Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 63))

  • 337 Accesses

Abstract

Polymers are macromolecules, built up of a large number of repeating molecular units, which are linked together by covalent bonds. The different molecules, and separate segments of the same molecule are attracted to each other by intermolecular van der Waals forces. The covalent bonds involved are characterized by high energies (146 to 628 kJ mole−1), short interatomic distances (0.11 to 0.16 nm) and relatively constant angles between successive bonds. Covalent bonds govern the thermal and photochemical stability of the polymers. Polymers have a high strength-to-weight ratio, ease of molding and lightness, and are very cheap to produce.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lotz B, The structure and morphology of crystalline polymers. Nucl Instrum Methods B131, 13–21 (1997)

    Article  CAS  Google Scholar 

  2. Dissado LA, Fothergill JC, Electrical Degradation and Breakdown in Polymers. Peter Peregrinus Ltd., London (1992)

    Book  Google Scholar 

  3. Tobolsky AA, Mark, HF (editors). Polymer Science and Materials. John Wiley & Sons, New York (1971)

    Google Scholar 

  4. Gowariker VR, Viswanathan NV, Jayadev S, Polymer Science. New Age International Ltd. Publ. 9th ed., p. 150–173 (1996)

    Google Scholar 

  5. Faupel F, Willecke R, Thran A, Diffusion of metals in polymers. Mater Sci Eng R22, 1–55 (1998)

    Article  Google Scholar 

  6. Brandruß J, Immergut EH, Polymer Handbuch. 3r. edn. John Wiley & Sons, p. VI /209 (1989) (in German)

    Google Scholar 

  7. Lee LH, Fundamentals of Adhesion. Plenum Press, New York and London (1991)

    Google Scholar 

  8. Shen M, Bever MB, Gradients in polymeric materials. J Mater Sci 7, 41–746 (1972)

    Article  Google Scholar 

  9. Guermazi H, Smaoui H, Agnel S, Mlik Y, Toureille A, Schué F, Influence of heat treatment on the space charge within an epoxy resin polymer materials. Poly Int 50 743–747 (2001), and references therein

    Google Scholar 

  10. Rück DM, Schulz J, Polymers with high temperature stability structured by ion ir-radiation: irradiation parameters and optical characterisation of resulting waveguides. Proc. SPIE — Intl Soc For Opt Eng 2851, 18–128 (1996)

    Google Scholar 

  11. Gangal SV, Encyclopedia of Polymer Science & Engineering, 2nd edn. Wiley, New York p. 557–580 (1989)

    Google Scholar 

  12. Kim EJ, Ohki J Hirata T, Uchida K, Ionic DC transport in polyetherketone. Proc. Of the 4th Intl. Conf. on “Properties and applications of dielectric materials”, July 3–8, 1994, Brisbane, (94CH3311–8) Vol. 1, p. 67–70 (1994)

    CAS  Google Scholar 

  13. Hoechst AG, Data sheet “Hostaphan” (in German), Wiesbaden 4 /1992 (1992)

    Google Scholar 

  14. Ghosh S, Raju J, Dwivedi KK, Track length of energetic 132Xe ions in CR-39 detec-tors. Rad Eff Def Sol 129, 155–159 (1994)

    Article  CAS  Google Scholar 

  15. Torrisi L, Luminescence Degrading in polyvinyl toluene by ion beam irradiation. Radiat Eff Defects Solids 154, 89–98 (2001)

    Article  CAS  Google Scholar 

  16. Srivastava AK, Virk HS, Study of electrical and optical frequency response of neutron irradiated polyvinyl acetate thick films Radiat Phys Chem 59, 31–37 (2000)

    CAS  Google Scholar 

  17. Ohigashi H, Kagami N, Li GR, Formation of ferroelectric domains in a copolymer P(VDF-TrFE). J Appl Phys 71, 506–508 (1992)

    Article  CAS  Google Scholar 

  18. Lovinger AL, Furukawa T, Davis GT, Broadhurst MG, Crystallographic changes characterizing the Curie transition in three ferroelectric copolymers of vinylidene fluoride and trifluoroethylene: 1. As-crystallized samples. Polymer 24, 1225–1232 (1983)

    Article  CAS  Google Scholar 

  19. Schlößer D, Le Moel A, Dooryhée E, Carbon ion induced modifications of the Curie transition in ferroelectric polymers. Nucl Instr Meth B105, 278–281 (1995)

    Article  Google Scholar 

  20. Torrisi L, Percolla R, Ion beam processing of polyvinylidene fluoride. Nucl Instr Meth B117, 387–391 (1996)

    Article  CAS  Google Scholar 

  21. Escoubes M, Dolveck JY, Davenas J, Xu XL, Boiteux G, Ion Beam Modification of polyimide membranes for gas permeation. Nucl Instr Meth B105, 130–133 (1995)

    Article  CAS  Google Scholar 

  22. Du Pont de Namours, Namours, “Kapton Information” (1995)

    Google Scholar 

  23. Xu XL, Yuehui Yu, Zixin L, Lizhi C, Fang F, Zuyao Z, Shichang Z, Gendi D, Guanqun X, Shrinkage effects of polyimide film under ion beam irradiation. Nucl Instr Meth B 59/60, 1267–1270 (1991)

    Google Scholar 

  24. LaFemina JR, Arjavalingam G, Hougham G, Electronic structure and ultraviolet absorption spectrum of polyimide. J Chem Phys 90, 5154–5160 (1989)

    Article  CAS  Google Scholar 

  25. Seki S, Shibata H, Ban H, Ishigure K, Tagawa S, Radiation effects of ion and electron beams on poly (methylphenylsilane). Radiat Phys Chem 48, 539–544 (1996)

    Article  Google Scholar 

  26. Seki S, Tagawa S, Ishigure K, Cromack KR, Trifunac AD, Observation of silyl radical in gamma-radiolysis of solid poly(dimethylsilane). Radiat Phys Chem 47, 217–219 (1996)

    Article  CAS  Google Scholar 

  27. Seki S, Kanzaki K, Kunimi Y, Tagawa S, Yoshida Y, Kudoh H, Sugimoto M, Sasuga T, Seguchi T, Shibata H, LET Effects of Ion Beam Irradiation on Poly (di-n-hexylsilane). Radiat Phys Chem 50, 423–427 (1997)

    Article  CAS  Google Scholar 

  28. Miller RD, Radiation Sensitivity of Soluble Polysilane Derivatives, in: Advances in Chemistry, Series 224, American Chemical Society, Washington D.C., p. 413 (1990)

    Google Scholar 

  29. Herden V, Klaumünzer S, Schnabel W, Crosslinking of polysilanes by ion beam irradiation. Nucl Instr Meth B146, 491–495 (1998)

    Article  CAS  Google Scholar 

  30. Herden V, Das Verhalten von lichtinduzierten Ladungsträgern in Polysilanen unter besonderer Berücksichtigung von Dotierungen und strahlenchemischer Vernetzung. PhD. Thesis, Technical University Berlin, No. D83 (2001) (in German)

    Google Scholar 

  31. Seki S, Kanzaki K, Yoshida Y, Tagawa S, Shibata H, Asai K, Ishigure K, Positive-negative inversion of silicon based resist materials: Poly (di-nhexylsilane) for ion beam irradiation. Jpn J Appl Phys 36, 5361–5364 (1997)

    Article  CAS  Google Scholar 

  32. Koo YL, Kim IT, Park WK, An experimental investigation on the degradation characteristic of the outdoor silicone rubber insulator due to sulfate and nitrate ions. IEEE Annual Report. Conf. on Electr. Insulat. and Dielectric Phenom, Minneapolis, Oct. 19–22, 1997, pp. 370–373 (1997)

    Google Scholar 

  33. Imakoma T, Suzuki Y, Fuji O, Nakajima I (1994) Degradation of silicone rubber housing by ultraviolet radiation. Proc. Of the 4th Intl. Conf. on “Properties and Applications of Dielectric materials”, July 3–8, 1994, Brisbane, Australia, IEEE Publication, New York, 1, 304–308

    Google Scholar 

  34. Suzuki Y, Kusakabe M, Iwaki M, Suzuki M, Surface modification of silicone rubber by ion implantation. Nucl Instr Meth B32, 120–124 (1988)

    Article  Google Scholar 

  35. Kumagai S, Wang X, Yoshimura N, Solid residue formation of RTV silicone rubber due to dry-band arcing and thermal decomposition. IEEE Trans. Dielectr. Electric Insul. 5, 281–289 (1998)

    Article  CAS  Google Scholar 

  36. Schlegel L, Schnabel W, Polymers in X-Ray, electron beam and ion beam lithography, Radiat. Curing Polym Sci Technol, 1 119–192 (1993), and many references therein

    Google Scholar 

  37. Lai JH, Polymers for Electronic Applications. CRC Press, Boca Raton, Florida (1989)

    Google Scholar 

  38. Fink D, Klett R, Behar M, Sanchez G, Kaschny JR, Hertlein WG, Changes in the photoresist inhibitor distribution after ion irradiation and thermal treatment. Nucl Instr Meth B132, 660–670 (1997)

    Article  CAS  Google Scholar 

  39. Jordhamo G, Moreau W, Deep UV hardening of deep UV resists. Proc. SPIE–Intl. Soc. For Opt. Eng. 2724, 588–600 (1996)

    CAS  Google Scholar 

  40. Morales J, Olayo MG, Cruz GJ, Castillo-Ortega MM, Olayo R, Electronic conductivity of pyrrole and aniline thin films polymerized by plasma. J Polym Sci B. Polymer Physics 38, 3247–3255 (2000)

    Article  CAS  Google Scholar 

  41. Srinivasan D, Natarajan TS, Rangarajan G, Bhat SV, Wessling B, Electron spin resonance absorption in organic metal polyaniline and its blends with PMMA. Commun. 110, 503–538 (1999)

    CAS  Google Scholar 

  42. Burford RP, Tongtam T, Conducting polymer with controlled fibrillar morphology. J Mater Sci 26 3264–3270 (1991), and references therein

    Google Scholar 

  43. Bel Hadj Mohamed A, Miane JL, Zangar H, Radiofrequency and microwave (10 kHz-8 GHz) electrical properties of polypyrrole and polypyrrole poly(methyl methacrylate) composites. Polym Int 50, 773–777 (2001)

    Article  CAS  Google Scholar 

  44. Fichou D, Handbook of Oligo-and Polythiophenes. Wiley-VCH, Weinheim (1999)

    Google Scholar 

  45. Menn R, Yoon CO, Moses D, Heeger AJ, Cao Y, Transport in polyaniline near the critical regime of the metal-insulator transition. Phys Rev B48, 1768517694 (1993)

    Google Scholar 

  46. Subramaniam CK, Kaiser AB, Gillberd PW, Liu CJ, Wessling B, Conductivity and thermopower of blends of polyaniline with insulating polymers. Solid State Commun 97, 235–238 (1996)

    Article  CAS  Google Scholar 

  47. Dai L, Advanced syntheses and microfabrications of conjugated polymers, C60-containing polymers and carbon nanotubes for optoelectronic applications. Polym Adv Technol 10 357–420 (1999), and references therein

    Google Scholar 

  48. Holliday L, Ionic Polymers, Applied Science Publ., London (1973)

    Google Scholar 

  49. Kaetsu I, Biocompatible and biofunctional membranes by means of radiation tech-niques. Nucl Instr Meth B105, 294–301 (1995)

    Article  CAS  Google Scholar 

  50. Angelova N, Hunkeler D, Rationalizing the design of polymeric biomaterials. TIBTECH 17, 409–421, Elsevier Science Ltd. (1999)

    Google Scholar 

  51. Wheeler BC, Brewer GJ, Chang JC, Nam Y, Designing in vitro patterned neuronal networks. Proc. MRS Boston 27.11.-1.12. 2001, Presentation Y5. 6

    Google Scholar 

  52. Caumes J, Simoen JP, A TE-calorimeter as a primary standard for neutron absorbed dose calibrations. J Europ Radiother 5, 235–239 (1984)

    Google Scholar 

  53. Stone FGA, Graham WAG, Inorganic Polymers. Academic Press, New York and London (1992)

    Google Scholar 

  54. Itahashi S, Mitsui H, Sone M, Variation of state of water in dielectric liquids by temperature. Proc. Of the 4th Intl. Conf. on “Properties and applications of dielectric materials”, July 3–8, 1994, Brisbane, (94CH3311–8), Vol.1, p. 219222 (1994)

    Google Scholar 

  55. Muramoto Y, Mizuno Y, Nagao M, Kosaki M, The short-circuit current and open-circuit voltage of moisture absorbed polyimide thin films with different electrode materials. Proc. Of the 4th Intl. Conf. on “Properties and applications of dielectric materials”, July 3–8, 1994, Brisbane, (94CH3311–8), Vol. 1, pp. 219–222 (1994)

    CAS  Google Scholar 

  56. Mantese JV, Micheli AL, Hamdi AH, Vest RW, Metalorganic deposition (MOD): a nonvacuum, spin-on, liquid-based, thin film method. MRS Bull, Oct. 1989, pp. 48–53, and references therein

    Google Scholar 

  57. Berry AD, Gaskill DK, Holm RT, Cukauskas EJ, Kaplan R, Henry RL, Formation of high Tc superconducting films by organometallic chemical vapor deposition, Appl Phys Lett 52, 1743–1745 (1988)

    Article  CAS  Google Scholar 

  58. Nakao Y, Noble metal solid sols in poly(methyl methacrylate). J Colloid Interface Sci 171, 386–391 (1995)

    Article  CAS  Google Scholar 

  59. Nakao Y, Preparation and characterization of noble metal solid sols in poly(methyl methacrylate). J Chem Soc Chem Commun 10, 826–828 (1993)

    Article  Google Scholar 

  60. Michell AL, Chang SC, Hicks DB, Tin oxide gas sensing microsensors from metallo-organic deposited (MOD) thin films Ceram Eng Sci Proc 8, 10951105 (1987)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fink, D. (2004). The Polymers. In: Fink, D. (eds) Fundamentals of Ion-Irradiated Polymers. Springer Series in Materials Science, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07326-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07326-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05709-0

  • Online ISBN: 978-3-662-07326-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics