Skip to main content

Molekulare Struktur eukaryotischer Gene

  • Chapter
Book cover Genetik

Part of the book series: Springer-Lehrbuch ((SLB))

  • 118 Accesses

Überblick

Die Struktur eukaryotischer Gene ist in vieler Hinsicht komplexer als die prokaryotischer Gene. Die Kontrolle ihrer Expression erfolgt nicht nur auf der Ebene der Transkription. Durch die Trennung der Orte der Transkription und der Translation kann sie auch auf mehreren Zwischenebenen stattfinden.

Die meisten eukaryotischen Proteine werden nicht in einer durchlaufenden DNA-Sequenz kodiert, sondern in mehreren Teilen, Exons genannt. Diese Exons werden nach Herausschneiden der dazwischenliegenden „Intron-bereiche“ aus den „primären Transkripten“ zu funktionellen mRNAs zusammengefügt. Solche mRNA-Moleküle werden im Kern noch mit einem Poly[A]-Schwanz und einer 5′-cap versehen, bevor sie, integriert in Ribonukleoprotein-partikel, durch die Kernporen ins Cytoplasma transportiert werden.

Manche eukaryotischen Gene gehören zu Familien identischer oder ähnlicher DNA-Sequenzen, deren Funktion in vielfältiger Weise geregelt wird. Man kann daher kein einheitliches Modell eines „typischen“ eukaryotischen Gens aufstellen, sondern muß die Definition des Genbegriffes stets auf eine gegebene Situation beziehen.

Miller-Spreitung der wachsen-den Transkripte an der DNA einer Lampenbürstenshhleife von Drosophila. (Photo:I. Siegmund und W. Hennig, Mainz)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Bandiulis RJ, Swanson MS, Dreyfuss G (1989) RNA-binding proteins as developmental regulators. Genes & Dev 3: 431–437

    Article  Google Scholar 

  • Bieker JJ, Martin PL, Roeder RG (1985) Function of a rate-limiting intermediate in 5S RNA gene transcription. Cell 40: 119–127

    Article  PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Sakonju S, Brown DD (1980) A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3’ border of the region. Cell 19: 27–35

    Article  PubMed  CAS  Google Scholar 

  • Boulikas T (1990) Poly(ADP-ribosylated) histones in chromatin replication. J Biol Chem 265: 14638–14647

    PubMed  CAS  Google Scholar 

  • Brown D, Dawid IB (1968) Specific gene amplification in oocytes. Science 160: 272–280

    Article  PubMed  CAS  Google Scholar 

  • Cech TR (1983) RNA splicing: Three themes with variations. Cell 34: 713–716

    Article  PubMed  CAS  Google Scholar 

  • Davie JR, Murphy LC (1990) The level of ubiquitinated histone H2B in chromatin is coupled to on-going transcription. Biochemistry 29: 4752–4757

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff MO (1972) Atlas of protein sequence and structure, vol. 5. National Biomed Res Foundation, Washington, DC

    Google Scholar 

  • Deisseroth A, Nienhuis A, Turner P et al. (1977) Localization of the human α-globin structural gene to chromosome 16 in somatic cell hybrids by molecular hybridization assay. Cell 12: 205–218

    Article  PubMed  CAS  Google Scholar 

  • Delihas N, Andersen J (1982) Generalized structures of the 5S ribosomal RNAs. Nucleic Acids Res 10: 7323–7344

    Article  PubMed  CAS  Google Scholar 

  • Efstratiadis A, Posakony JW, Maniatis T et al. (1980) The structure and evolution of human ß-globin family. Cell 21: 653–668

    Article  PubMed  CAS  Google Scholar 

  • Ellwood M, Nomura M (1982) Chromosomal location of the genes for rRNA in Escherichia coli K-12. J Bacteriol 149: 458–468

    PubMed  CAS  Google Scholar 

  • Fairall L, Rhodes D, Klug A (1986) Mapping of the sites of protection on a 5S-RNA gene by the Xenopus transcription factor III A. J Mol Biol 192, 577–591

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W, Müller-Hill B (1966) Isolation of the lac repressor. Proc Natl Acad Sci USA 56: 1891–1898

    Article  PubMed  CAS  Google Scholar 

  • Go M (1981) Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature 291: 90–92

    Article  PubMed  CAS  Google Scholar 

  • Grummt I (1982) Nucleotide sequence requirements for specific initiation of transcription by RENA polymerase I. Proc Natl Acad Sci USA 79: 6908–6911

    Article  PubMed  CAS  Google Scholar 

  • Harrison SC (1991) A structural taxonomy of DNA-binding domains. Nature 353: 715–719

    Article  PubMed  CAS  Google Scholar 

  • Hennig W, Meer B (1971) Reduced polyteny of ribosomal RNA cistrons in giant chromosomes of Drosophila hydei. Nature New Biol 233: 70–72

    PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1982) Mechanisms if intracellular protein breakdown. Ann Rev Biochem 51: 335–364

    Article  PubMed  CAS  Google Scholar 

  • Heuvel R van den, Hendricks W, Quax W, Bloemendal H (1985) Complete structure of the α-A-crystallin gene: Reflection of an evolutionary history by means of exon shuffling. J Mol Biol 185: 273–284

    Article  PubMed  Google Scholar 

  • Hunt JA, Ingram VM (1960) Abnormal human hemoglobin. IV. The chemical difference between normal human hemoglobin and hemoglobin C. Biochim Biophys Acta 42: 409–421

    Article  PubMed  CAS  Google Scholar 

  • Hourcade D, Dressier D, Wolfson J (1973) The amplification of ribosomal RNA genes involves a rolling circle intermediate. Proc Natl Sci USA 70: 2926–2930

    Article  CAS  Google Scholar 

  • Ingram VM (1956) A specific chemical difference between the globins of normal human and sickle-cell anemia hemoglobin. Nature 178: 792–794

    Article  PubMed  CAS  Google Scholar 

  • Jackson ME (1991) Negative regulation of eukaryotic transcription. J Cell Sci 100: 1–7

    PubMed  CAS  Google Scholar 

  • Khoury G, Gruss P (1983) Enhancer elements. Cell 33: 313–314

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Sussman JL, Suddath FL, Quiglay GH, McPherson A, Wang AHJ, Seeman NC, Rich A (1974) The general structure of transfer RNA molecules. Proc Natl Acad Sci USA 71: 4970–4974

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt A, Zahn RK (1959) Über Desoxyribonukleinsäure-Molekeln in Protein-Mischfilmen. Z Naturforsch 14b: 770–779

    Google Scholar 

  • Lamond AI (1988) RNA editing and the mysterious undercover genes of Trypanosomatid mitochondria. Trends Biochem Sci 13, 283–284

    Article  PubMed  CAS  Google Scholar 

  • Lerner MR, Steitz JA (1979) Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythromatosus. Proc Natl Acad Sci USA 76: 5495–5499

    Article  PubMed  CAS  Google Scholar 

  • Lührmann R, Kastner B, Bach M (1990) Structure of spli-ceosomal snRNPs and their role in pre-mRNA splicing. Biochem Biophys Acta 1087: 265–292

    Article  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Lauer I, Lawn RM (1980) The molecular genetics of human hemoglobins. Ann Rev Genet 14: 145–178

    Article  PubMed  CAS  Google Scholar 

  • Marsh RE, Corey RB, Pauling L (1955) An investigation on the structure of silk fibroin. Biochem Biophys Acta 16: 1–34

    Article  PubMed  CAS  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor TFI-IIA from Xenopus oocytes. EMBO J 4: 1609–1614

    PubMed  CAS  Google Scholar 

  • Miller OL Jr (1981) The nucleolus, chromosomes, and visualization of gene activity. J Cell Biol 91: 15s–27s

    Article  CAS  Google Scholar 

  • Mitchell PJ, Tjian R (1988) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245: 371–378

    Article  Google Scholar 

  • Nakajima N, Ozeki H, Shimura Y (1981) Organization and structure of an E. coli tRNA Operon containing seven tRNA genes. Cell 23: 239–249

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (1982) Regulation of yeast mating type chromatin structure by SIR: An action at a distance affecting both transcription and transposition. Cell 30: 567–578

    Article  PubMed  CAS  Google Scholar 

  • Perry RP, Kelly DE (1976) Kinetics of the formation of 5’terminal caps in mRNA, Cell 8: 433–442

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M (1967) Specific binding of the X Phage repressor to λ DNA. Nature 214: 232–234

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M (1988) How eukaryotic transcriptional activators work. Nature 335: 683–689

    Article  PubMed  CAS  Google Scholar 

  • Reeder RH (1984) Enhancers and ribosomal gene spacers. Cell 38: 349–351

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D (1985) Structural analysis of a triple complex between the histone octamere, a Xenopus gene for 5S RNA and transcription factor IIIA. EMBO J 4: 3475–3482

    Google Scholar 

  • Ritcssa F, Spiegelman S (1965) Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. Genetics 53: 737–745

    Google Scholar 

  • Roeder RG (1991) The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trends Biol Sci 16: 402–408

    Article  CAS  Google Scholar 

  • Sakonju S, Brown DD (1982) Contact points between a positive transcription factor and the Xenopus 5S RNA gene. Cell 31: 395–405

    Article  PubMed  CAS  Google Scholar 

  • Sekiya T, Kuchino Y, Nishimura S (1981) Mammalian tRNA genes: nucleotide sequences of rat genes for tRNAAsp, tRNAGly and tRNAGlu. Nucleic Acids Res 9: 2239–2250

    Article  PubMed  CAS  Google Scholar 

  • Sharp SJ, Garcia AD (1988) Transcription of the Drosophila melanogaster 5S RNA gene requires an upstream promoter and four intragenic sequence elements. Mol Cell Biol 8: 1266–1274

    PubMed  CAS  Google Scholar 

  • Sogin ML, Pace NR, Rosenberg M, Weissman SM (1976) Nucleotide sequence of a 5 S ribosomal RNA precursor from Bacillus subtilis. J Biol Chem 251: 3480–3488

    PubMed  CAS  Google Scholar 

  • Strathern JN, Spatola E, McGill C, Hicks JB (1980) The structure and the organization of the transposable mating type cassettes in Saccharomyces. Proc Natl Acad Sci USA 77: 2839–2842

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Gage P, Brown DD (1972) The genes for silk fibroin in Bombyx mori. J Mol Biol 70: 637–649

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Ohshima Y (1978) Isolation and characterization of the silk fibroin gene with its flanking sequences. Cold Spring Harb Symp Quant Biol 52: 947–957

    Article  Google Scholar 

  • Tartof KD (1975) Redundant Genes. Ann Rev Genet 9: 355–385

    Article  PubMed  CAS  Google Scholar 

  • Tashiro Y, Morimoto T, Matsuura S, Nagata S (1968) Studies of the posterior silk gland of the silk worm, Bombyx mori. I. Growth of the posterior silk gland cells and biosynthesis of fibroin during the fifht larval instar. I Cell Biol 38: 574–588

    Article  CAS  Google Scholar 

  • Weaver RF, Hedrick PW (1992) Genetics, 2nd edn. WMC Brown, Dubuque, IA

    Google Scholar 

  • Wellauer P, Dawid IB (1973) Secondary structure maps of RNA: Processing of HeLa ribosomal RNA. Proc Natl Acad Sci USA 70: 2827–2831

    Article  PubMed  CAS  Google Scholar 

  • Wharton R, Ptashne M (1985) Changing the binding specificity of a repressor by redesigning an s-helix. Nature 316: 601–605

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky C (1988) Transcription attenuation. J Biol Chem 263: 609–612

    PubMed  CAS  Google Scholar 

  • Yao MC, Zhu SG, Yao C-H (1985) Gene amplification in Tetrahymena thermophila: Formation of extrachromosomal palindromes. Mol Cell Biol 5: 1260–1267

    PubMed  CAS  Google Scholar 

  • Yen PH, Davidson N (1980) The gross anatomy of a tRNA gene cluster at region 42A of the D. melanogaster chromosome. Cell 22: 137–148

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hennig, W. (1998). Molekulare Struktur eukaryotischer Gene. In: Genetik. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07430-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07430-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07431-2

  • Online ISBN: 978-3-662-07430-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics