Skip to main content

Heavy Metal Induced Oxidative Damage in Terrestrial Plants

  • Chapter

Abstract

There are 110 elements in the periodic table with the elements from 104 to 110 being of somewhat recent discovery (www.sdfine.com). Of these chemical elements, metals make up the largest group; some 69 of the currently known elements, excluding the transuranium series, are metallic in character (Fig. 4.1). Also, out of the 10 most abundant elements in the earth’s crust, seven are metals (Table 4.1); aluminum occupies the third place, followed by iron, calcium, sodium, potassium, magnesium and titanium (Mason 1958). Their characteristics, however, differ greatly within the biosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasami T (1984) Pollution of soil by cadmium. In: Nriagu JO (ed) Changing metal cycles and human health, Dahlem Konferenzen. Springer, Berlin Hiedelberg New York, pp 95–111

    Chapter  Google Scholar 

  • Absil MCP, van Scheppingen Y (1996) Concentration of selected heavy metals in benthic diatoms and sediment in the Westerschelde estuary. Bull Environ Contam Toxicol 56: 1008–1015

    Article  PubMed  CAS  Google Scholar 

  • Adams WW III, Demmig-Adams B, Verhoeven AS, Baker DH (1995) ‘Photoinhibition’ during win-ter stress: involvement of sustained xanthophylls in cycle-dependent energy dissipation. Aust J Plant Physiol 22: 261–276

    Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Abner BA, Morel FMM (1995) Phytochelatin production in marine algae. 2. Induction by various metals. Limnol Oceanogr 40: 658–665

    Google Scholar 

  • Ahrland S (1968) Thermodynamics of complex formation between hard and soft acceptors and donors. Nature and scope of the classification of acceptors and donors as hard and soft. Struct Bonding 5: 118–123

    Article  CAS  Google Scholar 

  • Albers PH, Camardese MB (1993a) Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands. Environ Toxicol Chem 12: 999–967

    Google Scholar 

  • Albers PH, Camardese MB (1993b) Effects of acidification on metal accumulation by aquatic plants and invertebrates. 2. Wetlands, ponds and small lakes. Environ Toxicol Chem 12: 969–976

    Google Scholar 

  • Allaway WH (1968) Agronomic controls over environmental cycling of trace elements. Adv Agron 20: 235–274

    Article  CAS  Google Scholar 

  • Anonymous (1964) Encyclopedia of chemical science. Van Norstrand, Princeton, p 533

    Google Scholar 

  • Arduini I, Godbold DL, Antonino 0 (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97: 111–117

    CAS  Google Scholar 

  • Asada K (1992) Production and scavenging of active oxygen in chloroplasts. In: Scandalios JG (ed) Photoinhibition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 173–192

    Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Babiarz CL, Andren AW (1995) Total concentrations of mercury in Wisconsin ( USA) lakes and rivers. Water Air Soil Pollut 83: 173–183

    Google Scholar 

  • Babu TS, Sabat SC, Mohanty P (1992) Alterations in photosystem II organization by cobalt treatment in the cyanobacterium Spirulina plantensis. J Plant Biochem Biotechnol 1: 61–63

    Article  CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British population of the metallophyte Thalaspi caerulescens J. C. Presl ( Brassicaceae ). New Phytol 127: 61–68

    Google Scholar 

  • Barak NAE, Mason CF (1990) Mercury, cadmium and lead concentrations in five species of freshwater fish from eastern England. Sci Total Environ 92: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Bartosz G (1997) Oxidative stress in plants. Acta Physiol Plant 19: 47–64

    Article  CAS  Google Scholar 

  • Baryla A, Laborde C, Montillet J-L, Triantaphylides C, Chagvardieff P (2000) Evaluation of lipid peroxidation as a toxicity bioassay for plants exposed to copper. Environ Pollut 109: 131–135

    Article  PubMed  CAS  Google Scholar 

  • Battle RW, Gaunt JK, Laidman DL (1976) The effect of photoperiod on endogenous y-tocopherol and plastochromanol in leaves of Xanthium strumarium L. ( Cocklebur ). Biochem Soc Trans 4: 484–486

    Google Scholar 

  • Bonnet M, Camares 0, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activites of ryegrass (Lolium perenne L. cv. Apollo ). J Exp Bot 51: 945–953

    Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, New York

    Google Scholar 

  • Bratt CE, Arvidsson P-O, Carlsson M, Akerlund H-E (1995) Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Photosynth Res 45: 169–175

    Article  CAS  Google Scholar 

  • Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Rad Biol Med 18:1033–1077 Brooks RR ( 1983 ) Biological methods of prospecting for minerals. Wiley, New York

    Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58: 79–110

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean ( Glycine max ). Physiol Plant 83: 463468

    Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean ( Phaeolus vulagris L. ). Plant Sci 127: 139–147

    Google Scholar 

  • Chen J, Zhou J, Goldbrough PB (1997) Characterization of phytochelatin synthase from tomato. Physiol Plant 101: 165–172

    Article  CAS  Google Scholar 

  • Chuan MC, Shu GY, Liu JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut 90: 543–556

    Article  CAS  Google Scholar 

  • Clarkson DT, Luttge V (1989) Divalent cations, transport and compartmentation. Prog Bot 51: 93112

    Google Scholar 

  • Connell DW, Miller GJ (1984) Chemistry and ecotoxicology of pollution. Wiley, New York

    Google Scholar 

  • Cruz AC, Fomssgaard, IS, Lacayo J (1994) Lead, arsenic, cadmium and copper in Lake Asososca, Nicaragua. Sci Total Environ 155: 229–236

    Google Scholar 

  • Cumming JR, Taylor GJ (1990) Mechanism of metal tolerance in plants: physiological adaptations for exclusion of metal ions from the cytoplasm. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 329356

    Google Scholar 

  • Davies MS, Francies D, Thomas JD (1991) Rapidity of cellular changes induced by zinc in a zinc tolerant and non-tolerant cultivar of Festuca rubra L. New Phytol 117: 103–108

    Article  Google Scholar 

  • De Lima ML, Copeland L (1994) The effect of aluminium on respiration of wheat roots. Physiol Plant 90: 51–58

    Article  Google Scholar 

  • De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98: 853–858

    Article  PubMed  Google Scholar 

  • De Vos CH, Bookum WMT, Vooiji R, Schat H, de Kok LJ (1993) Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper tolerant and sensitive Silene cucubalus. Plant Physiol Biochem 31: 151–158

    Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity in plants. Plant Physiol 107: 315–321 Demming-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 599–626

    Google Scholar 

  • Demmig-Adams B, Adams WW III (1996a) The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1: 21–26

    Article  Google Scholar 

  • Demming-Adams B, Adams WW III (1996b) Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Plant 198: 460–470

    Article  Google Scholar 

  • Demming-Adams B, Gilmore AM, Adams WW III (1996) In vivo functions of carotenoids in higher plants. FASEB J 10: 403–412

    Google Scholar 

  • Denton GRW, Burdon-Jones C (1986) Trace metals in algae from the Great Barrier Reef. Mar Pollut Bull 17: 98–107

    Article  CAS  Google Scholar 

  • Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274: 532–538

    Article  PubMed  Google Scholar 

  • Eskling M, Arvidsson P-O, Akerlund H-E (1997) The xanthophylls cycle, its regulation and components. Physiol Plant 100: 806–816

    Article  CAS  Google Scholar 

  • Fabris JG, Richardson BJ, O’Sullivan, Brown FC (1994) Estimation of cadmium, lead, and mercury concentrations in estuarine waters using the mussel Mytilus edulis planulatus L. Environ Toxicol Water Qual 9: 183–192

    Article  CAS  Google Scholar 

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, Oxford

    Google Scholar 

  • Forstner U, Wittmann (1979) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Fowler SW (1990) Critical review of selected heavy metal and chlorinated hydrocarbon concentrations in the marine environment. Mar Envron Res 29: 1–64

    Article  CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29: 511–566

    Article  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92: 696–717

    Article  CAS  Google Scholar 

  • Francesconi KA, Moore EJ, Edmonds JS (1994) Cadmium uptake from seawater and food by the western rock lobster Panulirus Cygnus. Bull Environ Contam Toxicol 53: 219–223

    Article  PubMed  CAS  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasieleweski MR (1994) Photophysics of carotenoids associated with the xanthophylls cycle in photosynthesis. Photosynth Res 41: 389395

    Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201: 875–880

    Article  PubMed  CAS  Google Scholar 

  • Fryer MJ (1992) The antioxidant effects of thylakoid vitamin E (a-tocopherol). Plant Cell Environ 15: 381–392

    Article  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1999) Effect of cadmium ions on antioxidant defense system in sunflower cotyledons. Biol Plant 42: 49–55

    Article  CAS  Google Scholar 

  • Gilmore AM, Govindjee (1999) How higher plants respond to excess light: energy dissipation in photosystem II. In: Singhal GS, Renger G, Sopory SK, Irrgang K-D, Govindjee (eds) Concepts in photobiology: photosynthesis and photomorphogenesis. Narosa Publishing House, New Delhi, pp 513–548

    Google Scholar 

  • Gilmore AM, Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35: 67–78

    Google Scholar 

  • Gwozdz EA, Przymusinski R, Rucinska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19: 459–465

    Article  CAS  Google Scholar 

  • Halliwell B (1981) Chloroplast metabolism: the structure and function of chloroplasts in green cells. Clarendon Press, Oxford

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Clarendon Press, Oxford Hamasaki T, Nagase H, Yoshioka Y, Sato T (1995) Formation, distribution, and ecotoxicology of methylmetals of tin, mercury, and arsenic in the environment. Crit Rev Environ Sci Technol 25: 45–91

    Google Scholar 

  • Hendry GAF, Baker AJM, Ewart CF (1992) Cadmium tolerance and toxicity, oxygen radical processes and molecular damage in cadmium-tolerant and cadmium-sensitive clones of Holcus lanatus L. Acta Bot Neerl 41: 271–291

    CAS  Google Scholar 

  • Hippeli S, Elstner FE (1997) OH-radical-type reactive oxygen species: a short review on the mechanisms of OH-radical-and peroxynitrite toxicity. Z Naturforsch 52c: 555–563

    CAS  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–684

    Article  PubMed  CAS  Google Scholar 

  • Hu S, Tang CH, Wu M (1996) Cadmium accumulation by several seaweeds. Sci Total Environ 187: 65–71

    Article  CAS  Google Scholar 

  • Husaini Y, Singh AK, Rai LC (1991) Cadmium toxicity to photosynthesis and associated electron transport system of Nostoc linckia. Bull Environ Contam Toxicol 46: 146–150

    Article  PubMed  CAS  Google Scholar 

  • Heavy Metal Stress in Plants Irrgang K-D (1999) Architecture of the thylakoid membrane. In: Singhal GS, Renger G, Sopory SK, Irrgang K-D, Govinjee (eds) Concepts in photobiology: photosynthesis and photomorphogenesis. Narosa Publishing House, New Delhi, pp 139–180

    Google Scholar 

  • Jalil A, Selles F, Clarke JM (1994) Growth and cadmium accumulation in two durum wheat cultivars. Commun Soil Sci Plant Anal 25: 2597–2611

    Article  CAS  Google Scholar 

  • Jastow JD, Koeppe DE (1980) Uptake and effect of cadmium in higher plants. In: Nriagu JO (ed) Cadmium in the environment, part 1. Ecological cycling. Wiley, New York, pp 607–638

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca Raton Kagi JHR, Hapke H-J (1984) Biochemical interactions of mercury, cadmium, and lead. In: Nriagu JO (ed) Changing metal cycles and human health, Dahlem Konferenzen. Springer, Berlin Hei-delberg New York, pp 237–250

    Google Scholar 

  • Kangasjarvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17: 783–794

    Article  CAS  Google Scholar 

  • Knox JP, Dodge AD (1985) Singlet oxygen and plants. Phytochemistry 24: 889–896

    Article  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanism of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46: 237–260

    Article  CAS  Google Scholar 

  • Krupa Z, Siedlecka A, Maksymiec W, Baszynski T (1993a) In vivo response of photosynthetic apparatus of Phaseolus vulgaris L. to nickel toxicity. J Plant Physiol 142: 664–668

    Article  CAS  Google Scholar 

  • Krupa Z, Quist G, Huner NPA (1993b) The effects of cadmium on photosynthesis of Phaseolusvulgaris–a fluorescence analysis. Physiol Plant 88: 626–630

    Article  CAS  Google Scholar 

  • Kukkola E, Rautio P, Huttunen S (2000) Stress indications in copper-and nickel-exposed Scots pine seedlings. Environ Exp Bot 43: 197–210

    Article  PubMed  CAS  Google Scholar 

  • Lapedes DN (1974) Dictionary of scientific and technical terms. McGraw Hill, New York, p 674 Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27: 969–978

    Google Scholar 

  • Leita L, Contin M, Maggioni A (1991) Distribution of cadmium and induced Cd-binding proteins in root, stem and leaves of Phaseolus vulgaris. Plant Sci 77: 139–147

    Article  CAS  Google Scholar 

  • Lidon FC, Henriques FS (1993) Copper-mediated toxicity in rice chloroplasts. Photosynthetica 29: 385400

    Google Scholar 

  • Lodenius M (1990) Environmental mobilization of mercury and cadmium. Publ Dept Environ Consery Univ Helsinki, no 13, Helsinki

    Google Scholar 

  • Logan BA, Demmig-Adams B, Adams WW III (1999) Acclimation of photosynthesis to the environment. In: Singhal GS, Renger G, Sopory SK, Irrgang K-D, Govindjee (eds) Concepts in photobiology: photosynthesis and photomorphogenesis. Narosa Publishing House, New Delhi, pp 477–512

    Google Scholar 

  • Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Reiz RO (1997) Distribution of cadmium in mshoot and root tissue of maize and pea plants: physiological disturbances. J Exp Bot 48: 123–128

    Article  CAS  Google Scholar 

  • Luna CM, Gonzales CA, Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol 35: 11–15

    CAS  Google Scholar 

  • Lund BO, Miller DM, Woods JS (1991) Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondria. Biochem Pharmacol 42: S181 - S187

    Article  PubMed  CAS  Google Scholar 

  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34: 321–342

    Article  CAS  Google Scholar 

  • Maksymeic W, Baszynski T (1996a) Chlorophyll fluorescence in primary leaves of excess Cu-treated runner bean plants depends on their growth stages and the duration of Cu-action. J Plant Physiol 149: 196–200

    Article  Google Scholar 

  • Maksymeic W, Baszynski T (1996b) Different susceptibility of runner bean plants to excess copper as a function of growth stages of primary leaves. J Plant Physiol 149: 217–221

    Article  Google Scholar 

  • Maksymiec W, Russa R, Urbanik-Spyniewska T, Baszynski T (1994) Effect of excess Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages. Physiol Plant 91: 715–721

    Article  CAS  Google Scholar 

  • Maksymiec W, Bednara J, Baszynski T (1995) Responses of runner bean plants to excess copper as a function of plant growth stages: effects on morphology and structure of primary leaves and their chloroplast ultrastructure. Photosynthetica 31: 427–435

    CAS  Google Scholar 

  • Manahan SE (1990) Environmental chemistry. Lewis Publishers, Boston

    Google Scholar 

  • Martin MH, Coughtrey PJ (1982) Biological monitoring of heavy metal pollution. Applied Science Publishers, London

    Book  Google Scholar 

  • Martin RB (1988) Bioinorganic chemistry of aluminum. In: Siegel H, Siegel A (eds) Metal ions in biological systems: aluminum and its role in biology, vol 24. Dekker, New York, pp 2–57

    Google Scholar 

  • Martin RB (1992) Aluminum speciation in biology. In: Cjadwik DJ, Shelan J (eds) Aluminum in biology and medicine. Wiley, New York, pp 5–25

    Google Scholar 

  • Mason CF (1996) Biology of freshwater pollution. Longman, London

    Google Scholar 

  • Mason G (1958) Principles of geochemistry. Wiley, New York

    Google Scholar 

  • Mazhoudi S, Chaoui A, Ghorbal MH, Ferjani EE (1997) Response of antioxidant enzymes to excess copper in tomato ( Lycopersicon esculentum, Mill.). Plant Sci 127: 129–137

    Google Scholar 

  • Misra SG, Mani D (1991) Soil pollution. Ashish Publishing House, New Delhi

    Google Scholar 

  • Mocquot B, Vangronsveld J, Clijsters H, Mench M (1996) Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant Soil 182: 287–300

    CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover,and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52: 561–591

    Article  PubMed  CAS  Google Scholar 

  • Moral R, Palacious G, Gomez I, Navarro-Pedreno J, Mataix J (1994) Distribution and accumulation of heavy metals (Cd, Ni and Cr) in tomato plants. Fresenius Environ Bull 3: 395–399

    Google Scholar 

  • Muller HW, Schwaighofer B, Kalman W (1994) Heavy metal contents in river sediments. Water Air Soil Pollut 72: 191–203

    Article  Google Scholar 

  • Murthy SDS, Sabat SC, Mohanty P (1989) Mercury-induced inhibition of photosystem II activity and changes in the emission of fluorescence from phycobilisomes in intact cells of the cyanobacterium, Spirulina platensis. Plant Cell Physiol 30: 1153–1157

    Google Scholar 

  • Naqui A, Chance B, Cadenas E (1986) Reactive oxygen intermediates in biochemistry. Annu Rev Biochem 55: 137–166

    Article  PubMed  CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the non-descriptive term «heavy metals» by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B 1: 3–26

    Article  CAS  Google Scholar 

  • Nieboer E, Rossetto FE, Menon R (1988) Toxicology of nickel compounds. In: Siegel H, Siegel A (eds) Nickel and its role in biology. Dekker, New York, pp 359–402 (Metal ions in biological systems, vol 23 )

    Google Scholar 

  • Ochiai E-I (1977) Bioinorganic chemistry: an introduction. Allyn and Bacon, Boston

    Google Scholar 

  • Ono K, Yamamoto Y, Hachiya A, Matsumoto H (1995) Synergistic inhibition of growth by Al and iron of tobacco ( Nicotiana tabacum L.) cells in suspension culture. Plant Cell Physiol 36: 115–125

    Google Scholar 

  • Owens TG (1996) Processing of excitation energy by antenna pigments. In: Baker NR (ed) Photo-synthesis and the environment. Kluwer, Dordrecht, pp 1–23

    Google Scholar 

  • Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica 24: 399–405

    CAS  Google Scholar 

  • Parekh D, Puranik RM, Srivastava HA (1990) Inhibition of chlorophyll biosynthesis by cadmium in greening maize leaf segments. Biochem Physiol Pflanz 186: 239–242

    CAS  Google Scholar 

  • Pearson R (1968a) Hard and soft acids and bases, HSAB, part I. Fundamental principles. J Chem Educ 45: 581–587

    Article  CAS  Google Scholar 

  • Pearson R (1968b) Hard and soft acids and bases, HSAB, part II. Underlying theories. J Chem Educ 45: 643–648

    Article  CAS  Google Scholar 

  • Polie A, Matyssek R, Gunthardt-Goerg MS, Maurer S (2000) Defense strategies against ozone in trees: the role of nutrition. In: Agrawal SB, Agrawal M (eds) Environmental pollution and plant responses. Lewis Publishers, Boca Raton

    Google Scholar 

  • Prasad SM, Singh JB, Rai LC, Kumar HD (1991) Metal-induced inhibition of photosynthetic elec-tron transport chain of the cyanobacterium Nostoc muscorum. FEMS Microbiol Lett 82: 95–100

    Article  CAS  Google Scholar 

  • Prudente MS, Ichihashi H, Tatsukawa R (1994) Heavy metal concentrations in sediments from Manila Bay, Philippines, and inflowing rivers. Environ Pollut 86: 83–88

    Google Scholar 

  • Quariti O, Gouia J, Ghorbal MH (1997) Responses of bean and tomato plants to cadmium: growth, mineral nutrition, and nitrate reduction. Plant Physiol Biochem 35: 347–354

    Google Scholar 

  • Rai LC, Singh AK, Mallick N (1991a) Studies on photosynthesis, the associated electron transport system and some physiological variables of Chlorella vulgaris under heavy metal stress. J Plant Physiol 137: 419–424

    Article  CAS  Google Scholar 

  • Rai LC, Mallick N, Singh JB, Kumar HD (1991b) Physiological and biochemical characteristics of a copper tolerant and a wild type strain of Anabaena doliolum under copper stress. J Plant Physiol 68–74

    Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Plant Physiol 109: 1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Rijstenbil JW, Derksen JWM, Gerringa LJA, Poortvliet TCW, Sandee A, van den Berg M, van Drie J, Wijnholds JA (1994) Oxidative stress induced by copper: defense and damage in the marine planktonic diatom Ditylum brightwellii, grown in continuous cultures with high and low zinc levels. Mar Biol 119: 583–590

    Article  CAS  Google Scholar 

  • Rout NP, Shaw BP (2001) Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Sci 160: 415–423

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Young AJ, Horton P (1996) Dynamic properties of the minor chlorophyll a b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Biochemistry 35: 674–678

    Article  PubMed  CAS  Google Scholar 

  • Rucinska R, Waplak S, Gwozdz EA (1999) Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol Biochem 37: 187–194

    Article  CAS  Google Scholar 

  • Saiki MK, Castleberry DT, May TW, Martin BA, Bullard FN (1995) Copper, cadmium, and zinc concentrations in aquatic food chain from the upper Sacramento river ( California) and selected tributaries. Arch Environ Contam Toxicol 29: 484–491

    Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (1996) Bioaccumulation of heavy metals by aquatic macrophytes around Wroclaw, Poland. Ecotoxicol Environ Safety 35: 242–247

    Google Scholar 

  • Sawidis T, Chettri MK, Zachariadis GA, Stratis JA (1995a) Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicol Environ Safety 32: 73–80

    Google Scholar 

  • Sawidis T, Chetri MK, Zachariadis GA, Strtis JA, Seaward MRD (1995b) Heavy metal bioaccumulation in lichens from Macedonia in northern Greece. Toxicol Environ Chem 50: 157–166

    Article  CAS  Google Scholar 

  • Schicker H, Caspi H (1999) Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiol Plant 105: 39–44

    Article  Google Scholar 

  • Shaw BP (1995a) Changes in the levels of photosynthetic pigments in Phaseolus aureus Roxb. exposed to Hg and Cd at two stages of development: a comparative study. Bull Environ Contam Toxicol 55: 574–580

    Article  PubMed  CAS  Google Scholar 

  • Shaw BP (1995b) Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus Roxb. Biol Plant 37: 587–596

    Article  CAS  Google Scholar 

  • Shaw BP, Panigrahi AK (1986) Uptake and tissue distribution of mercury in some plant species collected from a contaminated area in India: its ecological implications. Arch Environ Contam Toxicol 15: 439–446

    Article  CAS  Google Scholar 

  • Shaw BP, Panigrahi AK (1987) Geographical distribution of mercury around a chlor-alkali factory. J Environ Biol 8: 227–281

    Google Scholar 

  • Shaw BP, Rout NP (1998) Age-dependent responses of Phaseolus aureus Roxb. to inorganic salts of mercury and cadmium. Acta Physiol Plant 20: 85–90

    Article  Google Scholar 

  • Shaw BP, Rout NP (2002) Hg and Cd induced changes in the level of proline and the activity of proline biosynthesizing enzymes in Phaseolus aureus Roxb. and Triticum aestivum L. Biol Plant 45: 267–271

    Article  CAS  Google Scholar 

  • Shaw BP, Sahu A, Panigrahi AK (1985) Residual mercury concentration in brain, liver and muscle of contaminated fish collected from an estuary near a caustic-chlorine industry. Curr Sci 54: 810–812

    CAS  Google Scholar 

  • Shaw BP, Sahu A, Panigrahi AK (1986) Mercury in plants, soil and water from a caustic-chlorine industry. Bull Environ Contam Toxicol 36: 299–305

    Article  PubMed  CAS  Google Scholar 

  • Shaw BP, Sahu A, Choudhuri SB, Panigrahi AK (1988) Mercury in the Rushikulya river estuary. Mar Pollut Bull 19: 233–234

    Article  CAS  Google Scholar 

  • Sheoran IS, Singal HR, Singh R (1990) Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea ( Cajanus cajan L. ). Photosynth Res 23: 345–351

    Google Scholar 

  • Siegel N, Haug A (1983) Aluminum interaction with calmodulin: evidence for altered structure and function from optical and enzymatic studies. Biochem Biophys 744: 36–45

    Article  CAS  Google Scholar 

  • Siegel N, Coughlin RT, Haug A (1983) A thermodynamic and electron paramagnetic resonance study of structural changes in calmodulin induced by aluminum interaction with calmodulin: evidence for altered structure and function from optical and enzymatic studies. Biochem Biophys Acta 744: 36–45

    Article  PubMed  CAS  Google Scholar 

  • Silver S (1983) Bacterial interactions with mineral cations and anions: good ions and bad. In: Wesbrock P, de Jong EW (eds) Biomineralization and biological metal ion accumulation. Reidel, Amsterdam, pp 439–457

    Chapter  Google Scholar 

  • Skorzynska-Polit E, Baszynski T (1997) Difference in sensitivity of the photosynthetic apparatus in Cd-stressed runner bean plants in relation to their age. Plant Sci 128: 11–21

    Article  CAS  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257: 1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Stiborova M, Ditrichova M, Brezinova A (1987) Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley maize seedlings. Biol Plant 29: 453–467

    Article  CAS  Google Scholar 

  • Stiborova M, Dtrichova M, Brezinova A (1988) Mechanism of action of Cue+, Co2+ and Zn2 on ribulose-1,5-bisphosphate carboxylase from barley ( Hordeum vulgare L. ). Photosynthetica 22: 161–167

    Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad Biol Med 18: 321–336

    Article  PubMed  CAS  Google Scholar 

  • Stroinski A (1999) Some physiological and biochemical aspects of plant resistance to cadmium effect. I. Antioxidative system. Acta Physiol Plant 21: 175–188

    Article  CAS  Google Scholar 

  • Subhadra AV, Nanda AK, Behera PK, Panda BB (1991) Acceleration of catalase and peroxidase activities in Lemna minor L. and Allium cepa L. in response to low levels of aquatic mercury. Environ Pollut 69: 169–179

    Google Scholar 

  • Suszcynsky EM, Shann JR (1995) Phytotoxicity and accumulation of mercury in tobacco subjected to different exposure routes. Environ Toxicol Chem 14: 61–67

    Article  CAS  Google Scholar 

  • Teisseire H, Guy V (2000) Copper-induced changes in antioxidant enzymes activities in fronds of duckweed ( Lemna minor ). Plant Sci 153: 65–72

    Google Scholar 

  • Thompson DR, Stewart FM, Furness RW (1990) Using seabirds to monitor mercury in marine environments. Mar Pollut Bull 21: 339–342

    Article  CAS  Google Scholar 

  • Toli K, Misaelides P, Godelitsas A (1997) Distribution of heavy metals in the aquatic environment of the kerkini lake (N. Greece): an exploratory study. Fresenius Environ Bull 6: 605–610

    CAS  Google Scholar 

  • Venugopal B, Luckey TD (1975) Toxicology of non-radioactive heavy metals and their salts. In: Luckey TD, Venugopal B, Hutchenson D (eds) Heavy metal toxicity, safety and hormology. Thieme, Stuttgart, pp 4–73

    Google Scholar 

  • Verstraeten SV, Nogueira LV, Schreier S, Oteiza PI (1997) Effect of trivalent metal ions on phase separation and membrane lipid packing: role in lipid peroxidation. Arch Biochem Biophys 388: 121–127

    Article  Google Scholar 

  • Wardman P, Cadeias LP (1996) Fenton chemistry: an introduction. Radiat Res 145: 525–531

    Article  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1996) Oxidative damage and defense mechanisms in primary leaves of Phaeolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant 96: 506–512

    Article  CAS  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35: 405–410

    CAS  Google Scholar 

  • Wheeler DM, Power IL (1995) Comparison of plant uptake and plant toxicity of various ions in wheat. Plant Soil 172: 167–173

    Article  CAS  Google Scholar 

  • Wong JWC (1996) Heavy metal contents in vegetables and market garden soils in Hong Kong. Environ Technol 17: 407–414

    Article  CAS  Google Scholar 

  • Wood JM (1974) Biological cycles for toxic elements in the environment. Science 183: 1049–1052 Yamamoto HY (1979) The biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51: 639–648

    Google Scholar 

  • Yamamoto HY, Bassi R (1996a) Carotenoids: localization and function. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer, Dordrecht, pp 539–563 (Advances in photosynthesis, vol 4 )

    Google Scholar 

  • Yamamoto HY, Bassi R (1996b) Carotenoids: localization and function. In: Donald R, Yocum CF (eds) Photosynthesis: the light reactions. Kluwer, London, pp 539–563

    Google Scholar 

  • Yamamoto M (1996) Stimulation of elemental mercury oxidation in the presence of chloride ion in aquatic environments. Chemosphere 32: 1217–1224

    Article  CAS  Google Scholar 

  • Yamamoto Y, Hachiya A, Matsumoto H (1997) Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells. Plant Cell Physiol 38: 1333–1339

    Article  CAS  Google Scholar 

  • Yan CTDC, Schofield CL, Munson R, Holsapple J (1994) The mercury cycle and fish in the Adirondack lakes. Environ Sci Technol 28: 136–143

    Article  Google Scholar 

  • Yruela I, Motoya G, Picorel R (1992) The inhibitory mechanism of Cu(II) on the photosystem II electron transport from higher plants. Photosynth Res 33: 227–233

    Article  CAS  Google Scholar 

  • Yruela I, Gatzen G, Picorel R, Holzwarth AR (1996) Cu(II)-inhibitory effect on photosystem II from higher plants. A picosecond time-resolved fluorescence study. Biochemistry 35: 9469–9474 Yurukova L, Kochev L (1994) Heavy metal concentrations in freshwater macrophytes from the Aldomirovsko swamp in Sofia district, Bulgaria. Bull Environ Contam Toxicol 52: 627–632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shaw, B.P., Sahu, S.K., Mishra, R.K. (2004). Heavy Metal Induced Oxidative Damage in Terrestrial Plants. In: Prasad, M.N.V. (eds) Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07743-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07743-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07268-0

  • Online ISBN: 978-3-662-07743-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics