Skip to main content

A Three-Dimensional B.I.E.M. Program

  • Chapter

Abstract

The program PECET (Boundary Element Program in Three-Dimensional Elasticity) is presented in this paper.

This program, written in FORTRAN V and implemen ted on a UNIVAC 1100,has more than 10,000 sentences and 96 routines and has a lot of capabilities which will be explained in more detail.

The object of the program is the analysis of 3-D piecewise heterogeneous elastic domains, using a subregionalization process and 3-D parabolic isopara, metric boundary elements.

The program uses special data base management which will be described below, and the modularity followed to write it gives a great flexibility to the package.

The Method of Analysis includes an adaptive integration process, an original treatment of boundary conditions, a complete treatment of body forces, the utilization of a Modified Conjugate Gradient Method of solution and an original process of storage which makes it possible to save a lot of memory.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALARCON, E., MARTIN, A., PARIS, F. “Boundary Elements in Potential and Elasticity Theory” Computers and Structures, Vol.10, pp.351–362, 1973.

    Article  Google Scholar 

  2. BREBBIA, A. “Boundary Elements Method for Engineers”, Pentech Press, London, 1978.

    Google Scholar 

  3. CRUSE, T.A. “Numerical Solutions in Three Dimensional Elastostatics”, Int. y Sol. Struct. 5. 125–874, 1969.

    Google Scholar 

  4. CRUSE, T.A. “Application of the Boundary Integral Equation on Method to Three-Dimensional Stress Analysis”, Computers and Structures, Vol. 3, pp.509–527, 1973.

    Article  Google Scholar 

  5. DATE, C.J. “An Introduction to Database Systems”, Addison-Wesley, Reading, Massachussetts, 1975.

    Google Scholar 

  6. DAVIS, P.J. and RABINOWITZ, P. “Methods of Numerical Integration”, Academic Press, 1975.

    MATH  Google Scholar 

  7. DOBLARE, M. “Formulación tridimensional del me todo de los elementos de contorno con interpola, ción parabólica”, Thesis, E.T.S.I.I., Madrid, 1981.

    Google Scholar 

  8. DVORNIK, J. “Generalization of the C.G. Method Applied to Linear and Nonlinear Problems”, J. Comp. Stu., 10, pp.217–223, 1979.

    Article  MATH  Google Scholar 

  9. ENGELS, H. “Numerical Quadrature and Cubature”, Academic Press, 1980.

    MATH  Google Scholar 

  10. FELIPPA, C.A. “Database Management in Scientific Computing I. General Description”, Computers and Structures, Vol. 10, pp.53–61, 1979.

    Article  MATH  Google Scholar 

  11. FELIPPA, C.A. “Database Management in Scientific Computing II. Data Structures and Program Architecture”, Computers and Structures, Vol.12, pp.131–145, 1980.

    Article  Google Scholar 

  12. FUNG, Y.C. “Foundations of Solids Mechanics”, Prentice Hall, 1965.

    Google Scholar 

  13. GAMBOLATI, G. “Fast Solution to Finite Element Flow Equations by Newton Iteration and Modified Conjugate Gradient Method”, Stat. J. Num. Meth. Eng., 15, pp.661–675, 1980s.

    Article  MATH  Google Scholar 

  14. GAMBOLATI, G. “Fast Solution to Finite Element Flow Equations by Newton Iteration and Modified Conjugate Gradient Method”, Stat. J. Num. Meth. Eng., 15, pp.661–675, 1980.

    Article  MATH  Google Scholar 

  15. KATZAN, H. “Computer Data Management and Data Base Technology”, Van Nostrand Reinhold, New York, 1975.

    MATH  Google Scholar 

  16. LACHAT, J.C. “A Further Development of the Boun dary Integral Technique for Elastostatic”, Ph.D. Thesis, University of Southampton, 1975.

    Google Scholar 

  17. LACHAT, J.C. and WATSON, J.O. “Effective Numerical Treatment of Boundary Integral Equation: A Formulation for Three-Dimensional Elastostatic”, Int. J. Num. Meth. in Eng., 10, pp.991–1005, 1976.

    Article  MATH  Google Scholar 

  18. PARIS, F. “El método de los elementos de contorno en la teoría del potencial y la elasticidad”, Thesis, E.T.S.I.I., Madrid, 1979.

    Google Scholar 

  19. STROUD, A.H. and SECREST, D. “Gaussian Quadrature Formulae”, Prentice Hall, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doblare, M., Alarcon, E. (1982). A Three-Dimensional B.I.E.M. Program. In: Brebbia, C.A. (eds) Finite Element Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07229-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07229-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07231-8

  • Online ISBN: 978-3-662-07229-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics