Skip to main content

Blockade of the Ca2+-dependent Bioelectrical Automaticity and Electromechanical Coupling of Smooth Muscle Cells by Gallopamil (D 600)

  • Conference paper
  • 18 Accesses

Abstract

Like mechanical tension development in myocardial fibres, the contractile activation of smooth muscle cells is a function of Ca2+ ions. Naturally, therefore, withdrawing Ca2+ also results in a failure of the Ca2+-dependent electromechanical coupling reactions and hence in a loss of tonic and phasic contractility in the smooth musculature too (Bohr 1964; Bozler 1962; Rüegg 1971; Schatzmann 1964; Somlyo and Somlyo 1968, 1970; Weiss 1977). Furthermore, in smooth muscle cells the electrogenesis of spike potentials is also associated with a transmembrane influx of Ca2+ ions as electrical charge carriers (for detailed review of the literature see Fleckenstein 1983). However, unlike the skeletal musculature and myocardium, here the influx of Na+ ions only appears to play a subordinate role in the generation of action potentials. Accordingly, smooth muscle cells also have no tetrodotoxin (TTX)-sensitive Na+ carrier system. At all events, apart from abolishing the contractility of smooth muscle fibres, withdrawing Ca2+ also normally abolishes their bioelectrical activity. Thus, for the experimental testing of Ca2+ antagonists on smooth musculature, two aims were stipulated at the outset:

  1. 1.

    To analyse the effects of Ca2+ antagonists on the Ca2+-dependent excitation processes.

  2. 2.

    To study the effects of Ca2+ antagonists on the Ca2+-dependent electromechanical coupling reactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson NC, Ramon F, Snyder A (1971) Studies on calcium and sodium in uterine smooth muscle excitation under current-clamp and voltage-clamp conditions. J gen Physiol 58:322–339

    Article  PubMed  CAS  Google Scholar 

  2. Anrep G v (1926) The regulation of the coronary circulation. Physiol Rev 6: 596–629

    Google Scholar 

  3. Bohr DF (1964) Electrolytes and smooth muscle contraction. Pharmacol Rev 16: 85–111

    PubMed  CAS  Google Scholar 

  4. Bozler E (1962) Initiation of contraction in smooth muscle. Physiol Rev 42:179–186

    Google Scholar 

  5. Brading AF, Bülbring E, Tomita T (1969) The effect of sodium and calcium on the action potential of the smooth muscle of the guinea pig taenia coli. J Physiol (Lond) 200: 637–654

    CAS  Google Scholar 

  6. Bülbring E, Kuriyama H (1963) Effects of changes in the external sodium and calcium concentrations on spontaneous electrical activity in smooth muscle of guinea-pig taenia coli. J Physiol (Lond) 166: 29–58

    Google Scholar 

  7. Endo M, Hirosawa K, Kaneko N, Hase K, Inoue Y, Konno S (1976) Prinzmetal’s variant angina. Coronary arteriogram and left ventriculogram during angina attack induced by metha-choline. New England J of Medicine 294: 252

    Article  CAS  Google Scholar 

  8. Fleckenstein A (1983) Calcium-Antagonism in Heart and Smooth Muscle — Experimental Facts, Therapeutic Prospects. John Wiley, New York

    Google Scholar 

  9. Fleckenstein A, Fleckenstein-Grün G, Byon YK, Haastert HP, Späh F (1979) Vergleichende Untersuchungen über die Ca++-antagonistischen Grundwirkungen von Niludipin (Bay a 7168) und Nifedipin (Bay a 1040) auf Myokard, Myometrium und glatte Gefäßmuskulatur. Arzneim-Forsch (Drug Res) 29: 230–246

    CAS  Google Scholar 

  10. Fleckenstein A, Grün G (1969) Reversible Blockierung der elektromechanischen Koppelungsprozesse in der glatten Muskulatur des Ratten-Uterus mittels organischer Ca++-Antagonisten (Iproveratril, D 600, Prenylamin). Pflügers Arch ges Physiol 307: R26

    Google Scholar 

  11. Fleckenstein A, Grün G, Tritthart H, Byon YK (1971) Uterus-Relaxation durch hochaktive Ca-antagonistische Hemmstoffe der elektromechanischen Koppelung wie Isoptin (Verapamil, Iproveratril), Substanz D 600 und Segontin (Prenylamin). Klin-Wschr 49: 32–41

    Article  PubMed  CAS  Google Scholar 

  12. Fleckenstein A, Hille H, Adam WE (1951) Aufhebung der Kontraktur-Wirkung depolarisierender Katelektrotonica durch Repolarisation in Anelektrotonus. Die Anode als Antagonist von Acetylcholin, Cholin, Nicotin, Coniin, Veratrin, Kalium- und Rubidium-Salzen usw. Pflü-gers Arch ges Physiol 253: 264–282

    Article  CAS  Google Scholar 

  13. Fleckenstein A, Nakayama K, Fleckenstein-Grün G, Byon YK (1976) Interactions of H ions, Ca-antagonistic drugs and cardiac glycosides with excitation-contraction coupling of vascular smooth muscle. In: Betz E (ed) Ionic Actions on Vascular Smooth Muscle, pp 117–123. Springer-Verlag, Berlin Heidelberg New York

    Chapter  Google Scholar 

  14. Fleckenstein A, Richter F (1953) Weitere Untersuchungen über die Aufhebung der Kontrak-turwirkung von Acetylcholin, Cholin, Neurin, Nicotin, Coniin, Veratrin, Kaliumchlorid und Rubidiumchlorid durch den Anelektrotonus. Pflügers Arch ges Physiol 257:1–11

    Article  CAS  Google Scholar 

  15. Fleckenstein A, Späh F, Fleckenstein-Grün G, Byon YK, Frey M, v Witzleben H (1982) Wirkungsspektrum und Spezifität des Calciumantagonisten Diltiazem. In: Bender F, Greeff K (Hrsg) Calciumantagonisten zur Behandlung der Angina pectoris, Hypertonie und Arrhythmie; 1. Dilzem Symposium in Kopenhagen, 25.–27 Juni 1981, pp 3–45. Excerpta Medica, Amsterdam

    Google Scholar 

  16. Golenhofen K (1976) Theory of P and T systems for calcium activation in smooth muscle. In: Bülbring E, Shuba MF (Hrsg) Physiology of Smooth Muscle pp 197–202, Raven Press, New York

    Google Scholar 

  17. Gollwitzer-Meier K, Krüger E (1935) Der Einfluß des Sympathikus auf die Coronargefäße. Pflügers Arch ges Physiol 236: 594–605

    Article  Google Scholar 

  18. Grün G, Byon YK, Tritthart H, Fleckenstein A (1970) Inhibition of automaticity and contractility of isolated human uterine muscle by Ca-antagonistic compounds. Pflügers Arch ges Physiol 319: R118

    Google Scholar 

  19. Grün G, Fleckenstein A (1972) Die elektromechanische Entkoppelung der glatten Gefäßmuskulatur als Grundprinzip der Coronardilatation durch 4-(2’-Nitrophenyl)-2,6-dimethyl-l,4-dihydropyridin-3,5-dicarbonsäure-dimethylester (Bay a 1040, Nifedipin). Arzneim-Forsch (Drug Res) 22: 334–344

    Google Scholar 

  20. Grün G, Fleckenstein A, Byon YK (1971) Hemmung der Motilität isolierter Uterus-Streifen aus gravidem und nicht-gravidem menschlichen Myometrium durch Ca++-Antagonisten und Sympathomimetica. Arzneim-Forsch (Drug Res) 21:1585–1590

    Google Scholar 

  21. Grün G, Fleckenstein A, Tritthart H (1969) Excitation-contraction uncoupling on the rat’s uterus by some „musculotropic“ smooth muscle relaxants. Pflügers Arch. ges. Physiol. 264: 239

    Google Scholar 

  22. Hashimoto K, Ono H, O’Hara N (1978/80) Blockade of renal autoregulatory vasoconstriction by Ca-antagonists. In: Fleckenstein A, Roskamm H (Hrsg) Calcium-Antagonismus pp 221–229, Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  23. den Hertog A, van den Akker (1979) The action of Prostaglandin E2 on the smooth muscle cell of the guinea-pig taenia coli. Europ J Pharmacol 58: 225–234

    Article  Google Scholar 

  24. Kroeger EA, Marshall JM, Bianchi CP (1975) Effect of isoproterenol and D 600 on calcium movements in rat myometrium. J Pharmacol Exper Therap 193: 309–316

    CAS  Google Scholar 

  25. Kuriyama H, Osa T, Toida N (1967) Membrane properties of the smooth muscle of guinea-pig ureter. J Physiol (Lond) 191: 225–238

    CAS  Google Scholar 

  26. Nakayama K, Byon YK, Fleckenstein-Grün G (1976) Identical responses of isolated smooth muscle preparations from brain (A. basilaris) and coronary arteries upon electric field stimulation. Pflügers Arch ges Physiol, Suppl. 362: R2

    Google Scholar 

  27. Nonomura Y, Hotta Y, Ohashi H (1966) Tetrodotoxin and manganese ions: Effects on electrical activity and tension in taenia coli of guinea pig. Science 152: 97–99

    Article  PubMed  CAS  Google Scholar 

  28. Rein H (1931) Die Physiologie der Herz-Kranz-Gefäße. Zeitschrift f. Biologie 92:115–127

    Google Scholar 

  29. Reiner O, Marshall JM (1975) Action of D 600 on spontaneous and electrically stimulated activity of parturient rat uterus. Naunyn-Schmiedebergs Arch Pharmakol 290: 21–28

    Article  CAS  Google Scholar 

  30. Reiner O, Marshall JM (1976) Action of prostaglandin, PGF 2«, on the uterus of the pregnant rat. Naunyn-Schmiedebergs Arch Pharmakol 292: 243–250

    Article  CAS  Google Scholar 

  31. Rüegg JC (1971) Smooth muscle tone. Physiol Rev 51: 201–248

    PubMed  Google Scholar 

  32. Schatzmann HJ (1964) Erregung und Kontraktion glatter Vertebratenmuskeln. Ergeb Physiol 55:28–130

    Article  PubMed  CAS  Google Scholar 

  33. Somlyo AP, Somlyo AV (1968) Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol Rev 20:197–272

    PubMed  CAS  Google Scholar 

  34. Somlyo AP, Somlyo AV (1970) Vascular smooth muscle. II. Pharmacology of normal and hypertensive vessels. Pharmacol Rev 22: 249–353

    PubMed  CAS  Google Scholar 

  35. Stämpfli R (1954) A new method for measuring membrane potential with external electrodes. Experientia (Basel) 10: 508–509

    Article  Google Scholar 

  36. Tritthart H, Grün G, Byon YK, Fleckenstein A (1970) Influence of Ca-antagonistic inhibitors of excitation-contraction coupling on isolated uterine muscle, studied with the sucrose gap method. Pflügers Arch ges Physiol 319: R117

    Google Scholar 

  37. Weder U, Grün G (1973) Ca++-antagonistische elektromechanische Entkoppelung der glatten Gefäßmuskulatur als Wirkungsprinzip vasodilatatorischer Nitroverbindungen. Naunyn-Schmiedebergs Arch Pharmakol, Suppl. 277: R88

    Google Scholar 

  38. Weiss GB (1977) Calcium and contractility in vascular smooth muscle. In: Narahashi T, Bian-chi CP (Hrsg) Advances in General and Cellular Pharmacology, Vol. II, pp 71–154, Plenum Press, New York London

    Google Scholar 

  39. Yasue H, Touyama M, Shimamoto M, Kato H, Tanaka S, Akiyama F (1974) Role of autonomic nervous system in the pathogenesis of Prinzmetal’s variant form of angina. Circulation 50: 534–539

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fleckenstein-Grün, G., Fleckenstein, A. (1984). Blockade of the Ca2+-dependent Bioelectrical Automaticity and Electromechanical Coupling of Smooth Muscle Cells by Gallopamil (D 600). In: Kaltenbach, M., Hopf, R. (eds) Gallopamil. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07364-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07364-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13737-5

  • Online ISBN: 978-3-662-07364-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics