Skip to main content

Reporter Gene Systems for Halophilic Microorganisms

  • Chapter
Book cover Halophilic Microorganisms
  • 361 Accesses

Abstract

The technological ability to follow and understand how and when genes are turned on, how gene products reach their final target, how cells respond to chemical changes in their environment and how cells manage to communicate with each other is indispensable for modern biological research in all living systems. In the post-genomics era the number of identified coding sequences with functions not easy to assay increases exponentially making their study an extremely difficult task. In this respect, the availability of reporter genes for virtually any organism has become an important genetic tool. Additionally, gene reporters have many applications in tagging of biotechnologically important microorganisms for environmental risk assessments. The use of a gene with an easily identifiable product to follow the expression of another gene was first applied some 30 years ago but only in the last decade has this become a widely used approach in gene expression and other tracing studies. Today, various genes have been used as reporters in representative organisms of all domains of the phylogenetic tree and for a wide variety of gene studies and applications (Jain 1996; Groskreutz and Schenborn 1997; Schenborn and Groskreutz 1999). Genes are suitable to be used as reporters only if they can express in their new host, their product can be readily assayed and their presence is not masked from native homologous activities. This chapter focuses on the recent advances in the development of gene reporter systems in halophilic bacteria and archaea. There are no reports as yet regarding halophilic eucaryotic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arvanitis N, Vargas C, Tegos G, Perysinakis A, Nieto JJ, Ventosa A, Drainas C (1995) Development of a gene reporter system in moderately halophilic bacteria by employing the ice nucleation gene of Pseudomonas syringae. Appl Environ Microbiol 61: 3821–3825

    PubMed  CAS  Google Scholar 

  • Baertlein DA, Lindow SE, Panopoulos NJ, Lee SP, Mindrinos MN, Chen THH (1992) Expression of a bacterial ice nucleation gene in plants. Plant Physiol 100: 1730–1736

    Article  PubMed  CAS  Google Scholar 

  • Beneke S, Bestgen H, Klein A (1995) Use of the Escherichia coli uidA gene as a reporter in Methanococcus voltae for the analysis of the regulatory function of the intergenic region between the operons encoding selenium-free hydrogenases. Mol Gen Genet 248: 225–228

    Article  PubMed  CAS  Google Scholar 

  • Berghofer Y, Agha-Amiri K, Klein A (1994) Selenium is involved in the negative regulation of the expression of selenium-free hydrogenases in Methanococcus voltae. Mol Gen Genet 242: 369–373

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Praser DC (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802–805

    Article  PubMed  CAS  Google Scholar 

  • Cho JH, Eom SH, Ahnn J (1999) Analysis of calsequestrin gene expression using green fluorescent protein in Caenorhabditis elegans. Mol Cells 9: 230–234

    PubMed  CAS  Google Scholar 

  • Clark E, Cirvilleri G (1994) Cloning cassettes containing the reporter gene xylE. Gene 151: 329–330

    Article  PubMed  CAS  Google Scholar 

  • Cline SW, Lam WL, Charlebois RL, Schalkwyk LC, Doolittle WF (1989) Transformation methods for halophilic archaebacteria. Can J Microbiol 35: 148–152

    Article  PubMed  CAS  Google Scholar 

  • Cormark BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein ( GFP ). Gene 173: 33–38

    Google Scholar 

  • Danner S, Soppa J (1996) Characterization of the distal promoter element of halobacteria in vivo using saturation mutagenesis and selection. Mol Microbiol 19: 1265–1276

    Article  PubMed  CAS  Google Scholar 

  • De Wet JR, Wood KV, DeLuce M, Helinski DR, Subramani S (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7: 725–735

    PubMed  Google Scholar 

  • Douka E, Christogianni A, Koukkou AI, Afendra AS, Drainas C (2001) Use of a green fluorescent protein gene as a reporter in Zymomonas mobilis and Halomonas elongata. FEMS Microbiol Lett 201: 221–237

    Article  PubMed  CAS  Google Scholar 

  • Drainas C, Vartholomatos G, Panopoulos NJ (1995) The ice nucleation gene from Pseudomonas syringae as sensitive gene reporter for promoter analysis in Zymomonas mobilis.Appl Environ Microbiol 61: 273–277

    CAS  Google Scholar 

  • Fall R, Wolber PK (1995) Biochemistry of bacterial ice nuclei. In: Lee RE Jr, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS Press, St Paul, Minnesota, pp 63–83

    Google Scholar 

  • Feilmeier BJ, Iseminger G, Schroeder D, Webber H, Phillips GJ (2000) Green fluorescence protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 182: 4068–4076

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Arai M, Kuwajima K (2000) Folding of green fluorescent protein and the cycle3 mutant. Biochemistry 39: 12025–12032

    Article  PubMed  CAS  Google Scholar 

  • Gallagher SR (ed) (1992) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press, New York

    Google Scholar 

  • Gernhardt P, Possot O, Foglino M, Sibold L, Klein A (1990) Construction of an integration vector for use in the archaebacterium Methanococcus voltae and expression of a eubacterial resistance gene. Mol Gen Genet 221: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Flecha B, Demple B (1994) Intracellular generation of superoxide as a byproduct of Vibrio harveyi luciferase expressed in Escherichia coli. J Bacteriol 176: 2293–2299

    PubMed  CAS  Google Scholar 

  • Gotsche S, Dahl MK (1995) Purification and characterization of the phospho-a(1,1)glucosidase (TreA) of Bacillus subtilis 168. J Bacteriol 177: 2721–2726

    PubMed  CAS  Google Scholar 

  • Gregor D, Pfeifer F (2001) Use of a halobacterial bgaH reporter gene to analyse the regulation of gene expression in halophilic archaea. Microbiology 147: 1745–1754

    PubMed  CAS  Google Scholar 

  • Groskreutz D, Schenborn ET (1997) Reporter systems. Methods Mol Biol 63: 11–30

    PubMed  CAS  Google Scholar 

  • Holmes ML, Dyall-Smith ML (2000) Sequence and expression of a halobacterial betagalactosidase gene. Mol Microbiol 36: 114–122

    Article  PubMed  CAS  Google Scholar 

  • Holmes ML, Scopes RK, Moritz RL, Simpson RJ, Englert C, Pfeifer F, Dyall-Smith ML (1997) Purification and analysis of an extremely halophilic b-galactosidase from Haloferax alicantei. Biochem Biophys Acta 1337: 276–286

    Article  PubMed  CAS  Google Scholar 

  • Hwang W-Z, Coetzer C, Tumer NE, Lee T-C (2001) Expression of a bacterial ice nucleation gene in a yeast Saccharomyces cerevisiae and its possible application in food freezing processes. J Agr Food Chem 49: 4662–4666

    Article  CAS  Google Scholar 

  • Jain VK (1996) Vectors with bidirectional reporter genes for studing divergent promoters. Methods Enzymol 273: 319–331

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1989) The GUS reporter gene system. Nature 342: 837–838

    Article  PubMed  CAS  Google Scholar 

  • Leffel SM, Mabou SA, Stewart CN Jr (1997) Applications of green fluorescent protein in plants. Biotechniques 23: 912–918

    PubMed  CAS  Google Scholar 

  • Lindgren PB, Frederick R, Govindarajan AG, Panopoulos NJ, Staskawicz BJ, Lindow SE (1989) An ice nucleation reporter gene system: identification of inducible pathogenicity genes in Pseudomonas syringae pv. phaseolicola. EMBO J 8: 2990–3001

    Google Scholar 

  • Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ (1999) Is green fluorescence protein toxic to the living cells? Biochem Biophys Res Commun 260: 712–717

    Article  PubMed  CAS  Google Scholar 

  • Manoil C (1990) Analysis of protein localization by use of gene fusions with complementary properties. J Bacteriol 172: 1035–1042

    PubMed  CAS  Google Scholar 

  • Manoil C (2000) Tagging exported proteins using Escherichia coli alkaline phosphatase gene fusions. Methods Enzymol 326: 35–47

    Article  PubMed  CAS  Google Scholar 

  • Marcoli R, Lida S, Bickle TA (1980) The DNA sequence of an ISI flanked transposon coding for resistance to chloramphenicol and fusidic acid. FEBS Lett 110: 11–14

    Article  PubMed  CAS  Google Scholar 

  • Metcalf WW, Zhang JK, Apolinario E, Sowers KR, Wolf RS (1997) A genetic system for Archaea of the genus Methanosarcina: liposome-mediated transformation and construction of shuttle vectors. Proc Natl Acad Sci USA 94: 2626–2631

    Article  PubMed  CAS  Google Scholar 

  • Miller WG, Lindow SE (1997) An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191: 149–153

    Article  PubMed  CAS  Google Scholar 

  • Niedenthal RK, Riles L, Johnston M, Hegemann JH (1996) Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12: 773–786

    Article  PubMed  CAS  Google Scholar 

  • Orser C, Staskawicz BJ, Panopoulos NJ, Dahlbeck D, Lindow SE (1985) Cloning and expression of bacterial ice nucleation genes in Escherichia coli. J Bacteriol 164: 359–366

    PubMed  CAS  Google Scholar 

  • Palmano S, Kirkpatrick BC, Firrao G (2001) Expression of chloramphenicol acetyltransferase in Bacillus subtilis under the control of a phytoplasma promoter. FEMS Microbiol Lett 199: 177–179

    Article  PubMed  CAS  Google Scholar 

  • Palmer JR, Daniels CJ (1995) In vivo definition of an archaeal promoter. J Bacteriol 177: 1844–1849

    PubMed  CAS  Google Scholar 

  • Panopoulos N (1995) Ice nucleation genes as reporters. In: Lee RE Jr, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS Press, St Paul, Minnesota, pp 271–281

    Google Scholar 

  • Patenge N, Haasa A, Bolhuis H, Oesterhelt D (2000) The gene for a halophilic P-galactosidase (bgaH) of Haloferax alicantei as a reporter gene for promoter analysis in Halobacterium salinarum. Mol Microbiol 36: 105–113

    Article  PubMed  CAS  Google Scholar 

  • Sacchetti A, Ciccocioppo R, Alberti S (2000) The molecular determinants of the efficiency of green fluorescent protein mutants. Histol Histopathol 15: 101–107

    PubMed  CAS  Google Scholar 

  • Sacchetti A, Cappetti V, Marra P, Dell’Arciprete R, El Sewedy T, Crescenzi C, Aberti S (2001) Green fluorescent protein variants fold differentially in prokaryotic and eukaryotic cells. J Cell Biochem 36: 117–128

    Article  Google Scholar 

  • Schenborn E, Groskreutz D (1999) Reporter gene vectors and assays. Mol Biotechnol 13: 29–44

    Article  PubMed  CAS  Google Scholar 

  • Siemering KR, Golbik R, Sever R, Haseloff J (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6: 1653–1663

    Article  PubMed  CAS  Google Scholar 

  • Silhavy TJ, Beckwith JR (1985) Use of lac fusions for the study of biological problems. Microbiol Rev 49: 398–418

    PubMed  CAS  Google Scholar 

  • Sniezko I, Dobson-Stone C, Klein A (1998) The treA gene of Bacillus subtilis is a suitable reporter gene for the archaeon Methanococcus voltae. FEMS Microbiol Lett 164: 237–242

    Article  PubMed  CAS  Google Scholar 

  • Sorgenfrei O, Muller S, Pfeifer M, Sniezko I, Klein A (1997) The [NiFe] hydrogenases of Methanococcus voltae: genes, enzymes and regulation. Arch Microbiol 167: 189–195

    Article  PubMed  CAS  Google Scholar 

  • Southworth MW, Wolber PK, Warren GJ (1988) Nonlinear relationship between concentration and activity of a bacterial ice nucleation protein. J Biol Chem 263: 15211–15216

    PubMed  CAS  Google Scholar 

  • Stewart GAAB, Williams P (1992) lux genes and the application of bacterial bioluminescence. J Gen Microbiol 138: 1289–1300

    Google Scholar 

  • Suarez A, Guttler A, Stratz M, Staendner LH, Timmis KN, Guzma CA (1997) Green fluorescence protein-based reporter systems for genetic analysis of bacteria including monocopy applications. Gene 196: 69–74

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Yoshizaki G, Takeuchi T (1999) Green fluorescent protein as a cell-labelling tool and a reporter of gene expression in transgenic rainbow trout. Mar Biotechnol 1: 448–0457

    Article  PubMed  CAS  Google Scholar 

  • Tegos G, Vargas C, Vartholomatos G, Perysibnakis A, Nieto JJ, Ventosa A, Drainas C (1997) Identification of a promoter region on the Halomonas elongata cryptic plasmid pHE1 employing the inaZ reporter gene of Pseudomonas syringae. FEMS Microbiol Lett 154: 45–51

    Article  PubMed  CAS  Google Scholar 

  • Tegos G, Vargas C, Perysinakis A, Koukkou AI, Christogianni A, Nieto JJ, Ventosa A, Drainas C (2000) Release of cell-free ice nuclei from Halomonas elongata expressing the ice nucleation gene inaZ of Pseudomonas syringae. J Appl Microbiol 89: 785–792

    Article  PubMed  CAS  Google Scholar 

  • Vali G (1971) Quantitative evaluation of experimental results on the heterologous freezing nucleation of supercooled liquids. J Atmos Sci 28: 402–409

    Article  Google Scholar 

  • Vargas C, Fernandez-Castillo R, Canovas D, Ventosa A, Nieto JJ (1995) Isolation of cryptic plasmids from moderately halophilic eubacteria of the genus Halomonas. Characterization of a small plasmid from H. elongata and its use for shuttle vector construction. Mol Gen Genet 246: 411–418

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Abe K, Sato M (2000) Biological control of an insect pest by gut-colonizing Enterobacter cloacae transformed with ice nucleation gene. J Appl Microbiol 88: 90–97

    Article  PubMed  CAS  Google Scholar 

  • Wolber PK (1992) Bacterial ice nucleation. Adv Microb Physiol 31: 203–237

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drainas, C. (2004). Reporter Gene Systems for Halophilic Microorganisms. In: Ventosa, A. (eds) Halophilic Microorganisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07656-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07656-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05664-2

  • Online ISBN: 978-3-662-07656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics