Skip to main content

Squeezed States of Light

  • Chapter
Elements of Quantum Optics

Abstract

The Heisenberg uncertainty principle ΔAΔB ≥ 1/2 |[A, B]| between the standard deviations of two arbitrary observables, ΔA = 〈(A−〈A〉)21/2 and similarly for ΔB, has a built-in degree of freedom: one can squeeze the standard deviation of one observable provided one “stretches” that for the conjugate observable. For example the position and momentum standard deviations obey the uncertainty relation

$$\Delta x\Delta p\hbar /2$$
(1)

and we can squeeze Δx to an arbitrarily small value at the expense of accordingly increasing the standard deviation Δ p. All quantum mechanics requires is that the product be bounded from below. As discussed in Sec. 12-1, the electric and magnetic fields from a pair of observables analogous to the position and momentum of a simple harmonic oscillator. Accordingly they obey a similar uncertainty relation

$$\Delta E\Delta B(cons\tan t)\hbar /2.$$
(2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An, S. and M. Sargent III (1989), Phys. Rev. A39

    Google Scholar 

  • Cohen-Tannoudji, C., J. Dupont-Roc, and G. Grynberg (1988), Processus d’interaction entre photons et atomes, InterEditions et Editions du CNRS, Paris give a clear tutorial discussion of squeezing. English edition to be published by John Wiley, New York.

    Google Scholar 

  • Collett M. J. and C. W. Gardiner (1984), Phys. Rev. A30.

    Google Scholar 

  • Gardiner C. (1980), Handbook of Stochastic Methods, Springer, Berlin.

    Google Scholar 

  • Gardiner, C. W. (1986), Phys. Rev. Lett. 56, 1917 gives the original derivation of the master equation describing an atom in a squeezed bath.

    Google Scholar 

  • Holm, D. A. and M. Sargent III (1986), Phys. Rev. A31, 3112.

    Google Scholar 

  • Meystre, P. and M. O. Scully (1983), Quantum Optics, Experimental Gravitation and Measurement Theory, Plenum, New York. These proceedings contain general reviews on the potential applications of squeezed states is gravitational wave detection and in “quantum nondemolition” measurements.

    Google Scholar 

  • Reid, M. D. and D. F. Walls (1986), Phys. Rev. A34, 4929.

    Article  ADS  Google Scholar 

  • Sargent, M. III, D. A. Holm, and M. S. Zubairy (1985), Phys. Rev. A31, 3112.

    ADS  Google Scholar 

  • Slusher, R. E., L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley (1985), Phys. Rev. Lett. 55, 2409 reports the first observation of squeezed light.

    Google Scholar 

  • Walls, D. F. (1983), Nature 306, 141 is a tutorial review of squeezed states.

    Google Scholar 

  • Wu, L. A., H. J. Kimble, J. L. Hall, and H. Wu (1986), Phys. Rev. Lett. 57, 2520.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meystre, P., Sargent, M. (1990). Squeezed States of Light. In: Elements of Quantum Optics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07007-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07007-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07009-3

  • Online ISBN: 978-3-662-07007-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics