Skip to main content

Zusammenfassung

Die biologischen Wissenschaften haben die Entwicklung in den letzten Jahrzehnten des vergangenen Jahrhunderts nachhaltig geprägt, und es wird erwartet, dass sich der rasante Erkenntniszuwachs im 21. Jahrhundert noch weiter beschleunigen wird. Die praktische Nutzung von Erkenntnissen aus der Biologie ist durch eine Reihe von methodischen Entwicklungen vorangetrieben worden. Hier ist an1. Stelle sicher die Gentechnik zu nennen, den 2. Platz nimmt zweifelsohne die Entwicklung der Hybridomtechnik (Köhler u. Mistein 1975) ein, die es erlaubt, Antikörper einer definierten Spezifität zu entwickeln.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ada GL, Nossal G (1987) The clonal-selection theory. Sci Am 257: 62–69

    Article  PubMed  CAS  Google Scholar 

  • Alfthan K (1998) Surface plasmon resonance biosensors as a tool in antibody engineering. Biosens Bioelectron 13: 653–663

    Article  PubMed  CAS  Google Scholar 

  • Andris-Widhopf J, Rader C, Steinberger P, Fuller R, Barbas CF 3rd (2000) Methods for the generation of chicken monoclonal antibody fragments by phage display. J Immunol Methods 242: 159–181

    Article  PubMed  CAS  Google Scholar 

  • Ansell RJ, Ramstrom O, Mosbach K (1996) Towards artificial antibodies prepared by molecular imprinting. Clin Chem 42: 1506–1512

    PubMed  CAS  Google Scholar 

  • Asch RH, Asch B, Asch G, Asch M, Bray R, Rojas FJ (1988) Performance and sensitivity of modern home pregnancy tests. Int J Fertil 33:154, 157–158, 161

    Google Scholar 

  • Asian M, Dent A (1998) Bioconjugation - Protein coupling techniques for the biomedical sciences. Macmillan, London

    Google Scholar 

  • Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA 88: 7978–7982

    Article  PubMed  CAS  Google Scholar 

  • Bell S, Kamm MA (2000) Antibodies to tumour necrosis factor alpha as treatment for Crohn’s disease. Lancet 355: 858–860

    Article  PubMed  CAS  Google Scholar 

  • Beste G, Schmidt FS, Stibora T, Skerra A (1999) Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc Natl Acad Sci USA 96: 1898–1903

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya-Chatterjee M, Chatterjee SK, Foon KA (2000) Anti-idiotype vaccine against cancer. Immunol Lett 74: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Borrebaeck CA (2000) Antibodies in diagnostics–from immunoassays to protein chips. Immunol Today 21: 379–382

    Article  PubMed  CAS  Google Scholar 

  • Böttger V, Peters L, Micheel B (1999) Identification of peptide mimotopes for the fluorescein hapten binding of monoclonal antibody B13–DE1. J Mol Recognit 12: 191–197

    Article  PubMed  Google Scholar 

  • Breitling F, Dübel S (1997) Rekombinante Antikörper. Spektrum, Heidelberg Berlin

    Google Scholar 

  • Bruggemann M, Taussig MI (1997) Production of human antibody repertoires in transgenic mice. Curr Opin Biotechnol 8: 455–458

    Article  PubMed  CAS  Google Scholar 

  • Burnet FM (1959) The clonal selection theory of acquired immunity. Cambridge University Press, London

    Google Scholar 

  • Cao Y, Suresh MR (1998) Bispecific antibodies as novel bio-conjugates. Bioconjug Chem 9: 635–644

    Article  PubMed  Google Scholar 

  • Casey JL, Coley AM, Tilley LM, Foley M (2000) Green fluorescent antibodies: novel in vitro tools. Protein Eng 13: 445–452

    Article  PubMed  CAS  Google Scholar 

  • Carter P (2001) Bispecific human IgG by design. J Immunol Methods 248: 7–15

    Article  PubMed  CAS  Google Scholar 

  • Champlin R (1996) Purging: elimination of malignant cells from autologous blood or marrow transplants. Curr Opin Oncol 8: 79–83

    Article  PubMed  CAS  Google Scholar 

  • Chapman AP, Antoniw P, Spitali M, West S, Stephens S, King DJ (1999) Therapeutic antibody fragments with prolonged in vivo half-lives. Nat Biotechnol 17: 780–783

    Article  PubMed  CAS  Google Scholar 

  • Clackson T, Hoogenboom HR, Griffiths AD, Winter G (1991) Making antibody fragments using phage display libraries. Nature 352: 624–628

    Article  PubMed  CAS  Google Scholar 

  • Cohen IR (1988) The self, the world and autoimmunity. Sci Am 258: 52–60

    Article  PubMed  CAS  Google Scholar 

  • Davis CG, Gallo ML, Corvalan JR (1999) Transgenic mice as a source of fully human antibodies for the treatment of cancer. Cancer Metast Rev 18: 421–425

    Article  CAS  Google Scholar 

  • Deslys JP, Comoy E, Hawkins S et al. (2001) Screening slaughtered cattle for BSE. Nature 409: 476–478

    Article  PubMed  CAS  Google Scholar 

  • Dimasi N, Martin F, Volpari C et al. (1997) Characterization of engineered hepatitis C virus NS3 protease inhibitors affinity selected from human pancreatic secretory trypsin inhibitor and minibody repertoires. J Virol 71: 7461–7469

    PubMed  CAS  Google Scholar 

  • Dordick JS (1988) Monoclonal antibodies for clinical applications. Patents and literature. Appl Biochem Biotechnol 19: 271–296

    Article  PubMed  CAS  Google Scholar 

  • Duenas M, Chin LT, Malmborg AC, Casalvilla R, Ohlin M, Borrebaeck CA (1996) In vitro immunization of naive human B cells yields high affinity immunoglobulin G antibodies as illustrated by phage display. Immunology 89: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Duffy MJ (2001) Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem 47: 624–630

    PubMed  CAS  Google Scholar 

  • Edelman GM (1970) The structure and function of antibodies. Sci Am 223: 34–42

    Article  PubMed  CAS  Google Scholar 

  • Eshhar Z, Waks T, Bendavid A, Schindler DG (2001) Functional expression of chimeric receptor genes in human T cells. J Immunol Methods 248: 67–76

    Article  PubMed  CAS  Google Scholar 

  • Farah RA, Clinchy B, Herrera L, Vitetta ES (1998) The development of monoclonal antibodies for the therapy of cancer. Crit Rev Eukaryot Gene Expr 8: 321–356

    Article  PubMed  CAS  Google Scholar 

  • Galfré G, Milstein C (1981) Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 73: 3–46

    Article  PubMed  Google Scholar 

  • Galfré G, Howe SC, Milstein C, Butcher GW, Howard JC (1977) Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature 266: 550–552

    Article  PubMed  Google Scholar 

  • Glennie MJ, Johnson PW (2000) Clinical trials of antibody therapy. Immunol Today 21: 403–410

    Article  PubMed  CAS  Google Scholar 

  • Godfrey MA, Kwasowski P, Clift R, Marks V (1993) Assessment of the suitability of commercially available SpA affinity solid phases for the purification of murine monoclonal antibodies at process scale. J Immunol Methods 160: 97–105

    Article  PubMed  CAS  Google Scholar 

  • Gramer MJ, Britton TL (2000) Selection and isolation of cells for optimal growth in hollow fiber bioreactors. Hybridoma 19: 407–412

    Article  PubMed  CAS  Google Scholar 

  • Green LL (1999) Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 231: 11–23

    Article  PubMed  CAS  Google Scholar 

  • Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18: 927–974

    Article  PubMed  CAS  Google Scholar 

  • Hamers-Casterman C, Atarhouch T, Muyldermans S et al. (1993) Naturally occurring antibodies devoid of light chains. Nature 363: 446–448

    Article  PubMed  CAS  Google Scholar 

  • Hanes J, Jermutus L, Plückthun A (2000a) Selecting and evolving functional proteins in vitro by ribosome display. Methods Enzymol 328: 404–430

    Article  PubMed  CAS  Google Scholar 

  • Hanes J, Schaffitzel C, Knappik A, Plückthun A (2000b) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18: 1287–1292

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies - A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Harlow E, Lane D (1999) Using antibodies - A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Harrison RA, Moura-Da-Silva AM, Laing GD et al. (2000) Antibody from mice immunized with DNA encoding the carboxyl-disintegrin and cysteine-rich domain (JD9) of the haemorrhagic metalloprotease, Jararhagin, inhibits the main lethal component of viper venom. Clin Exp Immunol 121: 358–363

    Google Scholar 

  • Hasholzner U, Stieber P, Meier W, Lamerz R (1997) Value of HAMA-determination in clinical practice–an overview. Anticancer Res 17: 3055–3058

    PubMed  CAS  Google Scholar 

  • Herzenberg LA, De Rosa SC (2000) Monoclonal antibodies and the FACS: complementary tools for immunobiology and medicine. Immunol Today 21: 383–390

    Article  PubMed  CAS  Google Scholar 

  • Herzenberg LA, Sweet RG, Herzenberg LA (1976) Fluorescence-activated cell sorting. Sci Am 234: 108–117

    Article  PubMed  CAS  Google Scholar 

  • Hlinak A, Schade R, Bartels T, Ebner D (1996) Das Huhn als Versuchstier and Quelle spezifischer Dotterantikörper. Erfahrungen zur Haltung, Immunisierung and Legeleistung. Tierärztl Umschau 51:402–408 Hoffman D, Hesselberth J, Ellington AD (2001) Switching

    Google Scholar 

  • nucleic acids for antibodies. Nat Biotechnol 19:313–314 Holliger P, Winter G (1993) Engineering bispecific antibodies. Curr Opin Biotechnol 4: 446–449

    Google Scholar 

  • Hombach A, Schneider C, Sent D et al. (2000) An entirely humanized CD3 zeta-chain signaling receptor that directs peripheral blood t cells to specific lysis of carcinoembryonic antigen-positive tumor cells. Int J Cancer 88: 115–120

    Article  PubMed  CAS  Google Scholar 

  • Hoogenboom HR, Chames P (2000) Natural and designer binding sites made by phage display technology. ImmunoI Today 21: 371–378

    Article  CAS  Google Scholar 

  • Hudson PJ, Kortt AA (1999) High avidity scFv multimers; diabodies and triabodies. J Immunol Methods 231: 177–189

    Article  PubMed  CAS  Google Scholar 

  • Irving RA, Coia G, Roberts A, Nuttall SD, Hudson PJ (2001) Ribosome display and affinity maturation: from antibodies to single V-domains and steps towards cancer therapeutics. J Immunol Methods 248: 31–45

    Article  PubMed  CAS  Google Scholar 

  • Jahn S, Kiessig S, Grunow R, Specht U, Mau H, Baehr R von (1986) Production of human monoclonal antibodies by heterohybridization of human B lymphocytes of the spleen with mouse myeloma cells. Z Gesamt Inn Med 41: 493–497

    CAS  Google Scholar 

  • Jahn S, Walper A, Grunow R, Heym S, Volk HD, Baehr R von (1990) The hybridization of EBV-immortalized human B-lymphocytes with a human-mouse heteromyeloma cell line. Allerg Immunol 36: 359–365

    CAS  Google Scholar 

  • Jakobovits A (1994) YAC vectors. Humanizing the mouse genome. Curr Biol 4: 761–763

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA Jr, Travers P, Walport M, Capra JD (1999) Immunobiology - The system in health and disease, 4th edn. Current Biology Publications and Garland Publishing, London New York

    Google Scholar 

  • Janson AK, Smith CI, Hammarstrom L (1995) Biological properties of yolk immunoglobulins. Adv Exp Med Biol 371 A: 685–690

    Google Scholar 

  • Jencks WP (1986) Catalysis in chemistry and enzymology. McGraw-Hill, New York

    Google Scholar 

  • Jermutus L, Honegger A, Schwesinger F, Hanes J, Plückthun A (2001) Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci USA 98: 75–80

    Article  PubMed  CAS  Google Scholar 

  • Jerne NK (1973) The immune system. Sci Am 229:52–60 Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol (Paris) 125 C: 373–389

    Google Scholar 

  • Jerne NK, Roland J, Cazenave PA (1982) Recurrent idiotopes and internal images. EMBO J 1: 243–247

    PubMed  CAS  Google Scholar 

  • Karawajew L, Micheel B, Behrsing O, Gaestel M (1987) Bi-specific antibody-producing hybrid hybridomas selected by a fluorescence activated cell sorter. J Immunol Methods 96: 265–270

    Article  PubMed  CAS  Google Scholar 

  • Karsten U, Stolley P, Walther I et al. (1988) Direct comparison of electric field-mediated and PEG-mediated cell fusion for the generation of antibody producing hybridomas. Hybridoma 7: 627–633

    Article  PubMed  CAS  Google Scholar 

  • Kerschbaumer RJ, Hirschl S, Kaufmann A, Ibl M, Koenig R, Himmler G (1997) Single-chain Fv fusion proteins suitable as coating and detecting reagents in a double antibody sandwich enzyme-linked immunosorbent assay. Anal Biochem 249: 219–227

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick KE, Danger DP, Hull-Ryde EA, Dallas W (2000) High-affinity monoclonal antibodies to PED/PEA-15 generated using 5 microg of DNA. Hybridoma 19: 297–302

    Article  PubMed  CAS  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497

    Article  PubMed  Google Scholar 

  • Kolesnikov AV, Kozyr AV, Alexandrova ES et al. (2000) Enzyme mimicry by the antiidiotypic antibody approach. Proc Natl Acad Sci USA 97: 13526–13531

    Article  PubMed  CAS  Google Scholar 

  • Kramer A, Schneider-Mergener J (1998) Synthesis and screening of peptide libraries on continuous cellulose membrane supports. Methods Mol Biol 87: 25–39

    PubMed  CAS  Google Scholar 

  • Kuo MC, Sogn JA, Max EE, Kindt TJ (1985) Rabbit-mouse hybridomas secreting intact rabbit immunoglobulin. Mol Immunol 22: 351–359

    Article  PubMed  CAS  Google Scholar 

  • Larrick JW, Yu L, Chen J, Jaiswal S, Wycoff K (1998) Production of antibodies in transgenic plants. Res Immunol 149: 603–608

    Article  PubMed  CAS  Google Scholar 

  • Little M, Breitling F, Micheel B, Dübel S (1994) Surface display of antibodies. Biotechnol Adv 12: 539–555

    Article  PubMed  CAS  Google Scholar 

  • Löffler A, Kufer P, Lutterbuse R et al. (2000) A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 95: 2098–2103

    PubMed  Google Scholar 

  • Mäkelä PH (2000) Vaccines, coming of age after 200 years. FEMS Microbiol Rev 24: 9–20

    PubMed  Google Scholar 

  • Mallender WD, Voss EW Jr (1995) Primary structures of three Armenian hamster monoclonal antibodies specific for idiotopes and metatopes of the monoclonal anti–fluorescein antibody 4–4–20. Mol Immunol 32: 1093 – 1103

    Article  PubMed  CAS  Google Scholar 

  • Marasco WA (1995) Intracellular antibodies (intrabodies) as research reagents and therapeutic molecules for gene therapy. Immunotechnology 1: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Matthey B, Engert A, Barth S (2000) Recombinant immunotoxins for the treatment of Hodgkin’s disease. Int J Mol Med 6: 509–514

    PubMed  CAS  Google Scholar 

  • Micheel B (1998) Tumorantigene and ihre Nutzung für eine Therapie von Tumoren. In:Ganten D, Ruckpaul K (Hrsg) Tumorerkrankungen. Springer, Berlin Heidelberg New York, S 160–185

    Google Scholar 

  • Micheel B, Jantscheff P, Bottger V et al. (1988) The production and radioimmunoassay application of monoclonal antibodies to fluorescein isothiocyanate ( FITC ). J Immunol Methods 111: 89–94

    Google Scholar 

  • Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11: 231–238

    Article  PubMed  CAS  Google Scholar 

  • Milstein C (1980) Monoclonal antibodies. Sci Am 243:66–74 Milstein C (2000) With the benefit of hindsight. Immunol Today 21: 359–364

    Google Scholar 

  • Milstein C, Waldmann H (1999) Optimism after much pessimism: what next? Curr Opin Immunol 11: 589–591

    Article  PubMed  CAS  Google Scholar 

  • Moldenhauer G, Haustein D, Huppe T, Wagner A, Hartmann KU (1982) A new murine cell surface differentiation antigen (Leugp90) defined by a rat monoclonal antibody: cellular distribution and biochemical characterization. J Immunol 128: 2664–2669

    PubMed  CAS  Google Scholar 

  • Morgan CL, Newman DJ, Price CP (1996) Immunosensors: technology and opportunities in laboratory medicine. Clin Chem 42: 193–209

    PubMed  CAS  Google Scholar 

  • Murray JL (2000) Monoclonal antibody treatment of solid tumors: a coming of age. Semin Oncol 27: 64–70

    PubMed  CAS  Google Scholar 

  • Nguyen H, Sandhu J, Hozumi N (1997) Production of human monoclonal antibodies in SCID mouse. Microbiol Immunol 41: 901–907

    PubMed  CAS  Google Scholar 

  • Nishinaka S, Suzuki T, Matsuda H, Murata M (1991) A new cell line for the production of chicken monoclonal antibody by hybridoma technology. J Immunol Methods 139: 217–222

    Article  PubMed  CAS  Google Scholar 

  • Nolte A, Klussmann S, Bald R, Erdmann VA, Furste JP (1996) Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nat Biotechnol 14: 1116–1119

    Article  PubMed  CAS  Google Scholar 

  • Nossal GJ (1993) Life, death and the immune system. Sci Am 269: 52–62

    Article  PubMed  CAS  Google Scholar 

  • Paul S (1998) Autoantibody catalysis: no longer hostage to Occam’s razor. Ann N Y Acad Sci 865: 238–246

    Article  PubMed  CAS  Google Scholar 

  • Pollock DP, Kutzko JP, Birck-Wilson E, Williams JL, Echelard Y, Meade HM (1999) Transgenic milk as a method for the production of recombinant antibodies. J Immunol Methods 231: 147–157

    Article  PubMed  CAS  Google Scholar 

  • Porter RR (1967) The structure of antibodies. Sci Am 217: 81–87

    Article  PubMed  CAS  Google Scholar 

  • Queen C, Schneider WP, Selick HE et al. (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA 86: 10029–10033

    Article  PubMed  CAS  Google Scholar 

  • Rabbany SY, Donner BL, Ligler FS (1994) Optical immunosensors. Grit Rev Biomed Eng 22: 307–346

    CAS  Google Scholar 

  • Regenmörtel MH van, Pellequer JL (1994) Predicting antigenic determinants in proteins: looking for unidimensional solutions to a three-dimensional problem? Pept Res 7: 224–228

    Google Scholar 

  • Riechmann L, Muyldermans S (1999) Single domain antibodies: comparison of camel VH and camelised human VH domains. J Immunol Methods 231: 25–38

    Article  PubMed  CAS  Google Scholar 

  • Riethmuller G, Schneider-Gadicke E, Schlimok G et al (1994) Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoma. German Cancer Aid 17–1A Study Group. Lancet 343: 1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Roitt I, Brostoff J, Male D (1998) Immunology, 5th edn. Mosby, St Louis

    Google Scholar 

  • Sauerteig L (2000) Mit Chemie gegen die Syphilis–Anfänge der Chemotherapie um Paul Ehrlich und die DMW. Dtsch Med Wochenschr 125: 95–96

    PubMed  CAS  Google Scholar 

  • Sayegh CE, Drury G, Ratcliffe MI (1999) Efficient antibody diversification by gene conversion in vivo in the absence of selection for V(D)J-encoded determinants. EMBO J 18: 6319–6328

    Article  PubMed  CAS  Google Scholar 

  • Schuhmacher J, Kaul S, Klivenyi G et al. (2001) Immunoscintigraphy with positron emission tomography: Gallium-68 chelate imaging of breast cancer pretargeted with bispecific anti-MUC1/anti-Ga chelate antibodies. Cancer Res 61: 3712–3717

    PubMed  CAS  Google Scholar 

  • Schuurs AH, Weemen BK van (1977) Enzyme-immunoassay. Clin Chim Acta 81: 1–40

    Article  PubMed  CAS  Google Scholar 

  • Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249: 386–390

    Article  PubMed  CAS  Google Scholar 

  • Seetharaman S, Zivarts M, Sudarsan N, Breaker RR (2001) Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nat Biotechnol 19: 336341

    Google Scholar 

  • Self CH, Cook DB (1996) Advances in immunoassay technology. Curr Opin Biotechnol 7: 60–65

    Article  PubMed  CAS  Google Scholar 

  • Shu S, Plautz GE, Krauss JC, Chang AE (1997) Tumor immunology. JAMA 278: 1972–1981

    Article  PubMed  CAS  Google Scholar 

  • Silverstein AM (1989) The history of immunology. In: Paul W (ed) Fundamental immunology, 2nd ed. Raven Press, New York, pp 21–38

    Google Scholar 

  • Skerra A, Plückthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240: 1038–1041

    Article  PubMed  CAS  Google Scholar 

  • Spriel AB van, Ojik HH van, Winkel JG van de (2000) Immunotherapeutic perspective for bispecific antibodies. Immunol Today 21: 391–397

    Article  PubMed  Google Scholar 

  • Stöcklein WFM, Rohde M, Scharte G et al. (2000) Sensitive detection of triazine and phenylurea pesticides in pure organic solvent by enzyme linked immunosorbent assay (ELISA): stabilities, solubilities and sensitivities. Anal Chim Acta 405: 255–265

    Article  Google Scholar 

  • Tada H, Kurokawa T, Seita T, Watanabe T, Iwasa S (1994) Expression and characterization of a chimeric bispecific antibody against fibrin and against urokinase-type plasminogen activator. J Biotechnol 33: 157–174

    Article  PubMed  CAS  Google Scholar 

  • Tan LK, Oi VT, Morrison SL (1985) A human-mouse chimeric immunoglobulin gene with a human variable region is expressed in mouse myeloma cells. J Immunol 135: 3546–3547

    Google Scholar 

  • Thrush GR, Lark LR, Clinchy BC, Vitetta ES (1996) Immunotoxins: an update. Annu Rev Immunol 14: 49–71

    Article  PubMed  CAS  Google Scholar 

  • Tonegawa S (1993) The Nobel lectures in immunology. The Nobel Prize for Physiology or Medicine, 1987. Somatic generation of immune diversity. Scand J Immunol 38: 303–319

    Google Scholar 

  • Verma R, Boleti E, George AJ (1998) Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. J Immunol Methods 216: 165–181

    Article  PubMed  CAS  Google Scholar 

  • Wagner J, Lerner RA, Barbas CF 3rd (1995) Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes. Science 270: 1797–1800

    Article  PubMed  CAS  Google Scholar 

  • Warren HS, Vogel FR, Chedid LA (1986) Current status of immunological adjuvants. Annu Rev Immunol 4: 369–388

    Article  PubMed  CAS  Google Scholar 

  • Weber P, Weberova D, Martinek K (1988) Alpha-fetoprotein, carcinoembryonic antigen and various biochemical tests in patients with tumorous and inflammatory liver diseases. Neoplasma 35: 605–613

    PubMed  CAS  Google Scholar 

  • Weissman IL, Cooper MD (1993) How the immune system develops. Sci Am 269: 64–71

    Article  PubMed  CAS  Google Scholar 

  • Wentworth P, Janda KD (1998) Catalytic antibodies. Curr Opin Chem Biol 2: 138–144

    Article  PubMed  CAS  Google Scholar 

  • White CA, Weaver RL, Grillo-Lopez AJ (2001) Antibody-targeted immunotherapy for treatment of malignancy. Annu Rev Med 52: 125–145

    Article  PubMed  CAS  Google Scholar 

  • Wilchek M, Bayer EA (1989) Avidin-biotin technology ten years on: has it lived up to its expectations? Trends Biochem Sci 14: 408–412

    Article  PubMed  CAS  Google Scholar 

  • Williams AF (1979) Monoclonal antibodies in transplantation research. Transplantation 27: 152–155

    Article  PubMed  CAS  Google Scholar 

  • Williams AF, Galfre G, Milstein C (1977) Analysis of cell surfaces by xenogeneic myeloma-hybrid antibodies: differentiation antigens of rat lymphocytes. Cell 12: 663–673

    Article  PubMed  CAS  Google Scholar 

  • Wood GS, Burns BF, Dorfman RF, Warnke RA (1986) In situ quantitation of lymph node helper, suppressor, and cytotoxic T cell subsets in AIDS. Blood 67: 596–603

    PubMed  CAS  Google Scholar 

  • Worn A, Plückthun A (2001) Stability engineering of antibody single-chain FIT fragments. J Mol Biol 305: 989–1010

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Huang J (2000) Cleaning procedure for protein G affinity columns. J Immunol Methods 237: 203–205

    Article  PubMed  CAS  Google Scholar 

  • Yano L, Shimura M, Taniguchi M et al. (2000) Improved gene transfer to neuroblastoma cells by a monoclonal antibody targeting RET, a receptor tyrosine kinase. Hum Gene Ther 11: 995–1004

    Article  PubMed  CAS  Google Scholar 

  • Zamboni A, Giuntini I, Gianesello D, Maddalena F, Rognoni F, Herbst D (1994) Production of mouse monoclonal antibodies using a continuous cell culture fermenter and protein G affinity chromatography. Cytotechnology 16: 79–87

    Article  PubMed  CAS  Google Scholar 

  • Zola H, Neoh SH (1989) Monoclonal antibody purification: choice of method and assessment of purity and yield. Biotechniques 7: 802, 804–808

    Google Scholar 

  • Zusman RM, Ben-Hur H (2001) Serological markers for detection of cancer. Int J Mol Med 7: 547–556

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Micheel, B. (2003). Monoklonale Antikörper. In: Ganten, D., Ruckpaul, K. (eds) Grundlagen der Molekularen Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07588-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07588-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07589-0

  • Online ISBN: 978-3-662-07588-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics