Skip to main content

Exchange of Carbohydrates Between Symbionts in Ectomycorrhiza

  • Chapter
Fungal Associations

Part of the book series: The Mycota ((MYCOTA,volume 9))

Abstract

The nutritive relationships in ectomycorrhizas are of dual nature. Fungal hyphae explore the soil for areas not already depleted of mobile nutrients by the plant roots and take up poorly mobile nutrients such as inorganic phosphate or ammonium via local patches. These nutrients are then either transported via conducting structures (rhizomorphs) toward the host root directly or after assimilation (ammonium). In return, the host plant delivers photoassimilates which are used for fungal growth, for delivering metabolic energy for active uptake, and as a source of carbon skeletons for ammonium assimilation. Thus, supply of photoassimilates to the symbiotic structure is the basis for a successful plant-fungus interaction. Carbon supply is, however, not only a one-way traffic from host to symbiont.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bevege DI, Bowen GD, Skinner MF (1975) Comparative carbohydrate physiology of ecto- and endomycor-rhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 149–174

    Google Scholar 

  • Bisson LF, Fraenkel DG (1984) Expression of kinase-dependent glucose uptake in Saccharomyces cere-visiae. J Bacteriol 159:1013–1017

    PubMed  CAS  Google Scholar 

  • Celenza JL, Marshall-Carlson L, Carlson M (1988) The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc Natl Acad Sci USA 85:2130–2134

    Article  PubMed  CAS  Google Scholar 

  • Chen X-Y, Hampp R (1993) Sugar uptake by protoplasts of the ectomycorrhizal fungus Amanita muscaria. New Phytol 125:601–608

    Article  CAS  Google Scholar 

  • Dosskey MG, Boersma L, Linderman RG (1991) Role for the photosynthate demand of ectomycorrhizas in the response of Douglas fir seedlings to drying soil. New Phytol 117:327–334

    Article  Google Scholar 

  • Hampp R, Schaeffer C, Wallenda T, Stillten C, Johann P, Einig W (1995) Changes in carbon partitioning or allocation due to ectomycorrhiza formation: biochemical evidence. Can J Bot 73 (Suppl 1):S548-S556

    Article  CAS  Google Scholar 

  • Ineichen K, Wiemken V, Wiemken A (1995) Shoots, roots and ectomycorrhiza formation of pine seedlings at elevated atmospheric carbon dioxide. Plant Cell Environ 18:703–707

    Article  Google Scholar 

  • Jennings DJ (1995) The physiology of fungal nutrition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Johnson CR, Menge JA, Schwab S, Ting IP (1982) Interaction of photoperiod and vesicular-arbuscular mycor-rhizae on growth and metabolism of sweet orange Citrus sinensis. New Phytol 90:665–670

    Article  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Lewis JD, Strain BR (1996) The role of mycorrhizas in the response of Pinus taeda seedlings to elevated CO2. New Phytol 133:431–443

    Article  Google Scholar 

  • Loewe A, Einig W, Shi L, Dizengremel R, Hampp R (2000) Mycorrhization and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol 145:565–574

    Article  CAS  Google Scholar 

  • Lohaus G, Winter H, Riens B, Heldt HW (1995) Further studies of the phloem loading process in leaves of barley and spinach. The comparison of metabolite concentrations in the apoplastic compartment with those in the cytosolic compartment and in the sieve tubes. Bot Acta 108:270–275

    CAS  Google Scholar 

  • Madi L, McBridge S, Bailey LA, Ebbole DJ (1997) Rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics 146:499–508

    PubMed  CAS  Google Scholar 

  • Marger MD, Saier MH (1993) A major superfamily of transmembrane faciliators that catalyze uniport, symport and antiport. Trends Biol Sci 18:13–20

    Article  CAS  Google Scholar 

  • Martin F, Canet D, Marchai JP (1985) Carbon-13NMR study of mannitol cycle and trehalose synthesis during glucose utilization by the ectomycorrhizal ascomycete Cenococcum graniforme. Plant Physiol 77:499–502

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Ramstedt M, Söderhäll K, Canet D (1988) Carbohydrate and amino acid metabolism in the ectomycorrhizal ascomycete Sphaerosporella brunnea during glucose utilization. A 13C NMR study. Plant Physiol 86:935–940

    Article  PubMed  CAS  Google Scholar 

  • Melin E, Nilsson H (1957) Transport of 14C-labelled pho-tosynthate to the fungal associate of pine mycorrhiza. Sven Bot Tidskr 51:166–186

    CAS  Google Scholar 

  • Nehls U, Wiese A, Guttenberger M, Hampp R (1998) Carbon allocation in ectomycorrhiza: identification and expression analysis of an A. muscaria monosaccharide transporter. Mol Plant Microb Interact 11: 167–176

    Article  CAS  Google Scholar 

  • Norby RJ, O’Neill EG, Hood WG, Luxmore RBJ (1987) Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiol 3:203–210

    Article  PubMed  Google Scholar 

  • Nylund JE, Wallander H (1989) Effects of ectomycorrhiza on host growth and carbon balance in a semi-hydro-ponic cultivation system. New Phytol 112:389–398

    Article  Google Scholar 

  • Özcan S, Dover J, Rosenwald AG, Wölfl S, Johnston M (1996) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA 93:12428–12432

    Article  PubMed  Google Scholar 

  • Reifenberger E, Freidel K, Ciriacy M (1995) Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol Microbiol 16:157–167

    Article  PubMed  CAS  Google Scholar 

  • Rieger A, Guttenberger M, Hampp R (1992) Soluble carbohydrates in mycorrhized and non-mycorrhized fine roots of spruce seedlings. Z Naturforsch 47c:201–204

    Google Scholar 

  • Salzer P, Hager A (1991) Sucrose utilization of the ectomycorrhizal fungi Amanita muscaria and Hebeloma crustuliniforme depends on the cell wall-bound inver-tase activity of their host, Picea abies. Bot Acta 104: 439–445

    CAS  Google Scholar 

  • Salzer P, Hager A (1993) Characterization of cell wall-bound invertase isoforms of Picea abies cells and regulation by ectomycorrhizal fungi. Physiol Plant 88:52–59

    Article  CAS  Google Scholar 

  • Schaeffer C (1995) Untersuchung des Kohlenhydratstoffwechsels von Ektomykorrhizen (Pilz-Baumwurzel-Symbiosen). Einfluß der Mykorrhizierung von Picea abies mit Amanita muscaria und Cenococcum geophilum auf Enzymaktivitäten und Metabolite des Saccharosestoffwechsels und der Glykolyse. PhD Thesis, Tübingen University, Tübingen, Germany

    Google Scholar 

  • Schaeffer C, Wallenda T, Hampp R, Salzer P, Hager A (1997) Carbon allocation in mycorrhizae. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees — contributions to modern tree physiology. Backhuys, Leiden, The Netherlands, pp 393–407

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Söderström B (1992) The ecological potential of the ectomycorrhizal mycelium. In: Read DG, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 77–83

    Google Scholar 

  • Stitt M (1991) Rising C02 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ 14:741–762

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wainwright M (1993) Oligotrophic growth of fungi — stress or natural state. In: Jennings DJ (ed) Stress tolerance of fungi. Marcel Dekker, New York, pp 127–144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nehls, U., Wiese, J., Hampp, R. (2001). Exchange of Carbohydrates Between Symbionts in Ectomycorrhiza. In: Hock, B. (eds) Fungal Associations. The Mycota, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07334-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07334-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08310-5

  • Online ISBN: 978-3-662-07334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics