Skip to main content

Abstract

Self-organization phenomena leading to the formation of patterned mineral fabrics are discussed in connection with electric field effects frequently occurring in the lithosphere. The different internal sources of electric potentials which may intensify ionic fluxes over long time scales are compiled. Model experiments with electrolysis in quartz sand basins between iron electrodes lead to the formation of Liesegang—like precipitate bands of iron hydroxides. Amplification of inhomogenities in the electric field or the capillary transport results in undulatory shapes of precipitation bands. Local breakthrough phenomena of ionic transport are observed leading to “boudinage” patterns along a horizontal precipitation band or “breccia”-like fabrics on top of vertical breakthroughs. Ripening effects within the primarily formed bands due to competitive particle growth lead to speckled or nodular patterns.

Several morphological similarities between these experimental findings and mineral fabrics are pointed out. Furthermore, the role of other non—electric effects, like the presence of diffusion barriers and capillar front instabilities (“Runge” pictures) in the evolution of geological patterns, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chen W, Ghaith A, Park A, Ortoleva P (1990) Diagenesis through Coupled Processes: Modeling Approach, Self-Organization and Implications for Exploration. In: Meshri I and Ortoleva P (eds.) Prediction of Reservoir Quality Through Chemical Modeling, AAPG Memoir 49, pp 103–130.

    Google Scholar 

  • Civitelli G, Funiciello R, Lombardi S (1970) Alcune considerazioni sulla genesi della « Pietra Paesina ». Geol Rom IX: 195–204.

    Google Scholar 

  • Feeney R, Schmidt SL, Ortoleva P (1981) Experiments on Electrical Field-BZ Chemical Wave Interactions: Annihilation and the Crescent Wave. Physica 2D: 536–544.

    Google Scholar 

  • Feeney R, Schmidt SL, Strickholm P, Chadam J, Ortoleva P (1983) Periodic Precipitation and Coarsening Waves: Applications of the Competitive Particle Growth Model. Jour Chem Phys 78: 1293–1311.

    Article  Google Scholar 

  • Glossary of Geology (1980), Second Edition, American Geological Institute, Falls Church, Virginia.

    Google Scholar 

  • Jacob K-H (1988) Künstliche Bänderungen. Wissenschaftsmagazin d. TU Berlin: 75–78.

    Google Scholar 

  • Jacob K-H, Zimmerle W (1993) Some diagenetic phenomena in carboniferous sedimentary rocks seen as rhythmic structures produced by energy dissipation in open systems. Zbl Geol Paleont 5: 437–459.

    Google Scholar 

  • Jacob K-H, Krug H-J, Dietrich S (1992) Lagerstättenbildung durch Energiepotentiale in der Lithosphäre. Erzmetall 10: 505–513.

    Google Scholar 

  • Khayretdinov IA, Kononenko AG, Belikova GI, Kononenko NP (1987) Structures, textures and shapes of geologic bodies of electrogeochemical origin. Int Geol Rev 29: 1073–1083.

    Article  Google Scholar 

  • Klein W (1990) Dissipative Gefügebildungen in Lockersedimenten durch Einwirkung elektrischer Felder; ein Beitrag zur Bedeutung des thermodynamischen Nichtgleichgewichts für lagerstättengenetische Vorgänge. Diss TU Berlin, Berlin.

    Google Scholar 

  • Kuhnert L, Niedersen U (1987) Selbstorganisation chemischer Strukturen. Ostwalds Klassiker d exakten Wiss, Leipzig.

    Google Scholar 

  • Larter R (1982) A Study of Instability to Electrical Symmetry Breaking in Unicellular Systems. Jour Theor Biol 96: 175–200.

    Article  Google Scholar 

  • Liesegang RE (1896) Liesegangs photographisches Archiv 801, Heft 21, Düsseldorf.

    Google Scholar 

  • Liesegang RE (1913) Geologische Diffusionen. Steinkopf, Dresden Leipzig.

    Google Scholar 

  • Liesegang RE (1924): Chemische Reaktionen in Gallerten. 2. umgearb. Aufl., Steinkopf, Dresden Leipzig.

    Google Scholar 

  • Mc Birney AR, Noyes RM (1979) Crystallization and Layering of the Skaergaard Intrusion. J Petrology 20: 487–554.

    Article  Google Scholar 

  • Nicolis G, Prigogine I (1987) Die Erforschung des Komplexen. Piper, München.

    Google Scholar 

  • Ortoleva P (1979) The Multifractal Family of the Nonlinear: Waves and Fields, Center Dynamics, Catastrophes, Rock Bands and Precipitation Patterns. In: Pacault A and Vidal C (eds) Synergetics Far from Equilibrium. Springer, Berlin Heidelberg New York, pp 114–127.

    Google Scholar 

  • Ortoleva P (1981) Developmental Bioelectricity, Biological Effects of Nonionizing Radiation. In: ACS Symposium Series 157, Houston, TX, Am Chem Soc, Washington, D.C., pp 163–212.

    Google Scholar 

  • Ortoleva P (1993): Geochemical Self-Organization. Oxford Univ Press, Oxford.

    Google Scholar 

  • Ortoleva P, Auchmuty G, Chadam J., Hettmer J, Merino E, Moore C, Ripley E (1986) Redox Front Propagation and Banding Modalities. Physica 19D: 334–354.

    Google Scholar 

  • Ortoleva P, Merino E, Chadam J, Moore CH (1987) Geochemical Self—Organization I: Reaction-Transport Feedbacks and Modeling Approach. Am J Sci 287: 979–1007.

    Article  Google Scholar 

  • Ortoleva P, Hallet B, McBirney A, Meshri I, Reeder R, Williams P, eds. (1990) Self-Organization in Geological Systems: Proceedings of a Workshop held 26–30 June 1988, University of California Santa Barbara. In: Earth Science Reviews 29. Elsevier, Amsterdam.

    Google Scholar 

  • Ostwald W (1897) Lehrbuch der allgemeinen Chemie, 2. umgearb. Aufl., 2. Bd, 2. Tl, Verwandtschaftslehre. Engelmann, Leipzig, pp 777–780.

    Google Scholar 

  • Runge FF (1850) Zur Farben-Chemie; Musterbilder für Freunde des Schönen und zum Gebrauch für Zeichner, Maler, Verzierer und Zeugdrucker. Mittler & Sohn, Berlin.

    Google Scholar 

  • Runge FF (1855) Der Bildungstrieb der Stoffe, veranschaulicht in selbständig gewachsenen Bildern. - Oranienburg (Selbstverlag).

    Google Scholar 

  • Sultan R, Ortoleva P , De Pasquale F, Tartaglia P (1990) Bifurcation of the Ostwald—Liesegang Supersaturation — Nucleation — Depletion Cycle. Earth-Sci Rev 29: 163–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacob, KH., Dietrich, S., Krug, HJ. (1994). Self-Organization of Mineral Fabrics. In: Kruhl, J.H. (eds) Fractals and Dynamic Systems in Geoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07304-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07304-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07306-3

  • Online ISBN: 978-3-662-07304-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics