Skip to main content

Micropropagation of Citrullus lanatus (Thunb.) Matsum. and Nakai (Watermelon)

  • Chapter
Book cover High-Tech and Micropropagation V

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 39))

Abstract

The watermelon is documented in hieroglyphs on the walls of Egyptian tombs that are at least 4000 years old. In 1857, David Livingstone found watermelon growing in the Kalahari Desert. In 1959, archeologists found watermelon seeds in a prehistoric cave in Hang-Zhou, China which dated back to 3000 B.C. From its origin in central Africa, it must have first been carried to northern Africa, through Persia, to China and India. European explorers brought the watermelon home with them in the 1500s. Watermelon seeds were carried to North America by colonial settlers from Europe and from Africa by slaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelberg JW, Rhodes BB (1988) Somatic embryogenesis and organogenesis from zygotic embryos of watermelon, Citrullus lanatus. HortScience 23(3): 786 (Abstr)

    Google Scholar 

  • Adelberg JW, Rhodes BB (1989) Micropropagation from zygotic tissues of watermelon. In: Proc Cucurbitaceae 89: evaluation and enhancement of cucurbit germplasm. Thomas CE (cd) USDA/ARS. Charleston, South Carolina

    Google Scholar 

  • Adelberg JW, Rhodes BB, Young R (1989) Micropropagation on a polypropylene membrane.

    Google Scholar 

  • HortScience 24 (Suppl):139. Abstr 86th Natl Meet Am Soc Hortic Sci, Tulsa, Oklahoma Adelberg JW, Rhodes BB, Skorupska H (1990) Generating watermelon and melon tetraploids.

    Google Scholar 

  • HortScience 25(9):73 (Abstr)

    Google Scholar 

  • Adelberg J, Desamero NV, Hale A, Young R (1992) Orchid micropropagation on polypropylene membranes. Am Orchid Soc Bull July 1992, pp 688–695

    Google Scholar 

  • Adelberg J, Rhodes B, Skorupska H (1993) Generating tetraploid melon in tissue culture. In: Hammerschlag F (ed) Proc 2nd Int Symp In vitro culture and horticultural breeding. Acta Hort 336: 373–380

    Google Scholar 

  • Adelberg J, Rhodes B, Skorupska H, Bridges W (1994) Explain origin affects the frequency of tetraploid plants from tissue cultures of melon. HortScience 29: 689–692

    Google Scholar 

  • Allred, Amy J, Lucier G (1990) The U.S. Watermelon Industry. AGES 9015. ERS Staff Rep No AGES 9015, USDA, Economic Research Service, Commodity Econ Div VI, Illinois, 73 pp

    Google Scholar 

  • Alper Y, Adelberg JW, Young RE, Rhodes BB (1994a) Unitized, non-selective cutting of in vitro watermelon. Trans ASAE: 37: 1331–1336

    Google Scholar 

  • Alper Y, Young RE, Adelberg JW, Rhodes BB (19946) Mass handling of watermelon microcuttings. Trans ASAE 37: 1337–1343

    Google Scholar 

  • Andrus CF (1971) Production of seedless watermelons. Tech Bull No 1425. ARS/USDA, Charleston, South Carolina, 12 pp

    Google Scholar 

  • Anghel I, Rosu A (1985) In vitro morphogenesis in diploid, triploid and tetraploid genotypes of watermelon - Citrullus lanatus ( Thunb. ). Mansf Rev Roum Biol Vega 30: 43–55

    Google Scholar 

  • Baja) YPS (ed) (1995) Biotechnology in agriculture and forestry, vol 30. Somatic embryogenesis and synthetic seed I. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Barnes LR (1978) In vitro rapid propagation of watermelon - Citrullus lanatus (Thunb) Matsu-mura and Nakai. MS Thesis, North Carolina State University, Raleigh

    Google Scholar 

  • Barnes LR (1979) In vitro propagation of watermelon. Sei Hortic 11: 223–227

    Article  CAS  Google Scholar 

  • Blackmon W, Reynolds B (1982) In vitro shoot regeneration of Hibiscus acetosella, muskmelon. watermelon and winged bean. HortScience 17: 588–589

    Google Scholar 

  • Choi PS, Soh WY, Kim YS, You OJ, Liu JR (1994) Genetic transformation and plant regeneration of watermelon using Igrobacteriune turne aciena. Plant Cell Rep 13: 344 348

    Article  Google Scholar 

  • Compton ME, Gray DJ (1993a) Shoot organogenesis and plant regeneration from cotyledons of diploid, triploid and tetraploid watermelon. J Amer Soc Hort Sci 118: 151–157

    Google Scholar 

  • Compton ME, Gray DJ (1993b) Somatic embryogenesis and plant regeneration from immature cotyledons of watermelon. Plant Cell Rep 12: 61–65

    Article  CAS  Google Scholar 

  • Compton ME, Gray DJ (1994) Adventitious shoot organogenesis and plant regeneration from cotyledons of tetraploid watermelon. HortScience 29 (3): 211–213

    Google Scholar 

  • Compton ME, Gray DJ, Elmstrom GW (1993) A simple protocol for micropropagating diploid and tetraploid watermelon using shoot-tip explants. Plant Cell Tissue Organ Cult 33: 211–217

    Article  Google Scholar 

  • Compton ME, Harris JW, Gray DJ (1995) A simple method for estimating ploidy of in vitro watermelon plantlets. HortScience 30: 752 (Abstr)

    Google Scholar 

  • Desamero NV, Adelberg JW, Hale SA, Young RE, Rhodes BB (1993) Nutrient utilization in liquid/membrane system for watermelon micropropagation. Plant Cell Tissue Organ Cult 33: 265–271

    Article  CAS  Google Scholar 

  • Dong J-Z, Jia S-R (1991) High efficiency plant regeneration from cotyledons of watermelon (Citrullus vulgaris Schrad.). Plant Cell Rep 9: 559–562

    Article  CAS  Google Scholar 

  • Ezura H, Amagai H, Yoshioka K, Oosawa K (1993) Highly frequent appearance of tetraploidy in regenerated plants, a universal phenomenon, in tissue cultures of melon (Cucumis melo L.) Plant Sci 85: 209–213

    Google Scholar 

  • Fang G, Grumet R (1993) Genetic engineering of poty virus resistance using constructs derived from the zucchini yellow mosaic virus coat protein gene. Mol Plant-Microbe Interact 6 (3): 358–367

    Article  PubMed  CAS  Google Scholar 

  • Gao XY, Lin XY, Yang CY, Wang YY, Sun BL, Liu SH (1983) Study on the clonal propagation of seedless watermelon (in Chinese with English summary). J Chin Agric Sci 2: 58–63

    Google Scholar 

  • Garrett JT, Rhodes BB, Xingping Zhang (1995) Triploid watermelons resist fruit blotch organism. Cucurbit Gene Cooperative Rep 18: 56–58

    Google Scholar 

  • Gonsalves C, Xue B, Yepes M, Fuchs M, Ling K, Namba S, Chee P, Slightom J, Gonsalves D (1994) Transferring cucumber mosaic virus-white leaf strain coat protein into Cucumis melo L. and evaluating transgenic plants for protection against infections. J Am Hort Sci 119: 345355

    Google Scholar 

  • Gray DJ, Elmstrom GW (1991) Process for the accelerated production of triploid seeds for seedless watermelon cultivars. US Patent 5,007,198. April 16, 1991, 4 pp

    Google Scholar 

  • Hale SA, Young RE, Adelberg JW, Keese RJ, Camper ND (1992) Bioreactor development for continual-flow, liquid plant tissue culture. Acta Hortic 319 (I): 107–112

    Google Scholar 

  • Heins R, Erwin J (1990) Understanding and applying DIF. Greenhouse Grower (Feb): 73–78

    Google Scholar 

  • Ito T (1992) Present state of transplant production practices in Japanese horticultural industry. In: Kurata K, Kozai T (eds) Transplant production systems. Kluwer, Dordrecht, pp 65–82 Kihara H (1951) Triploid watermelons. Am Soc Hortic Sei Proc 58: 217–230

    Google Scholar 

  • Kihara H, Nishiyama I (1947) An application of sterility of autotriploids to the breeding of seedless watermelons. Seiken Ziho 3 (III): 5–15

    Google Scholar 

  • Kim S, Chang J, Cha H, Lee K (1988) Callus growth and plant regeneration from diverse cultivars of cucumber (Cucumis sativus L.). Plant Cell Tissue Organ Cult 12: 67–74

    Article  Google Scholar 

  • Kurata K (1994a) Delivery systems for organogenesis. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Kluwer, Dordrecht, pp 257–272

    Google Scholar 

  • Kurata K (1994b) Cultivation of grafted vegetables II. Development of grafting roots in Japan. HortScience 29 (4): 240–243

    Google Scholar 

  • Kurtz SL, Hartman PD, Chu IYE (1991) Current methods of commercial micropropagation. In: Vasil 1K (ed) Scale-up and automation in plant propagation. Academic Press, San Diego, pp 7–13

    Google Scholar 

  • Latin RX, Hopkins DL (1995) Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality. Plant Dis 79 (3): 761–765

    Article  Google Scholar 

  • Lee JM (1994) Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience 29 (4): 235–239

    Google Scholar 

  • Mohr HC, Sandhu MS (1975) Inheritance and morphological traits of a double recessive dwarf in watermelon, Citrullus lanatus (Thunb.) Mansf J Am Soc Hort Sci 100: 135–137

    Google Scholar 

  • Moreno V, Roig LA (1990) Somaclonal variation in cucurbits_ In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement I. Springer, Berlin Heidelberg New York, pp 435–466

    Google Scholar 

  • Rhodes BB, Adelberg JW, Nagata R, Hegwood CP (1988) Efforts to use the glabrous male-sterile (gins) gene to produce commercial hybrid watermelon. In: Proc Int Symp on Horticulture Gcrmplasm, Vegetable Section. Sept 1988, Beijing

    Google Scholar 

  • Rhodes BB, Murdock BA, Adelberg.IW (1989) A second look at the glabrous male-sterile (gins) character in watermelon. Cucurbit Genet Cooperative Rep 12: 58

    Google Scholar 

  • Sari N, Abak K, Pitrat M, Rode JC, Dumas de Vaulx R (1994) Induction of parthenogenetic haploid embryos after pollination by irradiated pollen in watermelon. HortScience 29(10): 1189–1 190

    Google Scholar 

  • Srivastava DR, Andrianov VM, Piruzian ES (1989) Tissue culture and plant regeneration of watermelon (Citrullus vulgaris Schrad. cv. Melitopolski ). Plant Cell Rep 8: 300–302

    Google Scholar 

  • Tabei Y, Yamanaka H, Kanno T (1993) Adventitious shoot induction and plant regeneration from cotyledons of mature seed in watermelon (Citrullus lauatus L.). Plant Tissue (’ult Lett 10 (3): 235–241

    Article  CAS  Google Scholar 

  • Tabei Y, Oosawa K, Nishimura S, Hanada K, Yoshioka K, Fusijawa I. Nakajima K (1994) Environmental risk evaluation of the transgenic melon with coat protein gene of cucumber mosaic virus in a closed and semiclosed greenhouses. Breed Sei 44: 101–105 (in Japanese with English summary)

    Google Scholar 

  • Vasil IK (1991) Rational for scale-up and automation of plant propagation. In: Scale-up and automation in plant propagation. Academic Press, San Diego, pp 1–5

    Google Scholar 

  • Wang YY, Li CL, Jiang ZR, Gao XY (1980) Clonal propagation of seedless watermelon. Acta Hortic 7 (4): 64 (in chinese)

    Google Scholar 

  • Watts VM (1962) A marked, male-sterile mutant in watermelon. Proc Am Soc Hortic Sci 81: 498 505

    Google Scholar 

  • Wilkins M (1985) Micropropagation of two triploid hybrids of Citrullus lanutus (Thunb.) Malsumura and Nakai. MS Thesis, Clemson University, Clemson, 59 pp

    Google Scholar 

  • Xu ZH, Wei ZM, Liu GY (1979) In vitro clonal propagation of triploid seedless watermelon (Citrullus vulgaris Schrad.). Acta Phytophysiol Sin 5(3): 245–251 (in Chinese with English summary)

    Google Scholar 

  • Xue GR, Yu WY, Lei KW (1983) Watermelon plants derived by in vitro anther culture. Plant Physiol Commun 4: 40–42 (In Chinese)

    Google Scholar 

  • Xue GR, Yu WY, Yang ZY,Sun RX (1988) The induction of watermelon pollen plants and a preliminary observation of the progeny. Hereditas 10 (2):5–8 (In Chinese)

    Google Scholar 

  • Young RE, Adelberg JW (1996) Plant propagation system and method. US patent no. 5, 525, 505 Young RE, Hale A, Camper ND, Keese RJ, Adelberg JW (1991) Approaching mechanization of plant micropropagation. Trans ASAE 34: 328–333

    Google Scholar 

  • Zhang XP, Wang M (1990) A genetic male-sterile gene (rn.$) discovered in China. Cucurbit Genet Cooperative Rep 15: 58

    Google Scholar 

  • Zhang, XP, Skorupska HT, Rhodes BB (1994a) Cytological expression in the ms mutant in watermelon. J Hered 85: 279 285

    Google Scholar 

  • Zhang XP, Rhodes BB, Adelberg JW (1994b) Shoot regeneration from immature cotyledons of watermelon. Cucurbit Genet Cooperative Rep 17: 102–105

    Google Scholar 

  • Zhang XP, Rhodes BB, Skorupska HT, Bridges WC (1995) Generating tetraploid watermelon using colchicine in vitro. In: Dunlap JR (cd) Proc Cucurbitaceae 94: evaluation and enhancement of cucurbit germplasm. Texas Aand M University, USDA/ARS/SARL, pp 134–139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adelberg, J.W., Zhang, X.P., Rhodes, B.B. (1997). Micropropagation of Citrullus lanatus (Thunb.) Matsum. and Nakai (Watermelon). In: Bajaj, Y.P.S. (eds) High-Tech and Micropropagation V. Biotechnology in Agriculture and Forestry, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07774-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07774-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08269-6

  • Online ISBN: 978-3-662-07774-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics