Skip to main content

Piriformospora indica: An Axenically Culturable Mycorrhiza-Like Endosymbiotic Fungus

  • Chapter
Fungal Associations

Abstract

Soil microflora influence plant growth and health both beneficially and adversely. The microorganisms used as biofertilisers stimulate plant growth response by providing necessary nutrients as a result of their colonisation of the rhizosphere (Azotob acter, Azospirillum, phosphate-solubilising bacteria and cyanobacteria) or by symbiotic association (Rhizobium, mycorrhizae fungi and Frankia). They may also regulate the physiological processes in the ecosystems by involvement in the decomposition of organic matter, fixation of atmospheric nitrogen, secretion of growth-promoting substances, increase in the availability of mineral nutrients, immobilisation of these assimilable nutrients and protection of plants from pathogens (Mukerji et al. 1998). Thus, rhizosphere effects through microbial activities, modify the plants by providing plant growth substances and increasing the availability of nutrients at the root zone. Plant root anatomy and tissue articulation play a significant role in the symbiotic processes (Lynch 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfoldi L (1982) Fusion of microbial protoplasts: problems and perspectives. In: Hollander A (ed) Genetic engineering of microorganisms for chemicals. Plenum Press, New York, pp 59–71

    Chapter  Google Scholar 

  • Andrews JH, Kinkel LL, Berbee FM, Nordheim EV (1987) Fungi, leaves and theory of island biogeography. Microb Ecol 14:277–290

    Article  Google Scholar 

  • Azcon-Aguilar C, Diaz-Rodriguez RM, Barea JM (1986) Effect of soil micoorganisms on spore germination and growth of the vesicular arbuscular fungus Glomus mosseae. Trans Br Mycol Soc 86:337–340

    Article  Google Scholar 

  • Bagyaraj DJ, Varma A (1995) Interaction between arbuscular mycorrhizal fungi and plants and their importance in sustainable agriculture in arid and semi-arid tropics. Adv Microb Ecol 14:119–142

    Article  Google Scholar 

  • Baltz RH (1978) Genetic recombination of Streptomyces fradiae by protoplast fusion and cell regeneration. J Gen Microbiol 107:93–102

    PubMed  CAS  Google Scholar 

  • Barrett V, Lamke PA, Dixon RK (1989) Protoplast formation from selected species of ectomycorrhizal fungi. Appl Microb Biotechnol 30:381–387

    Article  Google Scholar 

  • Becard G, Piche Y (1989a) New aspects on the acquisition of biotrophic status by a vesicular arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 112: 77–83

    Article  Google Scholar 

  • Becard G, Piche Y (1989b) Fungal growth stimulation by carbondioxide and root exudates in VAM symbiosis. Appl Environ Microbiol 55:2320–2325

    PubMed  CAS  Google Scholar 

  • Becard G, Piche Y (1992) Establishment of vesicular arbuscular mycorrhiza in root organ culture: Review and proposed methodology. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology. Academic Press, London, pp 89–108

    Google Scholar 

  • Billich A, Kellar U, Kleinhauf H, Zocher R (1988) Production of protoplast from Fusarium sciripi by lytic enzymes from Streptomyces tsusimaensis. Appl Microbiol Biotechnol 28:442–444

    Article  CAS  Google Scholar 

  • Blechert O, Kost G, Hassel A, Rexer K-H, Varma A (1999) First remarks on the symbiotic interactions between Piriformospora indica and terrestrial orchids. In: Varma A, Hock B (eds) Mycorrhizae: Structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 683–688

    Google Scholar 

  • Blilou I, Martin J, Ocampo JA (1996) Influence of cellulase on the susceptibility of non-host cabbage to colonization by Glomus intraradices. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. Official Publications of the European Communities, Luxemburg, pp 215–217

    Google Scholar 

  • Bonfante P, Perotto S (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3–21

    Article  Google Scholar 

  • Caldwell DE, Krober DR, Lawrence JR (1992) Confocal laser microscopy and digital image analysis in microbial ecology. Adv Microb Ecol 12:1–67

    Article  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker of gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  • Clarke C, Mosse B (1981) Plant growth response of vesicular arbuscular mycorrhiza XII. Field inoculation responses of barley at two soil P levels. New Phytol 87:695–703

    Article  CAS  Google Scholar 

  • Clements MA, Muir H, Cribb PJ (1986) A preliminary report on the symbiotic germination of European terrestrial orchids. Kew Bull 41:437–445

    Article  Google Scholar 

  • Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins (GFP). Gene 173:33–38

    Google Scholar 

  • Davis B (1985) Factors influencing protoplast isolation. In: Peberdy JF, Ferenczy L (eds) Fungal protoplasts. Dekker, New York, pp 45–71

    Google Scholar 

  • Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Fester T, Maier W, Strack D (1998) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza 8:241–246

    Article  Google Scholar 

  • Fortuna P, Citernisi S, Morini S, Giovanetti M, Loreti F (1992) Infectivity and effectiveness of different species of arbuscular mycorrhizal fungi in micro-propagated plants of plum root stock. Agronomie 12:825–830

    Article  Google Scholar 

  • Frank AB (1885) Ãœber die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145

    Google Scholar 

  • Garcia-Romera I, Garcia-Garrido JM, Martinez-Molina E, Ocampo JA (1990) Possible influence of hydrolytic enzymes on vesicular arbuscular mycorrhizal infection in alfalfa. Soil Biol Biochem 22:149–152

    Article  CAS  Google Scholar 

  • Garcia-Romera I, Garcia-Garrido JM, Ocampo JA (1991a) Pectolytic enzymes in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. FEMS Microbiol Lett 78:343–346

    Article  CAS  Google Scholar 

  • Garcia-Romera I, Garcia-Garrido JM, Ocampo JA (1991b) Pectinase activity in vesicular-arbuscular mycorrhiza during colonization of lettuce. Symbiosis 12:189–198

    Google Scholar 

  • Garcia-Romera I, Garcia-Garrido JM, Ocampo JA (1996) Hydrolytic enzymes in arbuscular mycorrhizae. In: Azcon-Aguilar C, Barea JM (eds) Mycorrhizas in integral systems from genes to plant development. Official Publications from the European Communities, Luxemburg, pp 234–237

    Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Armelle G, Tahiri A, Gianinazzi S (1996) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45–58

    Article  Google Scholar 

  • Goebel C, Hahn A, Giersch T, Hock B (1998) Monoclonal antibodies for the identification of arbuscular mycorrhizal fungi. In: Varma A (ed) Mycorrhizamanual. Springer, Berlin Heidelberg New York, pp 271–287

    Google Scholar 

  • Guillemin JP, Gianinazzi S, Trouvelots A (1992) Screening of arbuscular mycorrhizal fungi for establishment of micropropagated pineapple plants. Agronomie 12:831–836

    Article  Google Scholar 

  • Hahn A, Goebel C, Hock B (1998) Polyclonal antibodies for detection of AM fungi. In: Varma A (ed) Mycorrhiza manual. Springer, Berlin Heidelberg New York, pp 255–287

    Chapter  Google Scholar 

  • Hahn A, Goebel C, Hock B (1999) Immunochemical properties of mycorrhizas. In: Varma A, Hock B (eds) Mycorrhizae: structures, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 177–201

    Google Scholar 

  • Hampp R, Stülten C, Nehls U (1998) Isolation and regeneration of protoplasts from ectomycorrhizal fungi. In: Varma A (ed) Mycorrhiza manual. Springer, Berlin Heidelberg New York, pp 115–126

    Chapter  Google Scholar 

  • Harley JL (1991) Introduction: The state of art. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 21. Academic Press, London, pp 1–24

    Google Scholar 

  • Hepper CM (1984) Isolation and culture of vesicular arbuscular mycorrhizal (VAM) fungi. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, Boca Raton, Florida, pp 95–112

    Google Scholar 

  • Hindav R, Kumari M, Mondai N, Paul J, Sahay N, Sarma J, Singh A, Sudha, Varma A (1998) One kilo tropical soil is equal to one kilo gold: this is microbial science. In: Varma A (ed) Microbes for Health, Wealth and Sustainable Environment. MPH, New Delhi, pp 1–23

    Google Scholar 

  • Holt G, Saunder G (1985) Genetic manipulation of the industrial microorganisms. In: Bull AT, Dalton H (eds) Comprehensive biotechnology: the principles, applications and regulations of biotechnology in industry, agriculture and medicine, vol 1. Pergamon Press, pp 51–76

    Google Scholar 

  • Hopwood DA (1981) Genetic studies with bacterial protoplasts. Annu Rev Microbiol 35:237–273

    Article  PubMed  CAS  Google Scholar 

  • Hynes MG (1986) Transformation of filamentous fungi. Exp Mycol 10:1–8

    Article  Google Scholar 

  • Kavanagh K, Whittaker PA (1996) Application of protoplast fusion to the non-conventional yeast. Enzyme Microb Technol 18:45–51

    Article  CAS  Google Scholar 

  • Kevei F, Peberdy JF (1977) Interspecific hybridization between Aspergillus nidulans and A. rugulosus by fusion of somatic protoplasts. J Gen Microbiol 102:255–262

    Google Scholar 

  • Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386

    Article  CAS  Google Scholar 

  • Kranner I, Lutzoni F (1999) Evolutionary consequences of transition to a lichen symbiotic state and physiological adaptation to oxidative damage associated with poikilohydry. In: Lerner HR (ed) Plant response to environmental stress: from phytohormones to genome reorganization. Dekker, New York, M Inc pp 591–628 (1991)

    Google Scholar 

  • Le Tacon F, Jung G, Mugnier J, Michelot P, Mauperia C (1985) Efficiency of a forest nursery of an ectomycorrhizal inoculum produced in a fermentor and entrapped in polymeric gels. Can J Bot 63:1664–1668

    Article  Google Scholar 

  • Linderman RG (1994) Mycorrhizae for plant health. Symposium Series. In: Fleger FL, Linderman RG (eds), APS Press, St Paul, Minnesota, pp 1–25

    Google Scholar 

  • Lovato PE, Schuepp H, Trouvelot A, Gianinazzi A (1999) Application of arbuscular mycorrhizal fungi (AMF) in orchard and ornamental plants. In: Varma A, Hock B (eds) Mycorrhiza; structures, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 443–467

    Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    PubMed  CAS  Google Scholar 

  • Maier W, Peipp H, Schmidt J, Wray V, Strack D (1995) Levels of a terpenoid glycoside (blumenin) and cell wall-bound phenolics in cereal mycorrhizas. Plant Physiol 109:465–470

    Article  PubMed  CAS  Google Scholar 

  • Mathew J, Shankar A, Neeraj, Varma AK (1991) Glomala-ceous fungi associated with spineless cacti, a fodder supplement in deserts. Trans Mycol Soc Jpn 32: 225–233

    Google Scholar 

  • Mauperia C, Mortier F, Garbaye J, Le Tacon F, Carr G (1987) Viability of an ectomycorrhizal inoculum produced in a liquid medium and entrapped in calcium alginate gels. Can J Bot 65:2326–2329

    Article  Google Scholar 

  • Minuth W, Esser K (1983) Intraspecific, interspecific and intergeneric recombination in β-lactam-produc-ing fungi by protoplast fusion. Appl Microbiol 18: 38–46

    Google Scholar 

  • Mosse B, Hepper CM (1975) Vesicular arbuscular mycorrhizal infection in root organ cultures. Physiol Plant Phytopathol 5:215–223

    Article  Google Scholar 

  • Mugnier J, Mosse B (1987) VAM infection in transformed root inducing T-DNA root grown axenically. Phytopathology 77:1045–1050

    Article  Google Scholar 

  • Mukerji KG, Mandeep, Varma A (1998) Mycorrhizosphere microorganisms: screening and evaluation. In: Varma A (ed) Mycorrhiza manual. Springer, Berlin Heidelberg New York, pp 85–98

    Chapter  Google Scholar 

  • Neeraj, Shankar A, Mathew J, Varma AK (1991) Occurrence of VA mycorrhizae within the Indian semi-arid soil. Biol Fert Soils 11:140–144

    Article  Google Scholar 

  • Nelson JM, Griffin EG (1916) Adsorption of invertase. J Am Chem Soc 38:1109–1111

    Article  CAS  Google Scholar 

  • Niedenthal RK, Riles L, Johnstons, Hegemann JH (1996) Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12:773–786

    Article  PubMed  CAS  Google Scholar 

  • Perotto S, Bettini V, Favaron F, Alghisi P, Bonfante P (1995a) Polygalacturonase activity and location in arbuscular mycorrhizal roots of Allium porrum. Mycorrhiza 5:157–165

    Article  Google Scholar 

  • Perotto S, Perotto R, Schubert A, Varma A, Bonfante P (1995b) Ericoid mycorrhizal fungi: cellular and molecular basis of their interaction with host plant. Can J Bot 73:557–568

    Article  Google Scholar 

  • Perotto S, Coisson JB, Perugini I, Cometti V, Bonfante P (1997) Production of pectin degrading enzymes by ericoid mycorrhizal fungi. New Phytol 135:151–160

    Article  Google Scholar 

  • Peters JH (1988) Immunisierung von groeberen Versuchstieren zur Herstellung von Antiserum. In: Peters JH, Baumgartum H (eds) Monoklonale Antikoerper. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Prasher DC (1995) Using GFP to see the light. Trends Genet 11:320–323

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen H (1990) Cell differentiation and mycorrhizal infection in Dactylorhiza majalis (Rchb. f.) Hunt and Summeh. (Orchidaceae) during germination in vitro. New Phytol 116:137–147

    Article  Google Scholar 

  • Read DJ (1999) Mycorrhiza — the state of art. In: Varma A, Hock B (eds) Mycorrhizae: structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 3–34

    Google Scholar 

  • Rexer K-H, Blechert O, Kost G, Varma A (2000) Piriformospora indica versus Epulorhiza repens — A comparison of the interactions with Dactylorhiza sp. (Orchidaceae) (in prep.)

    Google Scholar 

  • Sahay NS (1999) Interaction of Piriformospora indica with tissue culture raised plant. PhD Thesis, Jawaharlal Nehru University, New Delhi

    Google Scholar 

  • Sahay NS, Sudha, Singh A, Varma A (1998) Trends in endomycorrhizal research. Indian J Exp Biol, NISCOM 36:1067–1086

    Google Scholar 

  • Sahay NS, Varma A (1999) Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS Microbiol Lett 181:297–302

    Article  PubMed  CAS  Google Scholar 

  • Sahay NS, Varma A (2000) Biological approach towards increasing the survival rates of micropropagated plants. Curr Sci 78:126–129

    Google Scholar 

  • Saif M (1997) Comparative study of production, infectivity, and effectiveness of arbuscular-mycorrhizal fungi produced by soil-based and soil-less techniques. PhD Thesis, University of Sydney-Macarthur, Campbelltown NSW, Australia

    Google Scholar 

  • Sathe S, Sivaraman H, Gokhale DV (1992) Protoplast fusion in yeast strain improvement in Saccharomyces. Ind J Microbiol 32:15–27

    Google Scholar 

  • Sharma J, Varma A (2000) In vitro and in vivo immunological characterization of Glomus mosseae. FEMS (Communicated)

    Google Scholar 

  • Sharma J, Hurek T, Varma A (2000a) Serological characterization of Piriformospora indica. Mycol Res, UK (Communicated)

    Google Scholar 

  • Sharma J, Neeraj, Varma A (2000b) In vitro immunochar-acterization of Piriformospora indica. Mycol Res, UK (communicated)

    Google Scholar 

  • Sharma J, Varma A (2000) Biochemical studies of acid phosphotase and the effects of phosphatic compounds on in vitro growth of a plant growth promoting endophytic fungus, Pirifomospora indica. New Phytol (communicated)

    Google Scholar 

  • Sheen J, Hwang S, Niwa Y, Kobayaski H, Gabraith DW (1995) Green fluorescent protein as a new vital marker in plant cell. Plant J 8:777–784

    Article  PubMed  CAS  Google Scholar 

  • Spellig T, Bottin A, Kahmann R (1996) Green fluorescent protein (GFP) as new vital marker in the phyto-pathogenic fungus Ustilago maydis. Mol Gen Genet 252:503–509

    PubMed  CAS  Google Scholar 

  • Strimmer K, Haeseler A (1996) Quartet Puzzling: A quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    Article  CAS  Google Scholar 

  • Strullu DG, Plenchette C (1990) Encapsulation de la forme intraracinaire de Glomus dans l’aiginate et utilization des capsules comme inoculum. C R Acad Sci Paris 310:447–452

    Google Scholar 

  • Strullu DG, Romand C (1987) Culture axenique de vesicules isolées a partir d’endomycorhizes et réassociation in vitro à des racines de tomates. C R Acad Sci Paris 305:15–19

    Google Scholar 

  • Sudha (1999) In vitro study of endosymbionts associated with tissue culture-raised medicinal plants. PhD thesis, Jamia Hamdard University, New Delhi

    Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods), Version 4. Sinauer Associates, Sunderland. MA

    Google Scholar 

  • Varma A (1995a) Arbuscular mycorrhizal fungi: the state of art. Crit Rev Biotechnol 15:179–199

    Article  Google Scholar 

  • Varma A (1995b) Ecophysiology of arbuscular mycorrhizal fungi. In: Varma A, Hock B (eds) Mycorrhiza: structures, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 561–591

    Google Scholar 

  • Varma A (1998) Mycorrhizae, the friendly fungi: what we know, what should we know and how do we know? In: Varma A (ed) Mycorrhiza manual. Springer, Berlin Heidelberg New York, pp 1–24

    Chapter  Google Scholar 

  • Varma A (1999a) Ecology and physiology of endomycor-rhizal fungi in arid soils. In: Varma A, Hock B (eds) Mycorrhiza: structures, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 521–556

    Google Scholar 

  • Varma A (1999b) Hydrolytic enzymes from arbuscular mycorrhizae; the current status. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 373–389

    Google Scholar 

  • Varma A, Bonfante P (1994) Utilization of cell wall-related carbohydrates by ericoid mycorrhizal endophytes. Symbiosis 16:301–313

    CAS  Google Scholar 

  • Varma A, Schuepp H (1994a) Infectivity and effectiveness of Glomus intraradices on micropropagated plants. Mycorrhiza 5:29–37

    Article  Google Scholar 

  • Varma A, Schuepp H (1994b) Positive influence of arbuscular mycorrhizal fungus on in vitro-raised hortensia plantlets. Angew Bot 68:108–115

    Google Scholar 

  • Varma A, Schuepp H (1995) Mycorrhizae: their application in micropropagated plantlets. Crit Rev Biotechnol 15:313–328

    Article  Google Scholar 

  • Varma A, Schuepp H (1996) Influence of mycorrhization on the growth of micropropagated plants. In: Mukerji KG (ed) Concepts in mycorrhizal research. Hand Book Vegetation Sciences Series. Kluwer, Dordrecht pp 113–132

    Google Scholar 

  • Varma A, Verma S, Sudha, Sahay NS, Franken P (1999a) Piriformospora indica, a cultivable plant growth promoting root endophyte with similiarities to arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:2741–2744

    Google Scholar 

  • Varma A, Sudha, Sahay NS, Singh A, Kumari M, Bharti K, Sarbhoy AK, Maier W, Walter MH, Strack D, Franken P (1999b) Proceedings on the symposium Pollution abatement through biological treatment of industrial effluents March 24, 1998. Central Pollution Control Board (CPCB), Delhi (in press)

    Google Scholar 

  • Verma S, Varma A, Rexer K-H, Hassel À, Kost G, Sarbhoy A, Bisen P, Buetehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Vidal MT, Azcon-Aguilar C, Barea JM (1992) Mycorrhizal inoculation enhances growth and development of micropropagated plants of avocado. Hortic Sci 27:785–787

    Google Scholar 

  • Williams PG (1992) Axenic culture of arbuscular mycorrhizal fungi. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Academic Press, London, pp 203–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varma, A. et al. (2001). Piriformospora indica: An Axenically Culturable Mycorrhiza-Like Endosymbiotic Fungus. In: Hock, B. (eds) Fungal Associations. The Mycota, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07334-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07334-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08310-5

  • Online ISBN: 978-3-662-07334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics