Skip to main content

Molecular Approaches Toward the Isolation of the Huntington’s Disease Gene

  • Conference paper
Genetic Approaches in the Prevention of Mental Disorders
  • 47 Accesses

Summary

The Huntington’s disease (HD) gene has been mapped to the short arm of human chromosome 4 by genetic linkage analysis and located within the most telomeric subband 4pl6.3, between the anonymous DNA marker D4S10 and the telomere. Physical mapping and cloning strategies have been used to complement genetic analysis in determining the location of the HD mutation. All available DNA markers within 4pl6.3 have been used to construct a long range restriction map, consisting of three map segments together spanning 5 million base pairs (Mb) and extending minimally 4 Mb from D4S10 (the most proximal marker). Although genetic analysis is contradictory and suggests two possible positions for the gene, a telomeric location is highly probable, within 300 kilobase pairs (kb) from the end of the map. A telomere cloning vector has been constructed for the isolation and selection of human telomeres as artificial chromosomes in Saccharomyces cerevisiae. This has been used to clone the most distal 100 kb of the short arm of chromosone 4, confirming that the end of the long range map is the telomere and, for the first time, setting a distal limit to the position of the HD gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow DP, Lehrach H (1987) Genetics by gel electrophoresis: the impact of pulsed field gel electrophoresis on mammalian genetics. Trends Genet 3:167–171

    Article  CAS  Google Scholar 

  • Bates GP, MacDonald ME, Baxendale S, Sedlacek Z, Youngman S, Romano D, Whaley WL, Alutto BA, Poustka A, Gusella JF and Lehrach H (1990) A YAC telomere clone spanning a possible location of the Huntington’s disease gene. Am J Hum Genet (in press)

    Google Scholar 

  • Bucan M, Zimmer M, Whaley WL, Poustka A, Youngman S, Allitto B, Ormondroyd E, Smith B, Pohl TM, MacDonald M, Bates GP, Richards J, Volinia S, Gilliam TC, Sedlacek Z, Collins FS, Wasmuth JJ, Shaw DJ, Gusella JF, Frischauf A-M, Lehrach H (1990). Physical maps of 4pl6.3, the area expected to contain the Huntington’s disease mutation. Genomics (in press)

    Google Scholar 

  • Burke DT, Carle G, Olsen M (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236:806–812

    Article  PubMed  CAS  Google Scholar 

  • Collins FS, Weissman SM (1984) Directional cloning of DNA fragments at a large distance from an initial probe: a circularization method. Proc Natl Acad Sci USA 81:6812–6816

    Article  PubMed  CAS  Google Scholar 

  • Gilliam TC, Tanzi RE, Haines JL, Bonner TI, Faryniarz AG, Hobbs WJ, MacDonald ME, Cheng SV, Folstein SE, Conneally PM, Wexler NS, Gusella JF (1987a) Localisation of the Huntington’s disease gene to a small segment of chromosome 4 flanked by D4S10 and the telomere. Cell 50:565–571

    Article  PubMed  CAS  Google Scholar 

  • Gilliam TC, Bucan M, MacDonald ME, Zimmer M, Haines JL, Cheng SV, Pohl TM, Meyers RH, Whaley WL, Allitto BA, Faryniarz A, Wasmuth JJ, Frischauf A-M, Conneally PM, Lehrach H, Gusella JF (1987b) A DNA segment encoding two genes very tightly linked to Huntington’s disease. Science 238:950–952

    Article  PubMed  CAS  Google Scholar 

  • Gusella JF, Wexler NS, Coneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY, Young AB, Shoulson I, Bonilla E, Martin JB (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238

    Article  PubMed  CAS  Google Scholar 

  • MacDonald ME, Anderson MA, Gilliam TC, Tranebjaerg L, Carpenter NJ, Magenis E, Hayden MR, Healey ST, Bonner TI, Gusella JF (1987) A somatic cell hybrid panel for localising DNA segments near the Huntington’s disease gene. Genomics 1:29–34

    Article  PubMed  CAS  Google Scholar 

  • MacDonald ME, Haines JL, Zimmer M, Cheng SV, Youngman S, Whaley WL, Bucan M, Allitto BA, Smith B, Leavitt J, Poustka A, Harper P, Lehrach H, Wasmuth JJ, Frischauf A-M, Gusella JF (1989) Recombination events suggest potential sites for the Huntington’s disease gene. Neuron 3:183–190

    Article  PubMed  CAS  Google Scholar 

  • Martin JB, Gusella JF (1986) Huntington’s disease: pathogenesis and management. N Engl J Med 315:1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Meisson GJ, Myers RH, Mastromauro MSW, Koroshetz WJ, Klinger KW, Farrer LA, Watkins PA, Gusella JF, Bird ED, Martin JB (1988) Predictive testing for Huntington’s disease with use of a linked DNA marker. N Engl J Med 318:535–542

    Article  Google Scholar 

  • Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratcliffe RL, Wu J-R (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626

    Article  PubMed  CAS  Google Scholar 

  • Pohl TM, Zimmer M, MacDonald ME, Smith B, Bucan M, Poustka A, Volinia S, Searle S, Zehetner G, Wasmuth JJ, Gusella JF, Lehrach H, Frischauf A-M (1988) Construction of a Notl linking library and isolation of new markers close to the Huntington’s disease gene. Nucleic Acids Res 16:9185–9189

    Article  PubMed  CAS  Google Scholar 

  • Poustka A, Lehrach H (1986) Jumping libraries and linking libraries: the next generation of molecular tool in mammalian genetics. Trends Genet 2:174–179

    Article  CAS  Google Scholar 

  • Poustka A, Lehrach H (1988) Chromosome jumping: a long range cloning technique. In: Setlow JK (ed) Genetic engineering — principles and methods, vol. 10. Plenum, New York, pp 169–195

    Google Scholar 

  • Poustka A, Pohl TM, Barlow DP, Frischauf A-M, Lehrach H (1987). Construction and use of human chromosome jumping libraries from Notl-digested DNA. Nature 325:353–355

    Article  PubMed  CAS  Google Scholar 

  • Richards JE, Gilliam TC, Cole JL, Drumm ML, Wasmuth JJ, Gusella JF, Collins FS (1988) Chromosome jumping from D4S10 (G8) toward the Huntington’s disease gene. Proc Natl Acad Sci USA 85:6437–6441

    Article  PubMed  CAS  Google Scholar 

  • Robbins C, Theilmann J, Youngman S, Haines J, Altherr MJ, Harper PS, Payne C, Junker A, Wasmuth JJ, Hayden MR (1989) Evidence from family studies that the gene causing Huntington’s disease is telomeric to D4S95 and D4S90. Am J Hum Genet 44:422–425

    PubMed  CAS  Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75

    Article  PubMed  CAS  Google Scholar 

  • Smith B, Skarecky D, Bengtsson U, Magenis RE, Carpenter N, Wasmuth JJ (1988) Isolation of DNA markers in the direction of the Huntington’s disease gene from the G8 locus. Am J Hum Genet 42:335–344

    PubMed  CAS  Google Scholar 

  • Wasmuth JJ, Carlock LR, Smith B, Immken LL (1986) A cell hybrid and recombinant DNA library that facilitate identification of polymorphic loci in the vicinity of the Huntington disease gene. Am J Hum Genet 39:397–403

    PubMed  CAS  Google Scholar 

  • Wasmuth JJ, Hewitt J, Smith B, Allard D, Haines JL, Skarecky D, Partlow E, Hayden MR (1988) A highly polymorphic locus very tightly linked to the Huntington’s disease gene. Nature 322:734–736

    Article  Google Scholar 

  • Wexler NS, Young, AB, Tanzi RE, Travers H, Starosta-Rubinstein S, Penney JB, Snodgrass SR, Shoulson I, Gomez F, Ramos Arroyo MA, Penchaszadeh GK, Moreno H, Gibbons K, Faryniarz A, Hobbs W, Anderson MA, Bonilla E, Conneally PM, Gusella GF (1987) Homozygotes for Huntington’s disease. Nature 326:194–197

    Article  PubMed  CAS  Google Scholar 

  • Whaley WL, Michiels F, MacDonald ME, Romano D, Zimmer M, Smith B, Leavitt J, Bucan M, Haines JL, Gilliam TC, Zehetner G, Smith C, Cantor CR, Frischauf A-M, Wasmuth JJ, Lehrach H, Gusella JF (1988) Mapping of D4S98/S114/S113 confines the Huntington’s defect to a reduced physical region at the telomere of chromosome. 4. Nucleic Acids Res 16:11769–11780

    Article  PubMed  CAS  Google Scholar 

  • Youngman S, Shaw DJ, Gusella JF, MacDonald ME, Stanbridge EJ, Wasmuth JJ, Harper PS (1988) A DNA probe, D5 (D4S90) mapping to human chromosome 4pl6.3. Nucleic Acids Res 16:1648

    Article  PubMed  CAS  Google Scholar 

  • Youngman S, Sarfarazi M, Bucan M, MacDonald ME, Smith B, Zimmer M, Gilliam TC, Frischauf A-M, Wasmuth JJ, Gusella JF, Lehrach H, Harper PS, Shaw DJ (1989) A new DNA marker (D4S90) is terminally located on the short arm of chromosome 4, close to the Huntington’s disease gene. Genomics 5:802–809

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bates, G., Lehrach, H. (1990). Molecular Approaches Toward the Isolation of the Huntington’s Disease Gene. In: Bulyzhenkov, V., Christen, Y., Prilipko, L. (eds) Genetic Approaches in the Prevention of Mental Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07421-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07421-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07423-7

  • Online ISBN: 978-3-662-07421-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics