Skip to main content

Transformation of Petunia hybrida by the Agrobacterium Suspension Drop Method

  • Chapter
Genetic Transformation of Plants

Part of the book series: Molecular Methods of Plant Analysis ((MOLMETHPLANT,volume 23))

Abstract

Plant transformation is a key methodology that has allowed transfer and expression of novel genes for the improvement of economically important plant species as well as enquiry into deeper questions about the function of plant genes. For many plant species, stable transformation remains difficult or impossible. Where it is possible, there is usually a need for expensive resources such as laminar flow hoods, controlled environment growth rooms and highly skilled practitioners. In addition, there are often problems related to combining efficient plant regeneration with gene transfer as transfer techniques are carried out in undifferentiated cell cultures. Low transformation efficiency, instability of transgene expression, somaclonal variation and inability to regenerate whole plants are common problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci Paris Life Sci 316:1194–1199

    Google Scholar 

  • Booy G, Krens FA, Huizing HJ (1989) Attempted pollen-mediated transformation of maize. J Plant Physiol 135: 319–324

    Article  CAS  Google Scholar 

  • Chang SS, Park SK, Kim BC, Kang BJ, Kim DU, Nam HG (1994) Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. Plant J 5: 551–558

    Article  CAS  Google Scholar 

  • Christou P (1996) Transformation technology. Trend Plant Sci 1: 423–431

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta S, Wood J, Hick J (1983) A plant DNA minipreparation; version II. Plant Mol Biol Rep 1: 19–21

    Article  CAS  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123: 895–904

    Article  PubMed  CAS  Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1: 71–83

    Article  CAS  Google Scholar 

  • Feldmann K (1992) T-DNA insertion mutagenesis in Arabidopsis: seed infection transformation. In: Koncz C, Chua N-H, Schell J (eds) Methods in Arabidopsis research. World Scientific, Singapore, pp 274–289

    Google Scholar 

  • Feldmann K, Marks M (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208: 1–9

    Google Scholar 

  • Fernando DD, Owens JN, Misra S (2000) Transient gene expression in pine pollen tubes following particle bombardment. Plant Cell Rep 19: 224–228

    Article  CAS  Google Scholar 

  • Hess D, Dressler K, Nimmrichter R (1990) Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci 72: 233–244

    Article  CAS  Google Scholar 

  • Hobbs SLA, Warkentin TD, Delong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21: 17–26

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180

    Article  CAS  Google Scholar 

  • Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 13: 327–336

    Google Scholar 

  • Hu CY, Wang LZ (1999) In planta soybean transformation technologies developed in China: procedure, confirmation and field performance. In Vitro Cell Devel Biol-Plant 35:417–420

    Google Scholar 

  • Janssen BJ, Gardner RC (1989) Localized transient expression of GUS in leaf disks following cocultivation with Agrobacterium. Plant Mol Biol 14: 61–72

    Article  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the gus gene fusion system. Plant Mol Biol Rep 5: 387–405

    Article  CAS  Google Scholar 

  • Joersbo M, Okkels FT (1996) A novel principle for selection of transgenic plant cells–positive selection. Plant Cell Rep 16: 219–221

    Article  CAS  Google Scholar 

  • Katavic V, Haughn GW, Reed D, Martin M, Kunst L (1994) In planta transformation of Arabidopsis thaliana. Mol Gen Genet 245:363–370

    Google Scholar 

  • Kilby NJ, Leyser HMO, Fumer IJ (1992) Promoter methylation and progressive transgene inactivation in Arabidopsis. Plant Mol Biol 20: 103–112

    Article  PubMed  CAS  Google Scholar 

  • Langridge P, Brettschneider R, Lazzeri P, Lorz H (1992) Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J 2: 631–638

    Article  CAS  Google Scholar 

  • Lazo GR, Pascal AS, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/tech 9: 963–967

    Article  CAS  Google Scholar 

  • Luo Z-X, Wu R (1989) A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol Biol Rep 7: 69–77

    Article  Google Scholar 

  • Martin T, Wohner RV, Hummel S, Willmitzer L, Frommer WB (1992). The GUS reporter gene system as a tool to study plant gene expression. In: Gallagher SR (ed) GUS protocols: the GUS gene as a reporter of gene expression. Academic Press, San Diego, pp 23–43

    Google Scholar 

  • Mentewab A. Letellier V, Marque C. Sarrafi A (1999) Use of anthocyanin biosynthesis stimulatory genes as markers for the genetic transformation of haploid embryos and isolated microspores in wheat. Cereal Res Commun 27: 17–24

    Google Scholar 

  • Meyer P (1995) Understanding and controlling transgene expression. Trends Biol Technol 13: 332–337

    CAS  Google Scholar 

  • Meyer P, Niedenhof I, ten Lohuis M (1994) Evidence for cytosine methylation of non-symmetrical sequences in transgenic Petunia hybrida. EMBO J 13: 2084–2088

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–479

    Article  CAS  Google Scholar 

  • Ohta (1986) High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci USA 83: 715–719

    Google Scholar 

  • Ottaviani MP, Smits T, Hanisch ten Cate HH (1993) Differential methylation and expression of the 3-glucuronidase and neomycin phosphotransferase genes in transgenic plants of potato cv. Bintje. Plant Sci 88: 73–81

    Google Scholar 

  • Prols F, Meyer P (1992) The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. Plant J 2: 465–475

    PubMed  CAS  Google Scholar 

  • Qing CM, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breed 6: 67–72

    Article  CAS  Google Scholar 

  • Ramaiah SM, Skinner DZ (1997) Particle bombardment–a simple and efficient method of alfalfa (Medicago sativa L.) pollen transformation. Curr Sci 73: 674–682

    Google Scholar 

  • Sanford JC, Skubik KA (1986) Attempted pollen-mediated transformation using Ti plasmids. In: Mulcahy DL, Bergamini-Mulcahy H, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer, Berlin Heidelberg New York, pp 1–82

    Google Scholar 

  • Senior IJ, Dale PJ (1996) Plant transgene silencing–gremlin or gift ? Chem Indus 19:604–608 Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    Google Scholar 

  • Tjokrokusumo D, Heinrich T, Wylie S, Potter R, McComb J (2000) Vacuum infiltration of Petunia hybrida pollen with Agrobacterium tumefaciens to achieve plant transformation. Plant Cell Rep 19: 792–797

    Article  CAS  Google Scholar 

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin HS, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22: 531–541

    Article  PubMed  CAS  Google Scholar 

  • Zheng J-Z, Wang D-J, Wu T.-Q, Zhang J, Zhou W-J, Zhu X-P, Xu N-Z (1994) Transgenic wheat plants obtained with pollen-tube pathway method. Sci China 37: 319–325

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wylie, S.J., Tjokrokusumo, D., McComb, J.A. (2003). Transformation of Petunia hybrida by the Agrobacterium Suspension Drop Method. In: Jackson, J.F., Linskens, H.F. (eds) Genetic Transformation of Plants. Molecular Methods of Plant Analysis, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07424-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07424-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05553-9

  • Online ISBN: 978-3-662-07424-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics