Skip to main content

Complexity: A Language-Theoretic Point of View

  • Chapter
  • First Online:
Handbook of Formal Languages

Abstract

The theory of computation and complexity theory are fundamental parts of current theoretical computer science. They study the borders between possible and impossible in information processing, quantitative rules governing discrete computations (how much work (computational resources) has to be done (have to be used) and suffices (suffice) to algorithmically solve various computing problems), algorithmical aspects of complexity, optimization, approximation, reducibility, simulation, communication, knowledge representation, information, etc. Historically, theoretical computer science started in the 1930s with the theory of computation (computability theory) giving the exact formal border between algorithmically solvable computing problems and problems which cannot be solved by any program (algorithm). The birth of complexity theory can be set in the 1960s when computers started to be widely used and the inner difficulty of computing problems started to be investigated. At that time people defined quantitative complexity measures enabling one to compare the efficiency of computer programs and to study the computational hardness of computing problems as an inherent property of problems. The abstract part of complexity theory has tried to classify computing problems according to their hardness (computational complexity) while the algorithmic part of complexity theory has dealt with the development of methods for the design of effective algorithms for concrete problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Abelson, Lower bounds on information transfer in distributed computations. In: Proc. 29th Annual IEEE FOCS, IEEE 1978, 151–158.

    Google Scholar 

  2. S. I. Adian, W. W. Boone, G. Higman (eds.), Word problems II: The Oxford Book, North-Holland, New York, 1980.

    Google Scholar 

  3. L. M. Adleman, M. A. Huang, Recognizing primes in random polynomial time, Technical Report, Department of Computer Science, Washington, State University, 1988.

    Google Scholar 

  4. D. Z. Albert, On quantum-mechanical automata, Phys. Lett. 98A (1983), 249–252.

    MathSciNet  Google Scholar 

  5. K. Baker, Minimalism: Art of Circumstance, Abbeville Press, New York, 1988.

    Google Scholar 

  6. T. Baker, J. Gill, R. Solovay, Relativizations of the problem P =?NP question, SIAM J. Comput. 4 (1975), 431–442.

    MathSciNet  MATH  Google Scholar 

  7. J. L. Balcazar, J. Diaz, J. Gabarro, Structural Complexity I, Springer-Verlag, New York, 1988.

    MATH  Google Scholar 

  8. J. L. Balcazar, J. Diaz, J. Gabarro, Structural Complexity II, Springer-Verlag, New York, 1990.

    MATH  Google Scholar 

  9. P. Benioff, Quantum mechanical models of Turing machines, J. Stat. Phys. 29 (1982), 515–546.

    MathSciNet  MATH  Google Scholar 

  10. P. Benioff, Quantum mechanical hamiltonian models of computers, Annals New York Academy of Sciences 480 (1986), 475–486.

    Google Scholar 

  11. C. H. Bennett, J. Gill, Relative to a random oracle A, P A NP A # co - NP A, with probability one, SIAM J. Comput. 10 (1981), 96–113.

    MathSciNet  MATH  Google Scholar 

  12. C. H. Bennett, Certainty from uncertainty, Nature 371 (1994), 694–696.

    Google Scholar 

  13. C. H. Bennett, E. Bernstein, G. Brassard, U. V. Vazirani, Strength and weaknesses of quantum computing, Preprint, 1995, 9 pp.

    Google Scholar 

  14. P. Benacerraf, Tasks, super-tasks, and the modern eleatics, The Journal of Philosophy 59 (1962), 765–784.

    Google Scholar 

  15. E. Bernstein and U. Vazirani, Quantum complexity theory. In: Proc. 25th ACM Symp. on Theory of Computation, 1993, 11–20.

    Google Scholar 

  16. A. Berthiaume and G. Brassard, The quantum challenge to structural complexity theory. In: Proc. 7th IEEE Conf. on Structure in Complexity Theory, 1992, 132–137.

    Google Scholar 

  17. M. Blum, A machine-independent theory of the complexity of recursive functions, J. Assoc. Comput. Mach. 14 (1967), 322–336.

    MathSciNet  MATH  Google Scholar 

  18. R. V. Book, The complexity of languages reducible to algorithmically random languages, SIAM J. Comput. 23 (1995), 1275–1282.

    MATH  Google Scholar 

  19. R. V. Book, J. Lutz, K. Wagner, On complexity classes and algorithmically random languages, Proc. STACS-92, Lecture Notes Comp. Sci. 577, Springer-Verlag, Berlin, 1992, 319–328.

    Google Scholar 

  20. D. P. Bovet, P. Crescenzi, Introduction to the Theory of Complexity, Prentice Hall, 1984.

    Google Scholar 

  21. D. S. Bridges, Computability — A Mathematical Sketchbook, Springer-Verlag, Berlin, 1994.

    MATH  Google Scholar 

  22. D. S. Bridges, C. Calude, On recursive bounds for the exceptional values in speed-up, Theoret. Comput. Sci. 132 (1994), 387–394.

    MathSciNet  MATH  Google Scholar 

  23. C. Calude, Theories of Computational Complexity, North-Holland, Amsterdam, 1988.

    MATH  Google Scholar 

  24. C. Calude, Information and Randomness — An Algorithmic Perspective, Springer-Verlag, Berlin, 1994.

    MATH  Google Scholar 

  25. C. Calude, D. I. Campbell, K. Svozil, D. *Stefánescu, Strong determinism vs. computability. In: Proceedings of the International Symposium “The Foundational Debate”, Vienna Circle Institute Yearbook, 3, 1995, Kluwer, Dordrecht, 115–131.

    Google Scholar 

  26. C. Calude, S. Marcus, Gh. Páun, The universal grammar as a hypothetical brain, Rev. Roumaine Ling. 27 (1979), 479–489.

    MATH  Google Scholar 

  27. C. Calude, Gh. Nun, Global syntax and semantics for recursively enumerable languages, Fund. Inform. 4 (1981), 245–254.

    MathSciNet  MATH  Google Scholar 

  28. C. Calude, Gh. Páun, On the adequacy of a grammatical model of the brain, Rev. Roumaine Ling. 27 (1982), 343–351.

    Google Scholar 

  29. C. Calude, S. Yu, Language-theoretic complexity of disjunctive sequences, Technical Report No 119, 1995,Department of Computer Science, The University of Auckland, New Zealand, 8 pp.

    Google Scholar 

  30. C. Calude, M. Zimand, A relation between correctness and randomness in the computation of probabilistic algorithms, Internat. J. Comput. Math. 16 (1984), 47–53.

    MathSciNet  MATH  Google Scholar 

  31. C. Calude, M. Zimand, Effective category and measure in abstract complexity theory — extended abstract, Proceedings FCT’95, Lectures Notes in Computer Science 965, Springer-Verlag, Berlin, 1995, 156–171.

    Google Scholar 

  32. V. Cernÿ, Quantum computers and intractable (NP-complete) computing problems, Phys. Rev. 48 (1993), 116–119.

    Google Scholar 

  33. G. J. Chaitin, On the length of programs for computing finite binary sequences, J. Assoc. Comput. Mach. 13 (1966), 547–569.

    MathSciNet  MATH  Google Scholar 

  34. G. J. Chaitin, Information-theoretic limitations of formal systems, J. Assoc. Comput. Mach. 21 (1974), 403–424.

    MathSciNet  MATH  Google Scholar 

  35. G. J. Chaitin, A theory of program size formally identical to information theory, J. Assoc. Comput. Mach. 22 (1975), 329–340.

    MathSciNet  MATH  Google Scholar 

  36. G. J. Chaitin, Algorithmic information theory, IBM J. Res. Develop. 21 (1977), 350–359.

    MathSciNet  MATH  Google Scholar 

  37. G. J. Chaitin, Algorithmic Information Theory, Cambridge University Press, Cambridge, 1987 (third printing 1990 ).

    Google Scholar 

  38. G. J. Chaitin, Computing the Busy Beaver function. In: Cover, T. M. and Gopinath, B. (eds.), Open Problems in Communication and Computation, Springer-Verlag, Berlin, 1987, 108–112.

    Google Scholar 

  39. G. J. Chaitin, Information, Randomness and Incompleteness, Papers on Algorithmic Information Theory, World Scientific, Singapore, 1987 (second edition 1990 ).

    Google Scholar 

  40. G. J. Chaitin, Information-theoretic characterizations of recursive infinite strings, Theoret. Comput. Sci. 2 (1976), 45–48.

    MathSciNet  MATH  Google Scholar 

  41. G. J. Chaitin, Information-Theoretic Incompleteness, World Scientific, Singapore, 1992.

    MATH  Google Scholar 

  42. G. J. Chaitin, On the number of N-bit strings with maximum complexity, Applied Mathematics and Computation 59 (1993), 97–100.

    MathSciNet  MATH  Google Scholar 

  43. G. J. Chaitin, A. Arslanov, C. Calude. Program-size complexity computes the halting problem, EATCS Bull., 57 (1995) 198–200.

    MATH  Google Scholar 

  44. G. J. Chaitin, J. T. Schwartz, A note on Monte-Carlo primality tests and algorithmic information theory, Comm. Pure Appl. Math. 31 (1978), 521–527.

    MathSciNet  MATH  Google Scholar 

  45. A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, Alternation, J. Assoc. Comput. Mach. 28 (1981), 114–133.

    MathSciNet  MATH  Google Scholar 

  46. A. Cobham, The intrinsic computational difficulty of functions. In: Proc. Congress for Logic, Mathematics, and Philosophy of Science 1964, 24–30.

    Google Scholar 

  47. S. A. Cook, The complexity of theorem proving procedure. In: Proc. 3-rd Annual ACM STOC, 1971, 151–158.

    Google Scholar 

  48. S. A. Cook, An observation on time-storage trade off. In: Proc. 5-th Annual ACM STOC, 1973, 29–33.

    Google Scholar 

  49. S. A. Cook, Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space. In: Proc. ACM STOC’79,338–345.

    Google Scholar 

  50. M. Davis, Unsolvable problems. In: Barwise, J. (ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam, 1976, 568–594.

    Google Scholar 

  51. P. Davies, The Mind of God, Science and the Search for Ultimate Meaning, Penguin Books, London, 1992.

    Google Scholar 

  52. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society of London 400 (1985), 97–117.

    MathSciNet  MATH  Google Scholar 

  53. D. Deutsch, Quantum computational networks, Proceedings of the Royal Society of London 425 (1989), 73–90.

    MathSciNet  MATH  Google Scholar 

  54. D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proceedings of the Royal Society of London 439 (1992), 553–558

    MathSciNet  MATH  Google Scholar 

  55. R. L. Devaney, An Introduction to Chaotic Dynamical Systems, AddisonWessley, 1989.

    Google Scholar 

  56. J. Earman and J. D. Norton, Forever is a day: supertasks in Pitowsky and Malament-Hogarth spacetimes, Philosophy of Science 60 (1993), 22–42.

    MathSciNet  Google Scholar 

  57. U. Eco, L’Oeuvre ouverte, Editions du Seuil, Paris, 1965.

    Google Scholar 

  58. G.M. Edelman, Bright Air, Brilliant Fire — On the Matter of Mind, Basic Books, 1992.

    Google Scholar 

  59. S. Feferman, J. Dawson, Jr., S. C. Kleene, G. H. Moore, R. M. Solovay, J. van Heijenoort (eds.), Kurt Gödel Collected Works, Volume I, Oxford University Press, New York, 1986.

    Google Scholar 

  60. S. Feferman, J. Dawson, Jr., S.C. Kleene, G. H. Moore, R. M. Solovay, J. van Heijenoort (eds.), Kurt Gödel Collected Works, Volume II, Oxford University Press, New York, 1990.

    Google Scholar 

  61. R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics 21 (1982), 467–488.

    MathSciNet  Google Scholar 

  62. R. P. Feynman, Quantum Mechanical Computers, Opt. News 11 (1985), 1120.

    Google Scholar 

  63. P. Gács, Every sequence is reducible to a random one, Inform. and Control 70 (1986), 186–192.

    MathSciNet  MATH  Google Scholar 

  64. M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, New York, 1979.

    MATH  Google Scholar 

  65. M. Gardner, Logic Machines and Diagrams, University of Chicago Press, Chicago, 1958, 144 (second printing, Harvester Press, 1983 ).

    Google Scholar 

  66. M. Gardner, Fractal Music, Hypercards, and More..., W. H. Freeman, New York, 1992, 133.

    MATH  Google Scholar 

  67. V. Geffert, Bridging across the log(n) space frontier. In: Proc. MFCS’95, Lect. Notes Comp. Sci. 969, Springer-Verlag, 1995, 50–65.

    Google Scholar 

  68. J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Computing 6 (1977), 675–695.

    MathSciNet  MATH  Google Scholar 

  69. L. M. Goldschlager, A universal interconnection pattern for parallel computers, J. Assoc. Comput. Mach. 29 (1982), 1073–1086.

    MathSciNet  MATH  Google Scholar 

  70. A. Goswami, R. E. Reed, M. Goswami, The Self-Aware Universe — How Consciouness Creates the Material World, G. P. Putnam’s Sons, New York, 1993.

    Google Scholar 

  71. R. Greenlaw, H. J. Hoover, W. L. Ruzzo, Limits to Parallel Computations, Oxford University Press, Oxford, 1995.

    MATH  Google Scholar 

  72. A. Grünbaum, Modern Science and Zeno’s paradoxes, Allen and Unwin, London, 1968 (second edition).

    Google Scholar 

  73. A. Grünbaum, Philosophical Problems of Space of Time,D. Reidel, Dordrecht, 1973. (second, enlarged edition)

    Google Scholar 

  74. B. Grümbaum, G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987.

    Google Scholar 

  75. J. Hartmanis, J. E. Hoperoft, Independence results in computer science, SIGACT News 8 (1976), 13–24.

    Google Scholar 

  76. J. Hartmanis, J. E. Hoperoft, An overview of the theory of computational complexity, J. Assoc. Comput. Mach. 18 (1971), 444–475.

    MathSciNet  Google Scholar 

  77. J. Hartmanis, P. M. Lewis II, R. E. Stearns, Hierarchies of memory limited computations. In: Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and Logical Design, 1965, 179–190.

    Google Scholar 

  78. J. Hartmanis, R. E. Stearns, On the computational complexity of algorithms, Trans. Amer. Math. Soc. 117 (1965), 285–306.

    MathSciNet  MATH  Google Scholar 

  79. D. Havel, Algorithmics: The Spirit of Computing, Addison-Wesley, 1987.

    Google Scholar 

  80. F. C. Hennie, R. E. Stearns, Two-tape simulation of multitape Turing machines, J. Assoc. Comput. Mach. 13 (1966), 533–546.

    MathSciNet  MATH  Google Scholar 

  81. M. Hogarth, Non-Turing computers and non-Turing computability, PSA 1994 1 (1994), 126–138.

    Google Scholar 

  82. J. E. Hoperoft, J. W. Paul, L. Valiant, On time versus space, J. Assoc. Comput. Mach. 24 (1977), 332–337.

    MathSciNet  MATH  Google Scholar 

  83. J. E. Hoperoft, J. D. Ullman, Relations between time and tape complexities, J. Assoc. Comput. Mach. 15 (1968), 414–427.

    MathSciNet  MATH  Google Scholar 

  84. J. E. Hoperoft, J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979.

    Google Scholar 

  85. J. Hromkovic, How to organize communication among parallel processes in alternating computations, Unpublished manuscript, Comenius University, Bratislava, January 1986.

    Google Scholar 

  86. J. Hromkovic, Communication Complexity and Parallel Computing,EATCS Texts in Theoretical Computer Science, in preparation.

    Google Scholar 

  87. J. Hromkovic, O. H. Ibarra, N. Q. Trán, P, NP and PSPACE characterizations by synchronized alternating finite automata with different communication protocols, Unpublished manuscript, 1994.

    Google Scholar 

  88. J. Hromkovic, J. Kari, L. Kari, Some hierarchies for the communication complexity measures of cooperating grammar systems, Theoretical Computer Science 127 (1994), 123–147.

    MathSciNet  MATH  Google Scholar 

  89. J. Hromkovic, J. Kari, L. Kari, D. Pardubská, Two lower bounds on distributive generation of languages. In: Proc. 19th MFCS’94, Lect. Notes Comp. Sci. 841, Springer-Verlag, Berlin, 1994, 423–432.

    Google Scholar 

  90. J. Hromkovic, J. Karhumäki, B. Rovan, and A. Slobodová, On the power of synchronization in parallel computations, Disc. Appl. Math. 32 (1991), 156–182.

    MathSciNet  MATH  Google Scholar 

  91. J. Hromkovic, R. Klasing, B. Monien, R. Peine, Dissemination of information in interconnection networks (broadcasting and gossiping). In: Hsu, F., Du, D.-Z. eds., Combinatorial Network Theory,Science Press andAMS 1995, to appear.

    Google Scholar 

  92. J. Hromkovic, B. Rovan, A. Slobodová, Deterministic versus nondeterministic space in terms of synchronized alternating machines, Theoret. Comp. Sci. 132 (1994), 319–336.

    MathSciNet  MATH  Google Scholar 

  93. O. H. Ibarra, N. Q. Trán, On communication-bounded synchronized alternating finite automata, Acta Informatica 31 (1994), 315–327.

    MathSciNet  MATH  Google Scholar 

  94. N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput. 17 (1988), 935–938.

    MathSciNet  MATH  Google Scholar 

  95. D. S. Johnson, A catalog of complexity classes. In: van Leeuwen, J. (ed.), Handbook of Theoretical Computer Science, Vol. A, Elsevier, Amsterdam, 1990, 67–161.

    Google Scholar 

  96. H. Jürgensen, G. Thierrin, Some structural properties of w-languages, 13th Nat. School with Internat. Participation “Applications of Mathematics in Technology”, Sofia, 1988, 56–63.

    Google Scholar 

  97. K. N. King, Alternating multihead finite automata. In: Proc. 8-th ICALP’81, Lect. Notes Comp. Sci. 115, Springer-Verlag, Berlin, 1981, 506–520.

    Google Scholar 

  98. L. G. Khachiyan, A polynomial algorithm in linear programming, Soviet Mathematics Doklad 20 (1979), 191–194.

    MATH  Google Scholar 

  99. A. N. Kolmogorov, Three approaches for defining the concept of “information quantity”, Problems Inform. Transmission 1 (1965), 3–11.

    Google Scholar 

  100. K.-J. Lange, Complexity and Structure in Formal Language Theory. Unpublished manuscript,University of Tübingen, Germany

    Google Scholar 

  101. P. S. Laplace, A Philosophical Essay on Probability Theories, Dover, New York, 1951.

    Google Scholar 

  102. F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Array Trees Hypercubes, Morgan Kaufmann Publishers, San Mateo, California, 1992.

    Google Scholar 

  103. L. A. Levin, Randomness conservation inequalities: information and independence in mathematical theories, Problems Inform. Transmission 10 (1974), 206–210.

    Google Scholar 

  104. M. Li, P. M. Vitányi, A new approach to formal language theory by Kolmogorov complexity, SIAM J. Comput. 24 (1995), 398–410.

    MathSciNet  MATH  Google Scholar 

  105. M. Lukác, About Two Communication Structures of PCGS, Master Thesis, Dept. of Computer Science, Comenius University, Bratislava, 1992.

    Google Scholar 

  106. J. H. Lutz, Almost everywhere high nonuniform complexity, J. Comput. System Sci. 44 (1992), 220–258.

    MathSciNet  MATH  Google Scholar 

  107. J. H. Lutz, The quantitative structure of exponential time, Proceedings of the Eighth Annual Structure in Complexity Theory Conference, (San Diego, CA, May 18–21, 1993), IEEE Computer Society Press, 1993, 158–175.

    Google Scholar 

  108. P. Martin-Löf, The definition of random sequences, Inform. and Control 9 (1966), 602–619.

    MathSciNet  MATH  Google Scholar 

  109. Yu. V. Matiyasevich, Hilbert’s Tenth Problem, MIT Press, Cambridge, Massachusetts, London, 1993.

    Google Scholar 

  110. M. Mendès France, A. Hénaut, Art, therefore entropy, Leonardo 27 (1994), 219–221.

    Google Scholar 

  111. G. L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. Syst. Sci. 13 (1976), 300–317.

    MathSciNet  MATH  Google Scholar 

  112. B. Monien, I. H. Sudborough, Embedding one interconnection network in another, Computing Suppl. 7 (1990), 257–282.

    MathSciNet  MATH  Google Scholar 

  113. C. Moore, Real-valued, continuous-time computers: a model of analog computation, Part I, Manuscript, 1995, 15 pp.

    Google Scholar 

  114. P. Odifreddi, Classical Recursion Theory, North-Holland, Amsterdam, Vol. 1, 1989.

    Google Scholar 

  115. H. R. Pagels, The Dreams of Reason, Bantam Books, New York, 1989.

    Google Scholar 

  116. C. H. Papadimitriou, Computational Complexity, Addison-Wesley, New York, 1994.

    MATH  Google Scholar 

  117. Ch. Papadimitriou, M. Sipser, Communication complexity, J. Comp. Syst. Sci. 28 (1984), 260–269.

    MathSciNet  MATH  Google Scholar 

  118. D. Pardubská, On the Power of Communication Structure for Distributive Generation of Languages, Ph.D. Thesis, Comenius University, Bratislava 1994.

    Google Scholar 

  119. Gh. Páun, L. Sántean, Parallel communicating grammar systems: The regular case, Ann. Univ. Buc. Ser. Mat.-Inform. 37 (1989), 55–63.

    MathSciNet  MATH  Google Scholar 

  120. R. Penrose, The Emperor’s New Mind. Concerning Computers, Minds, and the Laws of Physics, Oxford University Press, Oxford, 1989.

    Google Scholar 

  121. R. Penrose, Shadows of the Mind. A Search for the Missing Science of Consciousness, Oxford University Press, Oxford, 1994.

    MATH  Google Scholar 

  122. N. Pipinger, On simultaneous resource bounds (preliminary version). In: Proc. 20th IEEE Symp. FOCS, IEEE, New York 1979, 307–311.

    Google Scholar 

  123. I. Pitowsky, The physical Church-Turing thesis and physical complexity theory, Iyyun, A Jerusalem Philosophical Quarterly 39 (1990), 81–99.

    Google Scholar 

  124. M. O. Rabin, Probabilistic algorithms. In: Traub, J., ed., Algorithms and Complexity: New Directions and Recent Results, Academic Press, New York, 1976, 21–40.

    Google Scholar 

  125. G. Rozenberg, A. Salomaa, Cornerstones of Undecidability, Prentice Hall, 1994.

    Google Scholar 

  126. R. Rucker, Infinity and the Mind, Bantam Books, New York, 1983.

    MATH  Google Scholar 

  127. R. Rucker, Mind Tools, Houghton Mifflin, Boston, 1987.

    MATH  Google Scholar 

  128. A. Salomaa, Computation and Automata, Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  129. W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J. Comp. Syst. Sciences 4 (1970), 177–192.

    MathSciNet  MATH  Google Scholar 

  130. J. R. Searle, The Rediscovery of the Mind, MIT Press, Cambridge, Mass. (third printing 1992).

    Google Scholar 

  131. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring. In: Proc. 35th Annual IEEE FOCS,IEEE, 1995 (in press).

    Google Scholar 

  132. H. T. Siegelmann, Computation beyond the Turing limit, Science 268 (1995), 545–548.

    Google Scholar 

  133. A. Slobodová, On the power of communication in alternating machines. In: Proc. 13th MFCS’88, Lect. Notes Comp. Sci. 324, Springer-Verlag, Berlin, 1988, 518–528.

    Google Scholar 

  134. R. M. Smullyan, Diagonalization and Self-Reference, Clarendon Press, Oxford, 1994.

    MATH  Google Scholar 

  135. R. M. Solovay, Draft of a paper (or series of papers) on Chaitin’s work... done for the most part during the period of Sept.-Dec. 1974, unpublished manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, May 1975, 215 pp.

    Google Scholar 

  136. R. Solovay, V. Strassen, A fast Monte Carlo test for primality, SIAM J. Computing 6 (1977), 84–85.

    MathSciNet  MATH  Google Scholar 

  137. E. Strickland, Minimalism — Origins, Indiana University Press, Bloomington, 1993.

    Google Scholar 

  138. R. Szelepcsényi, The method of forced enumeration for nondeterministic automata, Acta Informatica 26 (1988), 279–284.

    MathSciNet  MATH  Google Scholar 

  139. A. Szepietowski, Turing Machines with Sublogarithmic Space, Lect. Notes Comp. Sci. 843, Springer-Verlag, Berlin, 1994.

    MATH  Google Scholar 

  140. K. Svozil, Randomness and Undecidability in Physics, World Scientific, Singapore, 1993.

    MATH  Google Scholar 

  141. K. Svozil, On the computational power of physical systems, undecidability, the consistency of phenomena and the practical uses of paradoxes. In: Greenberger, D. M., Zeilinger, A. (eds.), Fundamental Problems in Quantum Theory: A Conference Held in Honor of Professor John A. Wheeler, Annals of the New York Academy of Sciences 755 (1995), 834–842.

    Google Scholar 

  142. K. Svozil, Quantum computation and complexity theory, I, EATCS Bull. 55 (1995), 170–207.

    MATH  Google Scholar 

  143. K. Svozil, Quantum computation and complexity theory, II, EATCS Bull. 56 (1995), 116–136.

    MATH  Google Scholar 

  144. A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc. Ser. 242 (1936), 230–265.

    MathSciNet  MATH  Google Scholar 

  145. J. F. Thomson, Tasks and super-tasks, Analysis 15 (1954), 1–13.

    Google Scholar 

  146. H. Weyl, Philosophy of Mathematics and Natural Science, Princeton University Press, Princeton, 1949.

    MATH  Google Scholar 

  147. I. Xenakis, Musique formelle, La Revue Musicale 253 /4 (1963), 10.

    Google Scholar 

  148. A. C. Yao, Some complexity questions related to distributed computing. In: Proc. 11th Annual ACM STOC, ACM 1981, 308–311.

    Google Scholar 

  149. S. Yu, A pumping lemma for deterministic context-free languages, Inform. Process. Lett. 31 (1989), 47–51.

    MathSciNet  MATH  Google Scholar 

  150. M. Zimand, If not empty, NP — P is topologically large, Theoret. Comput. Sci. 119 (1993), 293–310.

    MathSciNet  MATH  Google Scholar 

  151. P. van Emde Boas, Machine models and simulations. In: van Leeuwen, J. (ed.), Handbook of Theoretical Computer Science, Vol. A, Elsevier, Amsterdam, 1990, 525–632.

    Google Scholar 

  152. D. J. Velleman, How to Prove It. A Structural Approach, Cambridge University Press, Cambridge, 1994.

    MATH  Google Scholar 

  153. H. Wang, On ‘computabilism’ and physicalism: some subproblems. In: Cornwell, J., (ed.), Nature’s Imagination, Oxford University Press, Oxford, 1995, 161–189.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Calude, C., Hromkovič, J. (1997). Complexity: A Language-Theoretic Point of View. In: Rozenberg, G., Salomaa, A. (eds) Handbook of Formal Languages. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07675-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07675-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08230-6

  • Online ISBN: 978-3-662-07675-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics