Skip to main content

Introductory Chapter: Half a Lifetime in Soda Lakes

  • Chapter
Halophilic Microorganisms

Abstract

My interest in soda lakes started more than 25 years ago from an encounter with a geologist colleague interested in astrobiology. At that time, the Mars exploration programme was underway and the chemical composition of the Mars regolith a matter for speculation. There are good reasons to believe that Mars and Earth may have experienced rather similar conditions after planet formation, with the development of extensive oceans. The chemical composition of the early oceans is a matter of debate – in particular, whether these were acid or alkaline (Kempe and Degens 1985; Kempe and Kazmierczak 1997). A consideration of weathering processes known to occur on Earth suggests that alkalinity is likely to arise as a consequence of an excess of Na+ over Ca2+ in basaltic minerals, resulting in a carbonate-rich and therefore alkaline aqueous environment (Mills and Sims 1995). In view of the possibility of life on Mars, there was, and is, interest in examining possible terrestrial analogues of the alkaline environment in order to inform any life-detection experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bibo F-J, Söngen R, Fresenius RE (1983) Vermehungsfähige Mikroorganismen in Steinsalz aus primärin Lagerstätten. Kali Steinsalz 8: 367–373

    Google Scholar 

  • Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289: 1134–1139

    Article  Google Scholar 

  • Dombrowski H (1963) Bacteria from paleozoic salt deposits. Ann NY Acad Sci 108: 453–460

    Article  PubMed  CAS  Google Scholar 

  • Dombrowski H (1966) Geological problems in the question of living bacteria in paleozoic salt formations. In: Rau JL (ed) Second symposium on salt, vol 1. Northern Ohio Geological Society, Cleveland, Ohio, pp 215–219

    Google Scholar 

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal gene fragments from ancient halite. Nature 417: 432–436

    Article  PubMed  CAS  Google Scholar 

  • Gemmell RT, McGenity TJ, Grant WD (1998) Use of molecular techniques to investigate possible long term dormancy of halobacteria in ancient salt deposits. Ancient Bio-molecules 2: 125–133

    CAS  Google Scholar 

  • Grant S, Grant WD, Jones BE, Kato C, Li L (1999) Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 3: 139–145

    Article  PubMed  CAS  Google Scholar 

  • Grant WD, Jones BE (2000) Alkaline environments. In: Lederberg J (ed) Encyclopedia of microbiology, vol 1. Academic Press, San Diego, pp 126–133

    Google Scholar 

  • Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75: 255–270

    Article  CAS  Google Scholar 

  • Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2: 279–287

    Article  PubMed  CAS  Google Scholar 

  • Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) Halobacteriaceae. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 1. Springer, Berlin Heidelberg New York, pp 299–301

    Google Scholar 

  • Graur D, Pupko T (2001) The permian bacterium that isn’t. Mol Biol Evol 18: 1143–1146

    Article  PubMed  CAS  Google Scholar 

  • Hazen RM, Roedder E (200 1) How old are bacteria from the Permian age? Nature 411: 155

    Google Scholar 

  • Jones BE, Grant WD, Collins NC, Mwatha WE (1994) Alkaliphiles: diversity and identification. In: Priest FG, Ramos-Cormenzana A, Tindall BJ (eds) Bacterial diversity and systematics. Plenum Press, New York, pp 195–230

    Chapter  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2: 191–120

    Article  PubMed  CAS  Google Scholar 

  • Kempe S, Degens ET (1985) An early soda ocean. Chem Geol 53: 95–108

    Article  CAS  Google Scholar 

  • Kempe S, Kazmierczak JA (1997) A terrestrial model for an alkaline Martian hydrosphere. Planet Space Sci 45: 1493–1499

    Article  CAS  Google Scholar 

  • Kennedy MJ, Reader CL, Swierczynski LM (1994) Preservation records of microorganisms: evidence of the tenacity of life. Microbiology (UK) 140: 2513–2529

    Article  Google Scholar 

  • Larsen H (1981) The family Halobacteriaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1. Springer, Berlin Heidelberg New York, pp 985–994

    Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362: 709–715

    Article  PubMed  CAS  Google Scholar 

  • McGenity TJ (1994) Halobacterial phylogeny and salt mine ecology. PhD Thesis, University of Leicester, 315 pp

    Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2: 243–250

    Article  PubMed  CAS  Google Scholar 

  • Mills AA, Sims MR (1995) pH of the Martian surface. Planet Space Sci 43: 695–696

    Google Scholar 

  • Nickle DC, Loam GH, Rani MW, Mullins JI, Mittler JE (2002) Curiously modern DNA for a ‘250 million year old’ bacterium. J Mol Evol 54: 131–137

    Article  Google Scholar 

  • Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134: 1365–1373

    Google Scholar 

  • Ochman H, Elwyn S, Moran NA (1999) Calibrating bacterial evolution. Proc Natl Acad Sci USA 96: 12638–12643

    Article  PubMed  CAS  Google Scholar 

  • Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments. Hydrogeology 8: 11–28

    Article  Google Scholar 

  • Reiser R, Tasch P (1960) Investigation of the viability of osmophile bacteria of great geological age. Trans Kansas Acad Sci 63: 31–34

    Article  PubMed  CAS  Google Scholar 

  • Sneath PHAS (1962) Longevity of microorganisms. Nature 195: 643–646

    Article  PubMed  CAS  Google Scholar 

  • Tasch P (1963) Dead and viable fossil salt bacteria. Univ Wichita Bull 39: 2–7

    Google Scholar 

  • Tehei M, Franzetti B, Maurel M-C, Vergne J, Hountondji C, Zacchai G (2002) The search for traces of life: the protective effect of salt on biological macromolecules. Extremophiles 6: 427–430

    Article  PubMed  CAS  Google Scholar 

  • Tindall BJ, Ross HMN, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus, gen. nov.: two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5: 41–57

    Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million year old halotolerant bacterium from a primary salt crystal. Nature 407: 897–899

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DA (1985) An analysis of the aeolian dustfall on western Britain, November 1984. Proc Yorkshire Geol Soc 45: 307–309

    Article  Google Scholar 

  • Zavarzin GA (1993) Epicontinental soda lakes as probable relict biotopes of terrestrial biota formation. Microbiology 62: 473–479

    Google Scholar 

  • Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology 68: 503–521

    CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA (1994). Alkaliphilic anaerobic community at pH 10. Curr Microbiol 29: 109–112

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grant, W.D. (2004). Introductory Chapter: Half a Lifetime in Soda Lakes. In: Ventosa, A. (eds) Halophilic Microorganisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07656-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07656-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05664-2

  • Online ISBN: 978-3-662-07656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics