung eine zentrale Funktion aus. Ganz verschiedene Reaktionen sind nach Einern Antigenkontakt in diesem hochspezialisierten System möglich. Die Induktion einer lokalen oder systemischen Immunantwort, aber auch die Initiation einer systemischen Toleranz können die Folge eines Antigenkontakts mit dem Darm-assoziierten Immunsystem sein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Aisenberg J, Ebert EC, Mayer L (1993) T cell activation in human intestinal mucosa: The role of superantigens. Gastroenterology 105:1421–1430

    PubMed  CAS  Google Scholar 

  • Allan H, Mendrick DL, Trier JS (1993) Rat intestinal M cells contain acidic endosomal-lysosomal compartments and express class II major histocompatibility complex determinants. Gastroenterology 104:698–708

    PubMed  CAS  Google Scholar 

  • Austrup F, Rebstock S, Kilshaw P, Hamann A (1995) Transforming growth factor-beta 1-induced expression of the mucosa-related integrin alpha E on lymphocytes is not associated with mucosa-specific homing. Eur J Immunol 25:1487–1491

    PubMed  CAS  Google Scholar 

  • Becker J, Ulrich P, Kunze R et al. (1988) Immunohisto-chemical detection of HIV structural proteins and distribution of T-lymphocytes and Langerhans cells in the oral mucosa of HIV infected patients. Virchows Arch 1412:413–419

    Google Scholar 

  • Berlin C, Berg EL, Briskin MJ et al. (1993) α4β7 Integrin mediates lymphocyte binding to mucosal vascular ad-dressin MAdCAM-1. Cell 74:185–195

    PubMed  CAS  Google Scholar 

  • Bland PW, Warren LG (1986) Antigen presentation by epithelial cells of rat small intestine. I. Selective induction of suppressor T cells. Immunology 58:9

    PubMed  CAS  Google Scholar 

  • Blumberg RS, Terhorst C, Bleicher P et al. (1991) Expression of a nonpolymorphic MHC class I-like molecule, CD Id, by human intestinal epithelial cells. J Immunol 147:2518–2524

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P (1981) Transport models for secretory IgA and secretory IgM. Clin Exp Immunol 44:221–232

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P, Bjerke K (1990) Immunomorphological characteristics of human Peyer’s patches. Digestion [Suppl 2] 46:262–273

    Google Scholar 

  • Brandtzaeg P, Halstensen TS, Kett K et al. (1989) Immuno-biology and immunopathology of human gut mucosa: Humoral immunity and intraepithelial lymphocytes. Gastroenterology 97:1562–1584

    PubMed  CAS  Google Scholar 

  • Briskin MJ, McEvoy LM, Butcher EC (1993) The mucosal vascular addressin, MAdCAM-1, displays homology to immunoglobin and mucin-like adhesion receptors and to IgA. Nature 363:461–464

    PubMed  CAS  Google Scholar 

  • Brown WR, Newcomb RW, Ishizaka K (1970) Proteolytic degradation of exocrine and serum immunoglobulin. J Clin Invest 49:1374–1380

    PubMed  CAS  Google Scholar 

  • Budhraja M, Levendoglu H, Kocka F et al. (1987) Duodenal mucosal T cell subpopulation and bacterial cultures in acquired immune deficiency syndrome. Am J Gastroenterol 82:427–431

    PubMed  CAS  Google Scholar 

  • Bye WA, Allan CH, Trier JS (1984) Structure, distribution and origin of M cells in Peyer’s patches of mouse ileum. Gastroenterology 86:789–801

    PubMed  CAS  Google Scholar 

  • Cepek K, Shaw S, Parker C et al. (1994) Adhesion between epithelial cells and T lymphocytes mediated by E-cadhe-rin and the alpha E beta 7 integrin. Nature 372:190–193

    CAS  Google Scholar 

  • Cerf-Bensussan N, Guy-Grand D, Griscelli C (1985) Intraepithelial lymphocytes of human gut: Isolation, characterization and study of natural killer activity. Gut 26:81–88

    PubMed  CAS  Google Scholar 

  • Cerf-Bensussan N, Jarry A, Brousse N et al. (1987) A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur J Immunol 17:1279–1285

    PubMed  CAS  Google Scholar 

  • Cerf-Bensussan N, Begue B, Gagnon J, Meo T (1992) The human intraepithelial lymphocyte marker HML-1 is an integrin consisting of a beta 7 subunit associated with a distinctive alpha chain. Eur J Immunol 22:273–277

    PubMed  CAS  Google Scholar 

  • Chen Y, Inobe J-I, Weiner HL (1995) Induction of oral tolerance to myelin basic protein in CD8-depletes mice. J Immunol 155:910–916

    PubMed  CAS  Google Scholar 

  • Chin Y-H, Cai J-P, Hieselaar T (1991) Lymphocyte migration into mucosal tissues: Mechanism and Modulation. Immunol Res 10:271–278

    PubMed  CAS  Google Scholar 

  • Chin Y-H, Cai J-P, Xu X-M (1992) Transforming growth factor-β1 and IL-4 regulate the adhesiveness of Peyer’s patch high endothelial venule cells for lymphocytes. J Immunol 148:1106–1112

    PubMed  CAS  Google Scholar 

  • Chozelski TP, Beutner EH, Sulej J et al. (1984) IgA antiendo-mysium antibody. A new immunologic marker of dermatitis herpetiformis and coeliac disease. Br J Dermatol 111:395

    Google Scholar 

  • Coffman RL, Lebman DA, Shrader B (1989) Transforming growth factor b specifically enhances IgA production by lipopolysacharide-stimulated murine B lymphocytes. J Exp Med 170:1039–1044

    PubMed  CAS  Google Scholar 

  • Conley ME, Delacroix DL (1987) Intravascular and mucosal immunoglobulin A: Two seperate but related systems of immune defense? Ann Intern Med 106:892–899

    PubMed  CAS  Google Scholar 

  • Crabtree JE, Juby LD, Heatley RV et al. (1990) Soluble inter-leukin-2 receptor in Crohn’s disease: relation of serum concentrations to disease activity. Gut 31:1033–1036

    PubMed  CAS  Google Scholar 

  • Cranage MP, Baskerville A, Ashworth LA et al. (1992) Intrarectal challenge of macaques vaccinated with formalin-inactivated simian immunodeficiency virus. Lancet. 339:273–274

    PubMed  CAS  Google Scholar 

  • Dalton HR, Dipaolo MC, Sachdev GK et al. (1993) Human colonic intraepithelial lymphocytes from patients with inflammatory bowel disease fail to down-regulate proliferative responses of primed allogenic peripheral blood mononuclear cells after rechallenge with antigens. Clin Exp Immunol 93:97–102

    PubMed  CAS  Google Scholar 

  • Deem RL, Shanahan F, Targan SR (1991) Triggered human mucosal T cells release tumour necrosis factor-alpha and interferon-gamma which kill human colonic epithelial cells. Clin Exp Immunol 83:79–84

    PubMed  CAS  Google Scholar 

  • DeMaria R, Fais S, Silvestri M et al. (1993) Continious in vivo activation and transient hyporesponsiveness of Tcr/ CD3 triggering of human lamina propria lymphocytes. Eur J Immunol 23:3104–3108

    PubMed  Google Scholar 

  • Deusch K, Lüling F, Reich K et al. (1991a) A major fraction of human intraepithelial lymphocytes simultaneously express the gamma/delta T cell receptor, the CD8 accessory molecule and preferentially use the V delta 1 gene segment. Eur J Immunol 21:1053–1059

    PubMed  CAS  Google Scholar 

  • Deusch K, Pfeffer K, Reich K et al. (1991b) Phenotypic and functional characterization of human Tcrγ/δ + intestinal intraepithelial lymphocytes. Curr Top Microbiol Immunol 173:279–283

    PubMed  CAS  Google Scholar 

  • Dignass AU, Podolsky DK (1995) Growth factors and cytokines in inflammatory bowel disease: injury and healing in the epithelium. In: Tytgat, Bartelsman, Deventer (eds) Falk Symposium 85, Inflammatory Bowel Diseases. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 375–383

    Google Scholar 

  • Duchmann R, Kaiser E, Hermann W et al. (1995) Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol 102:448–455

    PubMed  CAS  Google Scholar 

  • Ebert EC (1993) Do the CD45RO+CD8+ intestinal intraepithelial lymphocytes have the characteristics of memory cells? Cell Immunol 147:331–340

    PubMed  CAS  Google Scholar 

  • Ebert EC, Roberts AI, Brolin RE, Raska K (1989) Examination of the low proliferative capacity of human intraepithelial lymphocytes to various T cell stimuli. Gastroenterology 97:1372–1381

    PubMed  CAS  Google Scholar 

  • Ellakany S, Whiteside TL, Schade RR, Thiel DH van (1987) Analysis of intestinal lymphocyte subpopulations in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Am J Clin Pathol 87:356–364

    PubMed  CAS  Google Scholar 

  • Emancipator SN, Gallo GR, Lamm ME (1985) IgA nephropathy: perspectives on pathogenesis and classification. Clin Nephrol 24:161–179

    PubMed  CAS  Google Scholar 

  • Embretson J, Zupanic M, Ribas JL et al. (1993) Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362:359–362

    PubMed  CAS  Google Scholar 

  • Eriksson K, Kilander A, Hagberg L et al. (1995) Virus-specific antibody production and polyclonal B-cell activation in the intestinal mucosa of HIV-infected individuals. AIDS 9:695–700

    PubMed  CAS  Google Scholar 

  • Farstad IN, Halstensen TS, Fausa O, Brandtzaeg P (1993) Do human Peyer’s patches contribute to the intestinal intraepithelial gamma/delta T-cell-population. Scand J Immunol 38:451–458

    PubMed  CAS  Google Scholar 

  • Farstad IN, Haltensen TS, Fausa O, Brandtzaeg P (1994) Heterogeneity of M-cell-associated B and T cells in human Peyer’s patches. Immunology 83:457–464

    PubMed  CAS  Google Scholar 

  • Farstad IN, Norstein J, Brandtzaeg P (1997) Phenotypes of B and T cells in human intestinal and mesenteric lymph. Gastroenterology 112:163–173

    PubMed  CAS  Google Scholar 

  • Gallin JI, Farber JM, Holland SM, Nutman TB (1995) Interferon-γ in the mangement of infectious disease. Ann Intern Med 123:216–224

    PubMed  CAS  Google Scholar 

  • Gartner S, Markovits P, Markovitz DM et al. (1986) The role of mononuclear phagocytes in HTLV III/LAV infection. Science 233:215–219

    PubMed  CAS  Google Scholar 

  • Gendelman HE, Orenstein JM, Baca LM et al. (1989) The macrophage in the persistence and pathogenesis of HIV infection. AIDS 3:475–495

    PubMed  CAS  Google Scholar 

  • Gregerson DA, Obritsch WF, Donoso LA (1993) Oral tolerance in experimental autoimmune uveoretinitis. J Immunol 151:5751–5761

    PubMed  CAS  Google Scholar 

  • Hamann A, Andrew DP, Jablonski-Westrich D et al. (1994) Role of α4-integrins in lymphocyte homing to mucosal tissues in vivo. J Immunol 152:3282–3293

    PubMed  CAS  Google Scholar 

  • Harriman GR, Kunimoto DY, Elliot JF et al. (1988) Role of IL5 in IgA B cell differentiation. J Immunol 140:3033–3039

    PubMed  CAS  Google Scholar 

  • Ho DD, Rota TR, Hirsch MS (1986) Infection of monocyte/ macrophage by human T lymphotropic virus type III. J Clin Invest 77:1712–1715

    PubMed  CAS  Google Scholar 

  • Hörnquist CE, Ekman L, Grdic KD et al. (1995) Paradoxical IgA immunity in CD4-deficient mice. Lack of cholera toxin-specific protective immunity despite normal gut mucosal IgA differentiation. J Immunol 155:2877–2887

    PubMed  Google Scholar 

  • Hoshino T, Yamada A, Honda J et al. (1993) Tissue-specific distribution and age dependent increase of human CDllb+ T cells. J Immunol 151:2237–2246

    PubMed  CAS  Google Scholar 

  • Isaacson PG, Wright DH (1984) Extranodal malignant lymphoma arising from mucosa associated lymphoid tissue. Cancer 53:2515–2524

    PubMed  CAS  Google Scholar 

  • James SP, Fiocchi C, Graeff AS, Strober W (1986) Pheno-typic analysis of Lamina propria lymphocytes. Predominance of helper-inducer and cytolytic T-cell phenotypes in Crohn’s disease and control patients. Gastroenterology 91:1483–1489

    PubMed  CAS  Google Scholar 

  • James SP, Graeff AS, Zeitz M (1987) Predominance of the helper-inducer T cells in mesenteric lymph nodes and intestinal lamina propria of normal nonhuman primates. Cell Immunol 107:372–383

    PubMed  CAS  Google Scholar 

  • Janoff EN, Jackson S, Wahl SM et al. (1994) Intestinal mucosa immunoglobulins during Human Immunodeficiency Virus Type 1 infection. J Infect Dis 170:299–307

    PubMed  CAS  Google Scholar 

  • Jarry A, Cortez A, René E et al. (1990) Infected cells and immune cells in the gastrointestinal tract of AIDS patients. An immunohistochemical study of 127 cases. Histopatho-logy 16:133–140

    CAS  Google Scholar 

  • Kaetzel CS, Robinson JK, Chintalacharuvu KR et al. (1991) The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: A local defense function for IgA. Proc Natl Acad Sci USA 88:8796–8800

    PubMed  CAS  Google Scholar 

  • Kanof ME, Strober W, Fiocchi C et al. (1988) CD4 positive Leu-8 negative helper-inducer T cells predominate in the human lamina propria. J Immunol 141:3029–3036

    PubMed  CAS  Google Scholar 

  • Kaoutzani P, Colgan SP, Cepek KL et al. (1994) Reconstitution of cultured epithelial monolayers with a mucosal derived T lymphocyte cell line. J Clin Invest 94:788–796

    PubMed  CAS  Google Scholar 

  • Kerckhove CV, Russel GJ, Deusch K et al. (1992) Oligoclonal-ity of human intestinal intraepithelial T cells. J Exp Med 175:57–63

    PubMed  Google Scholar 

  • Kett K, Rognum TO, Brandtzaeg P (1987) Mucosal subclass distribution of immunoglobulin G-producing cells is different in ulcerative colitis and Crohn’s disease of the colon. Gastroenterology 93:919–924

    PubMed  CAS  Google Scholar 

  • Kikuta A, Rosen SD (1994) Localisation of ligands for L-se-lectin in mouse peripheral lymph node high endothelial cells by colloidal gold conjugates. Blood 84:3766–3775

    PubMed  CAS  Google Scholar 

  • Kiyono H, Cooper MD, Kearney JF et al. (1984) Isotype spe-cifity of helper T cell clones: Peyer’s patch Th cells preferentially collaborate with mature IgA B cells for IgA responses. J Exp Med 159:798–811

    PubMed  CAS  Google Scholar 

  • Kotier DP, Scholes JV, Tierney AR (1987) Intestinal plasma cell alterations in the acquired immunodeficiency syndrome. Am J Pathol 32:129–38

    Google Scholar 

  • Kühn R, Löhler J, Rennik D, Rajewski K (1993) Interleukin-10-deficient mice develop enterocolitis. Cell 75:263–274

    PubMed  Google Scholar 

  • Kunimoto DY, Harriman GR, Strober W (1988) Regulation of IgA differentiation in CH12LX B cells by lymphokines: IL-4 induces membrane IgM-positive CH12LX cells to express membrane IgA and IL-5 induces membrane IgA-positive CH12LX cells to secrete IgA. J Immunol 141:713–720

    PubMed  CAS  Google Scholar 

  • Latthe M, Terry L, MacDonald TT (1994) High frequency of CDαα homodimer-bearing T cells in human fetal intestine. Eur J Immunol 24:1703–1705

    PubMed  CAS  Google Scholar 

  • Lehner T, Bergmeier LA, Panagiotidi C et al. (1992) Induction of mucosal and systemic immunity to a recombinant simian immunodeficiency viral protein. Science 258:1365–1369

    PubMed  CAS  Google Scholar 

  • Lider O, Santos MB, Lee CSY et al. (1989) Suppression of experimental autoimmune encephalomyelinitis by oral administration of of myelin basic protein. II. Suppression by of disease and in vitro immune responses is mediated by antigen specific CD8+ T lymphocytes. J Immunol 142:748

    PubMed  CAS  Google Scholar 

  • Loughnan MS, Nossal GJV (1989) Interleukins 4 and 5 control expression of IL-2 receptor on murine B cells through independent induction of its two chains. Nature 340:76–79

    PubMed  CAS  Google Scholar 

  • Lynch S, Kelleher D, Manus RM, O’Farrelly C (1995) RAG1 and RAG2 expression of human intestinal epithelium: evidence of extrathymic T cell differentiation. Eur J Immunol 25:1143–1147

    PubMed  CAS  Google Scholar 

  • MacDermott RP, Nash GS, Bertovich MJ et al. (1986) Altered patterns of secretion of monomeric IgA and IgA subclass 1 by intestinal mononuclear cells in inflammatory bowel disease. Gastroenterology 91:379–385

    PubMed  CAS  Google Scholar 

  • MacDonald TT, Spencer J (1988) Evidence that activated mucosal T cells play a role in the pathogenesis of enteropathy in human small intestine. J Exp Med 167:1341–1349

    PubMed  CAS  Google Scholar 

  • Marth T, Strober W, Kelsall BL (1996) High dose oral tolerance in ovalbumin TCR-transgenic mice: Systemic neutralization of interleukin-12 augments TGFβ secretion and T cell apoptosis. J Immunol 157:2348–2357

    PubMed  CAS  Google Scholar 

  • Marth T, Neurath MF, Cuccherini B, Strober W (1997) Defects of monocyte interleukin-12 production and humoral immunity in Whipple’s disease. Gastroenterology 113:442–448

    PubMed  CAS  Google Scholar 

  • Mayer L (1995) Intestinal epithelium: a new immunological barrier. In: Tytgat, Bartelsman, Deventer (eds) Falk Symposium 85, Inflammatory Bowel Diseases. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 384–387

    Google Scholar 

  • Mayer L, Eisenhardt D (1990) Lack of induction of suppressor T cells by intestinal epithelial cells from patients with inflammatory bowel disease. J Clin Invest 86:1255–1260

    PubMed  CAS  Google Scholar 

  • Mayer L, Shlien R (1987) Evidence for function of Ia molecule on gut epithelial cells in man. J Exp Med 166:1471

    PubMed  CAS  Google Scholar 

  • Mayer L, Eisenhardt D, Salomon P et al. (1991) Expression of class II molecules on intestinal epithelial cells in humans. Gastroenterology 100:3–12

    PubMed  CAS  Google Scholar 

  • Mazanec MB, Kaetzel CS, Lamm ME et al. (1992) Intracellular neutralization of virus by immunoglobulin A antibodies. Proc Natl Acad Sci USA 89:6901–6905

    PubMed  CAS  Google Scholar 

  • Mazanec MB, Nedrud JG, Kaetzel CS, Lamm ME (1993) A three-tered view of the role of IgA in mucosal defense. Immunol Today 14:430–435

    PubMed  CAS  Google Scholar 

  • McGhee JR, Mestecky J, Elson CO, Kiyono H (1989) Regulation of IgA synthesis and immune response by T cells and interleukins. J Clin Immunol 9:175–199

    PubMed  CAS  Google Scholar 

  • Morrissey PJ, Charrier K (1995) Induction of colitis in SCID mice by the transfer of normal CD4+/CD45RBhi T cells. In: Tytgat, Bartelsman, Deventer (eds) Falk Symposium 85, Inflammatory Bowel Diseases. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 418–423

    Google Scholar 

  • Movat AM (1987) The regulation of immune responses to dietary protein antigen. Immunol Today 8:93

    Google Scholar 

  • Owen RL, Jones AL (1974) Epithelial cell specialization within human Peyer’s patch: An ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66:189–203

    PubMed  CAS  Google Scholar 

  • Owen RL, Nemanic P (1978) Antigen processing structures of the mammalian intestinal tract: an SEM study of lymphoepithelial organs. Scanning Microsc 2:367–378

    Google Scholar 

  • Owen RL, Pierce NF, Apple RT, Gray WC (1986) M cell transport of Vibrio cholerae from the intestinal lumen into Peyer’s patches: A mechanism for antigen sampling and for microbial transepithelial migration. J Infect Dis 153:1108–1118

    PubMed  CAS  Google Scholar 

  • Pabst R (1991) Lymphocyte migration to the gut: Ovesimpli-fication and controversial aspects. Immunol Res 10:279–281

    PubMed  CAS  Google Scholar 

  • Panja A, Blumberg RS, Balk SP, Mayer L (1993) Cdld is involved in T cell-intestinal epithelial cell interaction. J Exp Med 178:1115–1119

    PubMed  CAS  Google Scholar 

  • Panja A, Barone A, Mayer L (1994) Stimulation of lamina propria lymphocytes by intestinal epithelial cells: evidence for recognition of nonclassical restriction elements. J Exp Med 179:943–950

    PubMed  CAS  Google Scholar 

  • Pantaleo G, Graziosi C, Butini L et al. (1991) Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proc Natl Acad Sci USA 88:9838–9842

    PubMed  CAS  Google Scholar 

  • Pantaleo G, Graziosi C, Demarest JF et al. (1993a) HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. N Engl J Med 362:355–358

    CAS  Google Scholar 

  • Pantaleo G, Graziosi C, Fauci A (1993b) The immunopatho-genesis of human immunodeficiency virus infection. Nature 328:327–335

    CAS  Google Scholar 

  • Pappo J, Ermark TH, Steger HJ (1991) Monoclonal antibody-directed of fluorescent polystyrene microspheres to Peyer’s patch M cells. Immunology 73:277–280

    PubMed  CAS  Google Scholar 

  • Parker CM, Cepek KL, Rüssel GL et al. (1992) A family of beta 7 integrins on human mucosal lymphocytes. Proc Natl Acad Sci USA 89:1924–1928

    PubMed  CAS  Google Scholar 

  • Peters M, Secrist H, Anders KR et al. (1986) Increased expression of cell surface activation markers by intestinal monunuclear cells. Clin Res 1986:462

    Google Scholar 

  • Pirzer UC, Schürmann G, Post S et al. (1990) Differential responsiveness to CD3-Ti vs CD2 -dependent activation in human intestinal T lymphocytes. Eur J Immunol 20:2339–2342

    PubMed  CAS  Google Scholar 

  • Plüschke G, Taube H, Krawinkel U et al. (1994) Oligoclonali-ty and skewed T cell receptor V beta gene segment expression in in vivo activated human intestinal intraepithelial T lymphocytes. Immunobiology 192:77–93

    PubMed  Google Scholar 

  • Postigio AA, Snchez-Mateos P, Lazarovits AI et al. (1993) α4β7 Integrin mediates B cell binding to fibronectin and vascular cell adhesion molecule-1. J Immunol 151:2471–2483

    Google Scholar 

  • Qiao L, Schürmann G, Autschbach F et al. (1993) Human intestinal mucosa alters T cell reactivities. Gastroenterology 105:814–819

    PubMed  CAS  Google Scholar 

  • Regoli M, Borghesi C, Bertelli E, Nicoletti C (1994) A morphological study of the lymphocyte traffic in Peyer’s Patches after in vivo antigenic stimulation. Anat Rec 239:47–54

    PubMed  CAS  Google Scholar 

  • Relman DA, Schmidt TM, MacDermtt RP, Falkow S (1992) Identification of the uncultured bacillus of Whipple’s disease. N Engl J Med 327:293–301

    PubMed  CAS  Google Scholar 

  • Roberts AI, O’Connel M, Biancone L et al. (1993) Spontaneous cytotoxicity of intestinal intraepithelial lymphocytes: clues to mechanism. Clin Exp Immunol 94:527–532

    PubMed  CAS  Google Scholar 

  • Rodgers VD, Fasse« R, Kagnoff MF (1986) Abnormalities in intestinal mucosal T cells in homosexual populations including those with the lymphadenopathy syndrome and acquired immunodeficiency syndrome. Gastroenterology 90:552–558

    PubMed  CAS  Google Scholar 

  • Rothkötter HJ, Hriesik C, Pabst R (1995) More newly formed T than B lymphocytes leave the intestinal mucosa via lymphatics. Eur J Immunol 25:866–869

    PubMed  Google Scholar 

  • Russell MW, Mansa B (1989) Complement-fixing properties of human IgA antibodies: alternative pathway complement activation by plastic-bound, but not by specific antigen-bound IgA. Scand J Immunol 30:175–183

    PubMed  CAS  Google Scholar 

  • Sadlack B, Merz H, Schorle H et al. (1993) Ulcerative Colitis-like disease in mice with a disruptet Interleukin-2 gene. Cell 75:253–261

    PubMed  CAS  Google Scholar 

  • Sanders ME, Makgoba MW, Sharrow SO et al. (1988) Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL-1, CDw29, and Pgp-1) and have enhanced IFN-y production. J Immunol 140:1401–1407

    PubMed  CAS  Google Scholar 

  • Sarnacki S, Bègue B, Jarry A, Cerf-Bensussan N (1991) Human intestinal intraepithelial lymphocytes, a distinct population of activated T cells. Immunol Res 10:302–305

    PubMed  CAS  Google Scholar 

  • Sarnacki S, Bègue B, Buc H et al. (1992) Enhancement of CD3-induced activation of human intestinal intraepithelial lymphocytes by stimulation of the β7-containing integrin defined by HML-1 monoclonal antibody. Eur J Immunol 22:2887–2892

    PubMed  CAS  Google Scholar 

  • Schieferdecker HL, Ullrich R, Hirseland H, Zeitz M (1992) T cell differentiation antigens on lymphocytes in the human intestinal lamina propria. J Immunol 149:2816–2822

    PubMed  CAS  Google Scholar 

  • Schieferdecker HL, Ullrich R, Weiß-Breckwoldt AN et al. (1990) The HML-1 antigen of intestinal lymphocytes is an activation antigen. J Immunol 144:2541–2549

    PubMed  CAS  Google Scholar 

  • Schieferdecker HL, Ullrich R, Zeitz M (1991) Phenotype of HML-1-positive T cells in the human intestinal lamina propria. Immunol Res 10:207–210

    PubMed  CAS  Google Scholar 

  • Schneider T, Ullrich R, Bergs C et al. (1994) Abnormalities in subset distribution, activation, and differentiation of T cells isolated from large intestine biopsies in HIV infection. Clin Exp Immunol 95:430–435

    PubMed  CAS  Google Scholar 

  • Schneider T, Jahn H-U, Schmidt Wet al. (1995) Loss of CD4 T lymphocytes in patients infected with human immunodeficiency virus type 1 is more pronounced in the duodenal mucosa than in the peripheral blood. Gut 37:524–529

    PubMed  CAS  Google Scholar 

  • Schreiber S, MacDermott R, Raedler A et al. (1991) Increased activation of isolated intestinal lamina propria mononuclear cells in inflammatory bowel disease. Gastroenterology 101:1020–1030

    PubMed  CAS  Google Scholar 

  • Seibold F, Weber P, Scheurlen M (1995) Autoantibodies in IBD patients and their families. In: Tytgat GNJ; Bartelsman JFWM; van Deventer SJH (eds) Inflammatory Bowel Diseases0. Kluwer 1995, pp 239–243

    Google Scholar 

  • Selby WS, Janossy G, Bofill M, Jewell DP (1983) Lymphocyte subpopulations in the human small intestine. The findings in normal mucosa and in the mucosa of patients with adult coeliac disease. Clin Exp Immunol 52:219–228

    PubMed  CAS  Google Scholar 

  • Shim B, Kang YS, Kim WJ et al. (1969) Self-protective activity of colostral IgA against tryptic digestion. Nature 222:787–788

    PubMed  CAS  Google Scholar 

  • Smith KA (1988) Interleukin-2, inception, impact, and implications. Science 240:1169–1176

    PubMed  CAS  Google Scholar 

  • Sollid LM, Kvale D, Brandtzaeg P et al. (1987) Interferon gamma enhances the expression of secretory component, the epithelial receptor for polymeric immunoglobulin. J Immunol 138:4303–4306

    PubMed  CAS  Google Scholar 

  • Stein H, Dienemann D, Sperling M et al. (1988) Identification of a T cell lymphoma category derived from intesti-nal-mucosa-associated T cells. Lancet 11:1053–1054

    Google Scholar 

  • Stokes CR, Soothill JF, Turner MW (1975) Immune exclusion is a function of IgA. Nature 255:745–746

    PubMed  CAS  Google Scholar 

  • Strober W (1985) Gluten-sensitive enteropathy — an abnormal immunologic response of the gastrointestinal tract to dietary protein. In: Shorter G, Kirsner (ed) Gastrointestinal immunity for the clinician. Grune & Stratton, Orlando, pp 75–112

    Google Scholar 

  • Strober W, Ehrhardt RO (1994) Regulation of IgA B cell development. In: Ogra, Mestecky, Lamm, Strober, McGhee, Bienenstock (eds) Handbook of mucosal immunology. Academic Press, Orlando, Florida, pp 159–176

    Google Scholar 

  • Taguchi T, Aicher WK, Fujihashi K et al. (1991) Novel function for intestinal intraepithelial lymphocytes: Murine CD3+, γ/δ TCR+ T cells produce interferon gamma and interleukin 5. J Immunol 147:3736–3744

    PubMed  CAS  Google Scholar 

  • Targan SR, Deem RL, Liu M et al. (1995) Definition of lamina propria T cell responsive state, enhanced cytokine responsiveness of T cells stimulated through the CD2 pathway. J Immunol 154:664–675

    PubMed  CAS  Google Scholar 

  • Taunk J, Roberts AI, Ebert EC (1992) Spontaneous cytotoxicity of human intraepithelial lymphocytes against epithelial cell tumors. Gastroenterology 102:69–75

    PubMed  CAS  Google Scholar 

  • Thiele H-G (1991) Lymphocyte homing: An overview. Immunol Res 10:261–267

    PubMed  CAS  Google Scholar 

  • Ullrich R, Zeitz M, Heise W et al. (1989a) Small intestinal structure and function in patients infected with human immunodeficiency virus (HIV): Evidence for HIV-induc-ed enteropathy. Ann Intern Med 111:15–21

    PubMed  CAS  Google Scholar 

  • Ullrich R, Zeitz M, Schieferdecker H et al. (1989b) Expression von aktivierungs- und prolifertionsabhängigen Antigenen in der intestinalen Lamina propria (LP) von Kontrollpersonen und Patienten mit chronisch entzündlichen Darmerkrankungen (CED). Klin Wochensch [Suppl XVI] 67:234

    Google Scholar 

  • Ullrich R, Schieferdecker HL, Ziegler K et al. (1990) γδ T cells in the human intestine express surface markers of activation and are preferentially located in the epithelium. Cell Immunol 128:619–627

    PubMed  CAS  Google Scholar 

  • Ullrich R, Heise W, Bergs C et al. (1992) Effects of zidovudine treatment on the small intestinal mucosa in patients infected with HIV. Gastroenterology 102:1483–1492

    PubMed  CAS  Google Scholar 

  • Watanabe M, Ueno Y, Yajima T et al. (1995) Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest 95:2945–2953

    PubMed  CAS  Google Scholar 

  • Weiker J, Underdown BJ (1975) Secretory component bonding to immunoglobulins A and M. J Immunol 114:1337–1344

    Google Scholar 

  • Weiner HL, Friedman A, Miller A et al. (1994) Oral tolerance: Immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol 12:809–837

    PubMed  CAS  Google Scholar 

  • Westermann J, Nagahori Y, Walter S et al. (1994) B and T lymphocyte subsets enter peripheral lymph nodes and Peyer’s patches without preference in vivo: no correlation occurs between their localization in different types of high endothelial venules and the expression of CD44, VLA-4, LFA-1, ICAM-1, CD2 or L-selectin. Eur J Immunol 24:2312–2316

    PubMed  CAS  Google Scholar 

  • Whitacre CC, Gienapp IE, Orosz CO, Bitar DM (1991) Oral tolerance in experimental autoimmune encephalomyelitis III. Evidence for clonal anergy. J Immunol 147:2155–2163

    PubMed  CAS  Google Scholar 

  • Zeitz M, Greene WC, Pfeffer NJ, James SP (1988a) Lymphocytes isolated from the intestinal Lamina propria of normal nonhuman primates have increased expression of genes associated with T-cell activation. Gastroenterology 94:647–655

    PubMed  CAS  Google Scholar 

  • Zeitz M, Quinn TC, Graeff AS (1988b) Mucosal T cells provide helper function but do not proliferate when stimulated by specific antigen in lymphogranuloma venerum proctitis in nonhuman primates. Gastroenterology 94:353–366

    PubMed  CAS  Google Scholar 

  • Zeitz M, Ullrich R, Schieferdecker HL et al. (1991) Characterization of T cell populations in the intestinal lamina propria in inflammatory bowel disease. In: Goebell, Ewe, Malchow, Koelbel (eds) Inflammatory bowel diseases: progress in basic research and clinical implications. Kluwer, Lancaster

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Köhne, G., Schneider, T., Zeitz, M. (1999). Mukosales, gastrointestinales Immunsystem (GIS). In: Ganten, D., Ruckpaul, K. (eds) Immunsystem und Infektiologie. Handbuch der Molekularen Medizin, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07865-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07865-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07866-2

  • Online ISBN: 978-3-662-07865-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics