Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 63))

Abstract

Ion tracks were discovered by Young in 1958 [1], as he examined etch pits in fission-fragment-irradiated LiF by means of scanning electron microscopy. In 1959, Silk and Barnes [2] observed latent fission-fragment tracks in mica in the transmission electron microscope. These discoveries prompted the development of research on ion tracks until now, including track-etching techniques for particle detection and identification, and their use in several areas of science and technology such as geochronology and radiation dosimetry [3, 4]. In these applications, mostly natural minerals and synthetic polymers have served as ion-track detectors. At the same time, inorganic and polymeric track membranes, produced by ion irradiation and subsequent etching, have found applications in microfiltration [5] and gas-separation [6] technologies. Furthermore, it has been demonstrated that track etching can be useful in lithography [7], and that microcomponents for electronic and mechanical devices can be fabricated by track replications [8–10]. Some of these applications will be reviewed in Vol. II of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Young DA. Nature 182, 375 (1958)

    Article  CAS  Google Scholar 

  2. Silk ECH, Barnes RS, Examination of fission fragment tracks with an electron microscope. Phil Mag 4, 970–972 (1959)

    Article  CAS  Google Scholar 

  3. Fleischer RL, Price PB, Walker RM, Nuclear Tracks in Solids. University of California Press, Berkeley (1975)

    Google Scholar 

  4. Spohr R, Ion Tracks and Microtechnology. Vieweg, Braunschweig (1990)

    Book  Google Scholar 

  5. Vater P, Laue C, Bersina IG, Cui HH, Vonderau S, Brandt R, Roesch J, Rapid determination of transuranium nuclides in the primary coolant of a nuclear power plant by using nuclear track microfilters and investigation of a-emitting particles on the load filters by a-autoradiography. Radiat Meas 25, 377–380 (1995)

    Article  CAS  Google Scholar 

  6. Ovchinnikov VV, Seleznev VD, Surguchev VV, Tokmentsev VI. J Membrane Sci 55, 311 (1991)

    Article  CAS  Google Scholar 

  7. Hjort K, Thornell G, Ake JS, Spohr R, Quartz micromachining by lithographic control of ion track etching. Appl Phys Lett 69, 3435–3436 (1996)

    Article  Google Scholar 

  8. Vetter J, Spohr R, Application of ion track membranes for preparation of metallic microstructures. Nucl Instrum Methods Res B79, 691–694 (1993)

    Article  Google Scholar 

  9. Blondel A, Meier JP, Doudin B, Ansermet JPh, Giant magnetoresistance of nanowires of multilayers. Appl Phys Lett 65, 3019–3021 (1994)

    Article  CAS  Google Scholar 

  10. Doudin B, Ansermet JP, Nanostructuring materials for spin electronics. Euro Phys News 28 14–17(1997)

    Google Scholar 

  11. Heckmann HH, Perkins BL, Simon WG, Smith FM, Barkas W, Ranges and energy loss processes of heavy ions in emulsions. Phys Rev 117, 544–556 (1960)

    Article  Google Scholar 

  12. Fink D, Chadderton LT, Hosoi F, Omichi H, Schmoldt A, Depth distribution of infrared absorption of ion-irradiated PETP. Radiat Eff Def Sol 133, 121131 (1995)

    Google Scholar 

  13. Papaléo RM, Fast-ion-induced sputtering and modification of molecular solids. PhD. Thesis, Uppsala University, and references therein (1996)

    Google Scholar 

  14. Dartyge E, Sigmund P, Tracks of heavy ions in muscovite mica: analysis of the rate of production of radiation defects. Phys Rev B32, 5429–5431 (1985)

    Article  CAS  Google Scholar 

  15. Tombrello TA, Track damage and erosion of insulators by ion-induced electronic processes. Nucl Instrum Methods B2, 555–563 (1984)

    Article  Google Scholar 

  16. Schiwietz G, Grande P, Skogvall B, Biersack JP, Köhrbrück R, Sommer K, Schmoldt A, Goppelt P, Kádár I, Ricz S, Stettner U, Influence of nuclear track potentials in insulators on the emission of target Auger electrons. Phys Rev Lett 69, 628–631 (1992)

    Article  CAS  Google Scholar 

  17. Bouffard S, Gervais B, Leroy C, Basic phenomena induced by swift heavy ions in polymers. Nucl Instrum Methods B105, 1–4 (1995)

    Article  CAS  Google Scholar 

  18. Lesueur D, Dunlop A Damage creation via electronic excitations in metallic targets. Part II: a theoretical model. Radiat Eff Defects Solids 126, 163–172 (1993)

    Article  CAS  Google Scholar 

  19. Bringa EM, Johnson RE, Coulomb explosion and thermal spike. Phys Rev Lett 88, 165501–1–165501–4; and Bringa EM, Coulomb explosion versus thermal spike models: a viewpoint from molecular dynamics simulations. Presented at the 5th Intl. Symposium on Swift Heavy Ions in Matter, May 22–25, 2002, Giardini Naxos, Italy

    Google Scholar 

  20. Chadderton LT, Nuclear Tracks in Solids: Registration physics and the compound spike. Presented at the 21th Intl. Conf. on Nuclear Tracks in Solids, New Delhi, 21–25. 10. 2002

    Google Scholar 

  21. Schiwietz G, Xiao G, Grande PL, Luderer E, Pazirandeh R, Stettner U, Determination of the electron temperature in the thermal spike of amorphous carbon. EuroPhys Lett 47, 384–390 (1999)

    Article  CAS  Google Scholar 

  22. Ghosh S, Som T, Tripathi A, Kabiraj D, Xie H, Zhang S, Avasthi DK, Electronic sputtering of hydrogenated amorphous carbon films by swift heavy ions. Radiat Eff Defects Solids (2004), in print

    Google Scholar 

  23. Asmus W, Bemerkungen zum Metallsputtern. Strategiefonds-Treffen of the Helmholtz Society, HMI Berlin, 5–6.4.2002. In German, unpublished

    Google Scholar 

  24. Johnson RE, Brown WL, Electronic mechanism for sputtering of condensed-gas solids by energetic ions. Nucl Instrum Methods 198, 103–118 (1987)

    Google Scholar 

  25. Williams P, Sundqvist BUR, Mechanism of sputtering of large biomolecules by impact of highly ionizing particles. Phys Rev Lett 58, 1031–1034 (1987)

    Article  CAS  Google Scholar 

  26. Papaleo RM, Fast-ion induced sputtering of polymers. Nucl Instrum Methods B131, 121–134 (1997)

    Article  CAS  Google Scholar 

  27. Tombrello TA, Distribution of damage along an MeV ion track. Nucl Instrum Methods 83, 508–512 (1993)

    Article  CAS  Google Scholar 

  28. Meftah A, Brisard F, Constantini JM, Hage-Ali M, Stocquert JP, Studi F, Toulemond M, Swift heavy ions in magnetic insulators: A damage cross-section velocity effect. Phys Rev B48, 920–925 (1993)

    Article  CAS  Google Scholar 

  29. Apel PYu, Schulz A, Spohr R, Trautmann C, Vutsadakis V, Tracks of very heavy ions in polymers, Nucl Instrum Methods B131, 55–63 (1997)

    Article  CAS  Google Scholar 

  30. Katz R, Kobetich EJ, Energy deposition by electron beams and 6-rays. Phys Rev 170, 391–396 (1968)

    Article  Google Scholar 

  31. Fain J, Monin M, Montret M, Spatial energy distribution and heavy-ion path. Radiat Res 57, 379–389 (1974)

    Article  CAS  Google Scholar 

  32. Waligorski MPR, Hamm RN, Katz R, The radial distribution of dose around the path of a heavy ion in liquid water. Nucl Tracks Radiat Meas 11, 309–319 (1986)

    Article  CAS  Google Scholar 

  33. Benton EV, On latent track formation in organic nuclear charged particle track detectors. Radiat Eff 2, 273–280 (1968)

    Google Scholar 

  34. Wilson WE, Paretzke HG, A stochastical model of ion track structure. Radiat Protect Dosim 52, 249–253 (1994)

    CAS  Google Scholar 

  35. Wilson WE, Paretzke HG, An analytic model for ionization distributions produced in nanometer volumes by recoil protons. Radiat Protect Dosim 23, 45–47, (1994)

    Google Scholar 

  36. Paretzke HG, On primary damage and secondary electron damage in heavy ion tracks in plastics. Radiat Eff 34, 3–8 (1977)

    Article  CAS  Google Scholar 

  37. Toulemonde M, Bouffard S, Studer F, Swift heavy ions in insulating and conducting oxides: tracks and physical properties. Nucl Instrum Methods B91 108–123 (1994), and references therein.

    Google Scholar 

  38. Studer F, Houpert C, Pascard H, Spohr R, Vetter J, Fan JY, Toulemond M, Saturation in the damage efficiency in magnetic insulators irradiated by high energy heavy ions. Radiat Eff Defects Solids 116, 59–70 (1991)

    Article  CAS  Google Scholar 

  39. Meftah A, Brisard F, Costantini JM, Hage-Ali M, Stoquert JP, Studer F, Toulemond M, Swift heavy ions in magnetic insulators: a damage-crosssection velocity effect. Phys Rev B48, 920–925 (1993)

    Article  CAS  Google Scholar 

  40. Albrecht D, Untersuchung der von schweren Ionen in Dielektrika erzeugten Defektstrukturen mittels Kleinwinkelstreuung PhD. Thesis TU Darmstadt, Germany, and: GSI-Report 83–13 (1983) (in German)

    Google Scholar 

  41. Chailley V, Dooryhée E, Bouffard E, Balanzat E, Levalois M, observations by X-ray diffraction of structural changes in mica irradiated by swift heavy ions. Nucl Instrum Methods B91, 162–167 (1994)

    Article  CAS  Google Scholar 

  42. Szenes G, Analysis of tracks induced by cluster ions in CaF2. Phys Rev B61 14267–14270 (2000), and references No. 29–29 therein

    Google Scholar 

  43. Apel PYu, Schulz A, Spohr R, Trautmann C, Vutsadakis V, Track size and track structure in polymer irradiated by heavy ions. Nucl Instrum Methods B146, 468–474 (1998)

    Article  CAS  Google Scholar 

  44. Steckenreiter TH, Charakterisierung von Spuren energiereicher Ionen in Polymeren. PhD. Thesis, TH Darmstadt (1997) Germany (in German)

    Google Scholar 

  45. Remmert G, Transporteigenschaften and Geometrie von Schwerionenspuren in Polymerfolien. PhD. Thesis, Johann Wolfgang Goethe Universität, Frankfurt am Main (1994) (in German)

    Google Scholar 

  46. Hillenbrand J, Angert N, Hartnagel HC, Neumann R, Depolarization radii of latent heavy ion tracks in poly(vinylidene fluoride). Nucl Instrum Methods B151, 123–128 (1999)

    Article  CAS  Google Scholar 

  47. Hillenbrand J, Modifikation der Piezokonstanten von Polyvinylidenfluorid durch energiereiche Ionen. PhD. Thesis, TU Darmstadt (1998) (in German)

    Google Scholar 

  48. Fink D, Klett R, Latent tracks in polymers for future use in nanoelectronics. An overview about the present state-of-the-art. Braz J Phys 25, 54–75 (1995)

    CAS  Google Scholar 

  49. Fink D, Omichi H, Hosoi F, Tamada M, Hnatowicz V, Vacík J, Chadderton LT, Klett R, Solid and liquid physe doping of energetic ion tracks in polymers. Trans Mater Res Soc Jpn 17, 581–583 (1994)

    CAS  Google Scholar 

  50. Fink D, Chadderton LT, Hosoi F, Omichi H, Sasuga T, Schmoldt A, Wang L, Klett R, Hillenbrand J, Chemical Modification of PMMA by MeV and GeV, light and heavy, ion irradiations. Nucl Instrum Methods B91, 146–150 (1994)

    Article  CAS  Google Scholar 

  51. Klett R, Charakterisierung von hochenergetischen Schwerionenspuren in Polyimid. PhD. Thesis. Humboldt University, Berlin (1997), and references therein (in German)

    Google Scholar 

  52. Petersen F, Enge W, Measurement of transversal etching rates on latent heavy ion tracks in plastic. GSI Scientific report (ISSN 0174–0814), p. 286 (1992)

    Google Scholar 

  53. Chadderton LT, Cruz SA, Fink DW, Theory for latent particle tracks in polymers. Nucl Tracks Radiat Meas 22, 1–4 (1993)

    Article  Google Scholar 

  54. Gamaly EG, Jimenez SC, Chadderton LT, Cluster ion stopping and fragmentation in solids. Presented at the 11th Int. Conf. on Radiation Effects in Insulators, Lisbon, 3–7 Sept. 2001 (yet unpublished)

    Google Scholar 

  55. Biersack JP, Haggmark LG, The transport and ranges in matter. Nucl In-strum Methods 174, 257–269 (1980)

    Article  CAS  Google Scholar 

  56. Balanzat E, Swift heavy ion research: state of the art. Presented at the 5th Intl. Symposium on Swift Heavy Ions in Matter, May 22–25, 2002, Giardini Naxos, Italy

    Google Scholar 

  57. Dunlop A, Talk given at the 11th Intl. Conf. on Radiation Effects in Insulators, Lisbon, 3.-7. Sept. 2001; unpublished

    Google Scholar 

  58. Dunlop A, Jaskierowicz G, Phase transformations induced along the path of energetic cluster ions. Presented at the 5th Intl. Symposium on Swift Heavy Ions in Matter, May 22–25, 2002, Giardini Naxos, Italy

    Google Scholar 

  59. Farizon B, Farizon M, Gaillard MJ, Gobet F, Buchet JP, Carré M, Scheier P, Märk TD, Statistics and Dynamics in finite systems: fragmentation of molecular cluster. Presented at the 5th Intl. Symposium on Swift Heavy Ions in Matter, May 22–25, 2002, Giardini Naxos, Italy

    Google Scholar 

  60. Riedel C, Spohr R, Statistical properties of etched nuclear tracks. I. Analytical theory and computer simulation. Radiat Eff 42, 69–75 (1979)

    Article  Google Scholar 

  61. Riedel C, Spohr R, Correcting overlapping counts in dose calibration at high energy densities. Nucl Tracks 5, 265–270 (1981)

    Article  CAS  Google Scholar 

  62. Berthelot A, Héemon S, Gourbilleau F, Dufour C, Dooryhèe E, Paumier E, Nanometric size effects on irradiation of thin oxide powder. Nucl Instrum Methods B146, 437–442 (1998)

    Article  CAS  Google Scholar 

  63. Turowski T, Schockwellenmodell zur Beschreibung des ionendichteabhängigen Diffusionsverhaltens bestrahlter Polymerfolien. PhD. Thesis Christian-Albrechts-Universität Kiel (2001) (in German)

    Google Scholar 

  64. Trinkaus H, Dynamics of viscoelastic flow in ion tracks: origin of plastic deformation of amorphous materials. Nucl Instrum Methods B146, 204–216 (1968)

    Google Scholar 

  65. Sigmund P, Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys Rev 184, 383–416 (1969)

    Article  CAS  Google Scholar 

  66. Watson CC, Tombrello TA, A modified lattice potential model of electronically mediated sputtering. Radiat Eff 89, 263–283 (1985)

    Article  CAS  Google Scholar 

  67. Johnson RE, Sundqvist BUR, Electronic sputtering: from atomic physics to continuum mechanics. Physics Today, March, 28–36 (1992)

    Google Scholar 

  68. Johnson RE, Sundqvist BUR, Electronic sputtering: from atomic physics to continuum mechanics. Physics Today 3, 28 (1992)

    Article  Google Scholar 

  69. Della-Negra S, Le Beyec Y, Monart B, Standing K, Wien K, Measurement of the average equilibrium charge of fast heavy ions in a solid by H+ emission at the exit surface. Phys Rev Lett 58, 17–20 (1987)

    Article  CAS  Google Scholar 

  70. Meftah A, Djbera M, Khalfaoui N, Toulemonde M, Sputtering of vitreous SiO2 and Y3Fe5O17 in the electronic stopping power regime: a thermal spike description. Nucl Instrum Methods B146, 431–436 (1998)

    Article  CAS  Google Scholar 

  71. Tombrello TA, The role played by fast neutrons in heavy-ion-induced desorption and track formation. Int J Mass Spectrum Ion Processes 126, 11–16 (1993)

    Article  CAS  Google Scholar 

  72. Fink D, Klett R, Szimkoviak P, Kastner J, Palmetshofer L, Chadderton LT, Wang L, Kuzmany H, Ion beam radiation damage of thin fullerene film. Nucl Instrum Methods B108, 114–124 (1996)

    Article  CAS  Google Scholar 

  73. Behrisch R, Prozesky VM, Huber H, Assmann W, Hydrogen desorption induced by heavy ions during surface layer analysis with ERDA. Nucl Instrum Methods B118, 262–267 (1996)

    Article  CAS  Google Scholar 

  74. Kamensky I, Hâkansson P, Sundqvist BUR, Meneal CJ, Mcfarlane RD, Comparison of biomolecule desorption yields for low and high energy primary ions. Nucl Instrum Methods 198, 65–68 (1982)

    Article  CAS  Google Scholar 

  75. O’Connor JP, Blauner PG, Weller RA, Energy and mass analysis of secondary ions sputtered from metallic targets by MeV heavy ions. Nucl Instrum Methods 218, 293–298 (1983)

    Article  Google Scholar 

  76. Mieskes HD, Assmann W, Brodale M, Dobler M, Glückler H, Hartung P, Stenzel P, Measuring sputtering yields of high energy heavy ions on metals. Nucl Instrum Methods B146, 162–171 (1998)

    Article  CAS  Google Scholar 

  77. Qiu Y, Griffith JE, Meng WJ, Tombrello TA, Sputtering of silicon and its compounds in the electronic stopping region. Radiat Eff 70, 231–236 (1983)

    Article  CAS  Google Scholar 

  78. Kaplan IG, The track structure in condensed matter. Nucl Instrum Methods B105, 8–13 (1995)

    Article  CAS  Google Scholar 

  79. Koros WJ, Paul DR. J Polym Sci 16, 2171 (1978)

    CAS  Google Scholar 

  80. Ferrari AC, Robertson J, Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B61, 14095–14107 (2000)

    Article  CAS  Google Scholar 

  81. Heitz T, Drévillon B, Godet C, Bourée JE, Quantitative study of C-H bonding in polymerlike amorphous carbon films using in situ infrared ellipsometry. Phys Rev B58, 13957–13973 (1998)

    Article  CAS  Google Scholar 

  82. Koidl P, Wild C, Dischler B, Wagner J, Ramsteiner M, Plasma deposition, properties and structure of amorphous hydrogenated carbon films. Mater Sci Forum 52, 41 (1990)

    Article  Google Scholar 

  83. Sah RE, Dischler B, Bubenzer A, Koidl P, Amorphous carbon coatings prepared by high rate RF plasma deposition from fluorinated benzenes. Appl Phys Lett 46, 739–741 (1985)

    Article  CAS  Google Scholar 

  84. Fink D, Möckel HJ, Melzer H, Klett R, Chadderton LT, Hosoi F, Omichi H, Wang L, GeV ion latent tracks in sugar; fullerenes and other radiochemical products. Nucl Instrum Methods B117, 134–135 (1996)

    Article  CAS  Google Scholar 

  85. Chadderton LT, Fink D, Möckel HJ, Dwivedi KK, Hammoudi A, Fullerene formation in the tracks of energetic ions. Radiat Eff Defects 127, 163–168 (1993)

    Article  CAS  Google Scholar 

  86. Schattat B, Boise W, Klaumünzer S, Harbsmeier F, Jasenek A, Interface Mixing of CuO2/SiO2 bilayers by swift heavy ions. Nucl Instrum Methods B191, 577–581 (2002)

    Article  CAS  Google Scholar 

  87. Wang L, Angert N, Rück, D, Trautmann C, Vetter, J, Quan Z, Hantsche H, GeV heavy ion induced adhesion enhancement. Nucl Instrum Methods B83, 503–507 (1993)

    Article  CAS  Google Scholar 

  88. Salvetat JP, Costantini JM, Brisard F, Spin and charge dynamics in heavy ion irradiated polyimide kapton. Nucl Instrum Methods B116, 284–288 (1995)

    Google Scholar 

  89. Brown WL, Johnson RE, Sputtering of ices: a review. Nucl Instrum Methods B13, 295–303 (1986)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fink, D. (2004). Ion Tracks in Polymers. In: Fink, D. (eds) Fundamentals of Ion-Irradiated Polymers. Springer Series in Materials Science, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07326-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07326-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05709-0

  • Online ISBN: 978-3-662-07326-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics