Advertisement

Interpolation

Chapter
  • 54 Downloads
Part of the Heidelberger Taschenbücher book series (HTB, volume 105)

Zusammenfassung

Gegeben sei eine Funktion
$$\Phi (x;{a_0},...,{a_n})$$
die von n + 1 Parametern a 0 ,..., a n abhängt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 2

  1. [1]
    Achieser, N. I.: Vorlesungen über Approximationstheorie. Berlin: Akademie-Verlag 1953.zbMATHGoogle Scholar
  2. [2]
    Ahlberg, J., Nilson E., Walsh, J.: The theory of splines and their applications. New York-London: Academic Press 1967.zbMATHGoogle Scholar
  3. [3]
    Bulirsch, R., Rutishauser, H.: Interpolation und genäherte Quadratur. In: [15].Google Scholar
  4. [4]
    Bulirsch, R., Stoer, J.: Darstellung von Funktionen in Rechenautomaten. In: [15].Google Scholar
  5. [5]
    Cooley, J. W., Tukey, J. W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Davis, P. J.: Interpolation and approximation. New York: Blaisdell 1963.zbMATHGoogle Scholar
  7. [7]
    Gautschi, W.: Attenuation factors in practical Fourier analysis. Num. Math. 18, 373–400 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Gentleman, W. M., Sande, G.: Fast Fourier transforms—for fun and profit. Proc. AFIPS 1966 Fall Joint Computer Conference, Vol. 29, 503–578. Washington D.C.: Spartan Books.Google Scholar
  9. [9]
    Goertzel, G.: An algorithm for the evaluation of finite trigonometric series. Am. Math. Monthly 65 (1958).Google Scholar
  10. [10]
    Greville, T. N. E.: Introduction to spline functions. In: Theory and applications of spline functions. Edited by T. N. E. Greville, New York: Academic Press, 1 – 35 (1969).Google Scholar
  11. [11]
    Herriot, J. G., Reinsch, C. H.: Algol 60 procedures for the calculation of interpolating natural spline functions. Technical Report No. STAN-CS-71–200 (1971), Computer Science Department, Stanford University California.zbMATHGoogle Scholar
  12. [12]
    Kuntzmann, J.: Méthodes Numériques, Interpolation-Dérivées. Paris: Dunod 1959.zbMATHGoogle Scholar
  13. [13]
    Milne-Thomson, L. M.: The calculus of finite differences. London: Macmillan and Co. 1951.Google Scholar
  14. [14]
    Reinsch, C.: Unveröffentlichtes Manuskript (Die Methode von Reinsch ist auch in [4] beschrieben).Google Scholar
  15. [15]
    Sauer, R., Szabó, I. (eds.): Mathematische Hilfsmittel des Ingenieurs, Teil III. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  16. [16]
    Singleton, R. C.: On computing the fast Fourier transform. Comm. ACM 10, 647–654 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Singleton, R. C.: Algorithm 338: Algol procedures for the fast Fourier transform. Algorithm 339: An Algol procedure for the fast Fourier transform with arbitrary factors. Comm. ACM 11, 773–779 (1968).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1972

Authors and Affiliations

  1. 1.Institut für Angewandte MathematikUniversität WürzburgDeutschland

Personalised recommendations