Skip to main content

Presynaptic Regulation of Dopamine Release

  • Chapter
Dopamine in the CNS II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 154 / 2))

  • 257 Accesses

Abstract

The nigrostriatal dopaminergic pathway has generally been used as an experimental model for basic investigations into the release of dopamine (DA) from central dopaminergic neurons. The release of DA from striatal nerve endings is not only dependent on nerve impulse flow but also on regulation processes mediated by D2 autoreceptors (Starke 1981; L’hirondel et al. 1998). These autoreceptors are not only involved in the inhibitory control of DA release but also in its synthesis, and the efficacy of these presynaptic regulatory mechanisms depends on the state of depolarisation of the plasma membrane. While the DA autoreceptors involved in the regulation of the release process of DA are mainly coupled to potassium channels (Bowyer et al. 1989; Cass and Zahniser 1991), those which control the rate of the transmitter synthesis are negatively coupled to adenylyl cyclase (El Mestikawy et al. 1985, 1986; Onali et al. 1988). In addition, these D2 autoreceptors regulate the state of excitability of nerve terminal arborisations (Romo and Schultz 1985; Tepper et al. 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JJ, Chase TN, Engber TM (1993) Substance P increases release of acetylcholine in the dorsal striatum of freely moving rats. Brain Res 623:189–194

    PubMed  CAS  Google Scholar 

  • Aosaki T, Kimura M, Graybiel AM (1995) Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J Neurophysiol 73:1234–1252

    PubMed  CAS  Google Scholar 

  • Aosaki T, Tsubokawa H, Ishida A, Watanabe K, Graybiel AM, Kimura M (1994) Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 14: 3969–3984

    PubMed  CAS  Google Scholar 

  • Apicella P, Ravel S, Sardo P, Legallet E (1998) Influence of predictive information on reponses of tonically active neurons in the monkey striatum. J Neurophysiol 80: 3341–3344

    PubMed  CAS  Google Scholar 

  • Arenas E, Alberch J, Perez-Navarro E, Solsona C, Marsal J (1991) Neurokinin receptors differentially mediate endogenous acetylcholine release evoked by tachykinins in the neostriatum. J Neurosci 11:2332–2338

    PubMed  CAS  Google Scholar 

  • Asaoka Y, Nakamura S, Yoshida K, Nishizuka Y (1992) Protein kinase C, calcium and phospholipid degradation. TIBS 17:414–417

    PubMed  CAS  Google Scholar 

  • Aubry JM, Lundström K, Kawashima E, Ayala G, Schulz P, Bartanusz V, Kiss JZ (1994) NK1 receptor expression by cholinergic interneurons in human striatum. Neuroreport 5:1597–1600

    PubMed  CAS  Google Scholar 

  • Barbeito L, Girault JA, Godeheu G, Pittaluga A, Glowinski J, Chéramy A (1989) Activation of the bilateral cortico-striatal glutamatergic projection by infusion of GABA into thalamic motor nuclei in the cat: an in vivo release study. Neuroscience 28:365–374

    PubMed  CAS  Google Scholar 

  • Barbour B, Szatkowski M, Ingledew N, Attwell D (1989) Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 342:918–920

    PubMed  CAS  Google Scholar 

  • Besson MJ, Chéramy A, Feltz P, Glowinski J (1969) Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat. Proc Natl Acad Sci USA 62:741–748

    PubMed  CAS  Google Scholar 

  • Bowyer JF, Weiner N (1989) K+ channel and adenylate cyclase involvement in regulation of Ca2+-evoked release of 3H-dopamine from synaptosomes. J Pharmacol Exp Ther 248:514–520

    PubMed  CAS  Google Scholar 

  • Bowyer JF, Clausing P, Gough B, Slikker W, Jr, Holson RR (1995) Nitric oxide regulation of methamphetamine-induced dopamine release in caudate putamen. Brain Res 699:62–70

    PubMed  CAS  Google Scholar 

  • Cai NS, Kiss B, Erdo SL (1991) Heterogeneity of N-methyl-<u>d</u>-aspartate receptors regulating the release of dopamine and acetylcholine from striatal slices. J Neurochem 57:2148–2151

    PubMed  CAS  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB, Bernardi G (1992) Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur J Neurosci 4:929–935

    PubMed  Google Scholar 

  • Calabresi P, Saiardi A, Pisani A, Baik JH, Centonze D, Mercuri NB, Bernardi G, Borrelli E (1997) Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J Neurosci 17:4536–4544

    PubMed  CAS  Google Scholar 

  • Cass WA, Zahniser NR (1991) Potassium channel blockers inhibit D2 dopamine, but not A1 adenosine, receptor-mediated inhibition of striatal dopamine release. J Neurochem 57:147–152

    PubMed  CAS  Google Scholar 

  • Chan PH, Kerlan R, Fishman RA (1983) Reductions of gamma-aminobutyric acid and glutamate uptake and (Na+ + K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid. J Neurochem 40:309–316

    PubMed  CAS  Google Scholar 

  • Chesselet MF, Chéramy A, Romo R, Desban M, Glowinski J (1983) GABA in the thalamic motor nuclei modulates dopamine release from the two dopaminergic nigros-triatal pathways in the cat. Exp Brain Res 51:275–282

    PubMed  CAS  Google Scholar 

  • Chesselet MF (1984) Presynaptic regulation of neurotransmitter release in the brain: facts and hypothesis. Neuroscience 12:347–375

    PubMed  CAS  Google Scholar 

  • Chéramy A, Romo R, Godeheu G, Baruch P, Glowinski J (1986) In vivo presynaptic control of dopamine release in the cat caudate nucleus II. Facilitatory or inhibitory influence of L-glutamate. Neuroscience 19:1081–1090

    PubMed  Google Scholar 

  • Chéramy A, Kernel ML, Gauchy C, Desce JM, Barbeito L, Glowinski J (1991) Role of excitatory amino acids in the direct and indirect presynaptic regulation of dopamine release from nerve terminals and dendrites of nigrostriatal dopaminergic neurons. Amino Acids 1:351–363

    Google Scholar 

  • Chéramy A, Godeheu G, L’hirondel M, Glowinski J (1996a) Cooperative contributions of cholinergic and NMDA receptors in the presynaptic control of dopamine release from synaptosomes of the rat striatum. J Pharmacol Exp Ther 276:616–625

    PubMed  Google Scholar 

  • Chéramy A, Artaud F, Godeheu G, L’hirondel M, Glowinski J (1996b) Stimulatory effect of arachidonic acid on the release of GABA in matrix-enriched areas from the rat striatum. Brain Res 742:185–194

    PubMed  Google Scholar 

  • Clow DW, Jhamandas K (1989) Characterization of L-glutamate action on the release of endogenous dopamine from rat caudate-putamen. J Pharmacol Exp Ther 248: 722–728

    PubMed  CAS  Google Scholar 

  • Davis GW, Murphey RK (1994) Long-term regulation of short-term transmitter release properties: Retrograde signaling and synaptic development. TINS 17:9–13

    PubMed  CAS  Google Scholar 

  • Desban M, Gauchy C, Glowinski J, Kernel ML (1995) Heterogeneous topographical distribution of the striatonigral and striatopallidal neurons in the matrix compartment of the cat caudate nucleus. J Comp Neurol 352:117–133

    PubMed  CAS  Google Scholar 

  • Desban M, Gauchy C, Kernel ML, Besson MJ, Glowinski J (1989) Three-dimensional organization of the striosomal compartment and patchy distribution of striatonigral projections in the matrix of the cat caudate nucleus. Neuroscience 29:551–566

    PubMed  CAS  Google Scholar 

  • Desban M, Kernel ML, Glowinski J, Gauchy C (1993) Spatial organization of patch and matrix compartments in the rat striatum. Neuroscience 57:661–671

    PubMed  CAS  Google Scholar 

  • Desce JM, Godeheu G, Galli T, Artaud F, Chéramy A, Glowinski J (1991) Presynaptic facilitation of dopamine release through AMPA receptors on synaptosomes from the rat striatum. J Pharmacol Exp Ther 259:692–698

    PubMed  CAS  Google Scholar 

  • Desce JM, Godeheu G, Galli T, Artaud F, Chéramy A, Glowinski J (1992) L-glutamate-evoked release of dopamine from synaptosomes of the rat striatum: involvement of AMPA and NMDA receptors. Neuroscience 47:333–339

    PubMed  CAS  Google Scholar 

  • Diaz J, Lévesque D, Lammers CH, Griffon N, Martres MP, Schwartz JC, Sokoloff P (1995) Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience 65:731–745

    PubMed  CAS  Google Scholar 

  • Dumuis A, Sebben M, Haynes L, Pin JP, Bockaert J (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:68–70

    PubMed  CAS  Google Scholar 

  • Dumuis A, Pin JP, Oomagari K, Sebben M, Bockaert J (1990) Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature 347:182–184

    PubMed  CAS  Google Scholar 

  • Dumuis A, Sebben M, Fagni L, Prézeau L, Manzoni OJ, Cragoe EJ, Bockaert J (1993) Stimulation by glutamate receptors of arachidonic acid release depends on the Na+/Ca++ exchanger in neuronal cells. Mol Pharmacol 43:976–981

    PubMed  CAS  Google Scholar 

  • El-Etr M, Marin P, Tencé M, Delumeau JC, Cordier J, Glowinski J, Premont J (1992) 2-Chloroadenosine potentiates the a1-adrenergic activation of phospholipase C through a mechanism involving arachidonic acid and glutamate in striatal astrocytes. J Neurosci 12:1363–1369

    PubMed  CAS  Google Scholar 

  • El Mestikawy S, Gozlan H, Glowinski J, Hamon M (1985) Characteristics of tyrosine hydroxylase activation by K+ induced depolarization and/or forskolin in rat striatal slices. J Neurochem 45:173–184

    PubMed  Google Scholar 

  • El Mestikawy S, Glowinski J, Hamon M (1986) Presynaptic dopamine autoreceptors control tyrosine hydroxylase activation in depolarized striatal dopaminergic terminals. J Neurochem 46:12–22

    PubMed  Google Scholar 

  • Emson PC, Augood SJ, Senaris R, Guevara-Guzman R, Kishimoto J, Kadowaki K, Norris PJ, Kendrick KM (1993) Chemical signalling and striatal interneurons. Prog Brain Res 99:155–165

    PubMed  CAS  Google Scholar 

  • Fotuhi M, Sharp AH, Glatt CE, Hwang PM, von Krosigk M, Snyder SH, Dawson TM (1993) Differential localization of phosphoinositide-linked metabotropic glutamate receptor (mGluR1) and the inositol 1,4,5-triphosphate receptor in rat brain. J Neurosci 13:2001–2012

    PubMed  CAS  Google Scholar 

  • Freeman EJ, Terrian DM, Dorman RV (1990) Presynaptic facilitation of glutamate release from isolated hippocampal mossy fiber nerve endings by arachidonic acid. Neurochem Res 15:743–750

    PubMed  CAS  Google Scholar 

  • Fuxe K, O’Connor WT, Antonelli T, Osborne PG, Tanganelli S, Agnati LF, Ungerstedt U (1992) Evidence for a substrate of neuronal plasticity based on pre- and postsynaptic neurotensin-dopamine receptor interactions in the neostriatum. Proc Natl Acad Sci USA 89:5591–5595

    PubMed  CAS  Google Scholar 

  • Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. TINS 14:60–67

    PubMed  CAS  Google Scholar 

  • Garret C, Carruette A, Fardin V, Moussaoui S, Peyronel JF, Blanchart JC, Laduron P (1991) Pharmacological properties of a potent and selective nonpeptide substance P antagonist. Proc. Natl Acad. Sci. USA 88:10208–10212

    PubMed  CAS  Google Scholar 

  • Gauchy C, Desban M, Krebs MO, Glowinski J, Kernel ML (1991) Role of dynorphin-containing neurons in the presynaptic inhibitory control of the acetylcholine-evoked release of dopamine in the striosomes and the matrix of the cat caudate nucleus. Neuroscience 41:449–458

    PubMed  CAS  Google Scholar 

  • Gerfen CR (1991) Substance P (neurokinin-1) receptor mRNA is selectively expressed in cholinergic neurons in the striatum and basal forebrain. Brain Res 556:165–170

    PubMed  CAS  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and stri-atopallidal neurons. Science 250:1429–1432

    PubMed  CAS  Google Scholar 

  • Gerfen CR, Wilson CJ (1996) The basal ganglia. In: Swanson LW, Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy, Integrated systems of the CNS, Part III. Elsevier Science vol 12:371–468

    Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptative motor control. Science 265:1826–1831

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Baughman RW, Eckenstein F (1986) Cholinergic neuropil of the striatum observes striosomal boundaries. Nature 323:625–627

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Flaherty AW, Giménez-Amaya JM (1991) Striosomes and matrisomes, In: Bernardi G et al. (eds) The basal ganglia III. Plenum Press, New York 3–12

    Google Scholar 

  • Guevara-Guzman R, Emson PC, Kendrick KM (1994) Modulation of in vivo striatal transmitter release by nitric oxide and cyclic GMP. J Neurochem 62:807–810

    PubMed  CAS  Google Scholar 

  • Guevara-Guzman R, Kendric KM, Emson PC (1993) Effect of substance P on acetylcholine and dopamine release in the rat striatum: a microdialysis study. Brain Res 622:147–154

    CAS  Google Scholar 

  • Hanbauer I, Wink D, Osawa Y, Edelman GM, Gaily JA (1992) Role of nitric oxide in NMDA-evoked release of [3H]-dopamine from striatal slices. NeuroReport 3: 409–412

    PubMed  CAS  Google Scholar 

  • Herrero I, Miras-Portugal MT, Sanchez-Prieto J (1992a) Activation of protein kinase C by phorbol Esters and Arachidonic acid required for the optimal potentiation of glutamate exocytosis. J Neurochem 59:1574–1577

    PubMed  CAS  Google Scholar 

  • Herrero I, Miras-Portugal MT, Sanchez-Prieto JP (1992b) Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature 360: 163–166

    PubMed  CAS  Google Scholar 

  • Ince E, Ciliax BJ, Levey AI (1997) Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27:357–366

    PubMed  CAS  Google Scholar 

  • Ishida Y, Yamamoto R, Mitsuyama Y (1994) Effects of 1- and D-enantiomers of N omega-nitro-arginine on NMDA-evoked striatal dopamine overflow. Brain Res Bull 34:483–486

    PubMed  CAS  Google Scholar 

  • Jakab RL, Goldman-Rakic P (1996) Presynaptic and postsynaptic subcellular localization of substance P receptor immunoreactivity in the neostriatum of the rat and rhesus monkey. J Comp Neurol 369:125–136

    PubMed  CAS  Google Scholar 

  • Jin S, Fredholm BB (1994) Role of NMDA, AMPA and kainate receptors in mediating glutamate- and 4-AP-induced dopamine and acetylcholine release from rat striatal slices. Neuropharmacology 33:1039–1048

    PubMed  CAS  Google Scholar 

  • Kernel ML, Desban M, Glowinski J, Gauchy C (1989) Distinct presynaptic control of dopamine release in striosomal and matrix areas of the cat caudate nucleus. Proc. Natl. Acad. Sci. USA 86:9006–9010

    Google Scholar 

  • Kernel ML, Desban M, Glowinski J, Gauchy C (1992) Functional heterogeneity of the matrix compartment in the cat caudate nucleus as demonstrated by the cholinergic presynaptic regulation of dopamine release. Neuroscience 50:597–610

    Google Scholar 

  • Kimura M (1995) Role of basal ganglia in behavioral learning. Neurosci. Res 22: 353–358

    PubMed  CAS  Google Scholar 

  • Krebs MO, Desce JM, Kernel ML, Gauchy C, Godeheu G, Chéramy A, Glowinski J (1991a) Glutamatergic control of dopamine release in the rat striatum: evidence for presynaptic N-methyl-D-Aspartate receptors on dopaminergic terminals. J Neurochem 56:81–85

    PubMed  CAS  Google Scholar 

  • Krebs MO, Gauchy C, Desban M, Glowinski J, Kernel ML (1994) Role of dynorphin and GABA in the inhibitory regulation of NMDA-induced dopamine release in striosome- and matrix-enriched areas of the rat striatum. J Neurosci 14:2435–2443

    PubMed  CAS  Google Scholar 

  • Krebs MO, Kernel ML, Gauchy C, Desban M, Glowinski J (1989) Glycine potentiates the NMDA-induced release of dopamine through a strychnine-insensitive site in the rat striatum. Eur J Pharmacol 166:567–570

    PubMed  CAS  Google Scholar 

  • Krebs MO, Kernel ML, Gauchy C, Desban M, Glowinski J (1993) Local GABAergic regulation of the N-methyl-D-aspartate-evoked release of dopamine is more prominent in striosomes than in matrix of the rat striatum. Neuroscience 57: 249–260

    PubMed  CAS  Google Scholar 

  • Krebs MO, Trovéro F, Desban M, Gauchy C, Glowinski J, Kernel ML (1991b) Distinct presynaptic regulation of dopamine release through NMDA receptors in striosome- and matrix-enriched areas of the rat striatum. J Neurosci 11:1256–1262

    PubMed  CAS  Google Scholar 

  • Kubota Y, Kawaguchi Y (1993) Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. J Comp Neurol 332:499–513

    PubMed  CAS  Google Scholar 

  • Le Moine C, Bloch B (1995) D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 355:418–426

    PubMed  Google Scholar 

  • L’hirondel M, Chéramy A, Godeheu G, Glowinski J (1995) Effects of arachidonic acid on dopamine synthesis, spontaneous release and uptake in striatal synaptosomes from the rat. J Neurochem 64:1406–1409

    PubMed  Google Scholar 

  • L’hirondel M, Chéramy A, Godeheu G, Artaud F, Saiardi A, Borrelli E, Glowinski J (1998) Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice. Brain Res 792:253–262

    PubMed  Google Scholar 

  • L’hirondel M, Chéramy A, Artaud F, Godeheu G, Glowinski J (1999) Contribution of endogenously formed arachidonic acid in the presynaptic facilitatory effects of NMDA and carbachol on dopamine release in the mouse striatum. Eur J Neurosci 11:1292–1300

    PubMed  Google Scholar 

  • Lin A, Kao L, Chai C (1995) Involvement of nitric oxide in dopaminergic transmission in rat striatum: an in vivo electrochemical study. J Neurochem 65:2043–2049

    PubMed  CAS  Google Scholar 

  • Lonart G, Cassels KL, Johnson KM (1993) Nitric oxide induces calcium-dependent 3H-dopamine release from striatal slices. J Neurosci Res 35:192–198

    PubMed  CAS  Google Scholar 

  • Lynch MA, Voss KL (1990) Arachidonic acid increases inositol phospholipid metabolism and glutamate release in synaptosomes prepared from hippocampal tissue. J Neurochem 55:215–221

    PubMed  CAS  Google Scholar 

  • Marin P, Delumeau JC, Tencé M, Cordier J, Glowinski J, Prémont J (1991) Somatostatin potentiates the a1-adrenergic activation of phospholipase C in striatal astrocytes through a mechanism involving arachidonic acid and glutamate. Proc Natl Acad Sci USA 88:9016–9020

    PubMed  CAS  Google Scholar 

  • Martin LJ, Blackstone CD, Levey AI, Huganir RL, Price DL (1993) AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience 53: 327–358

    PubMed  CAS  Google Scholar 

  • McGahon B, Lynch MA (1996) The synergism between ACPD and arachidonic acid on glutamate release in hippocampus is age-dependent. Eur J Pharmacol 309:323–326

    PubMed  CAS  Google Scholar 

  • Meador-Woodruff JH, Damask SP, Watson SJ (1994) Differential expression of autore-ceptors in the ascending dopamine systems of the human brain. Proc Natl Acad Sci USA 91:8297–8301

    PubMed  CAS  Google Scholar 

  • Nieoullon A, Chéramy A, Glowinski J (1978) Release of dopamine evoked by electrical stimulation of the motor and visual areas of the cerebral cortex in both caudate nuclei and in the substantia nigra in the cat. Brain Res 145:69–83

    PubMed  CAS  Google Scholar 

  • Onali P, Olianas MC, Bunse B (1988) Evidence that adenosine A2 and dopamine autoreceptors antagonistically regulate tyrosine hydroxylase activity in rat striatal synaptosomes. Brain Res 456:302–309

    PubMed  CAS  Google Scholar 

  • Ordway RW, Singer JJ, Walsh JV (1991) Direct regulation of ion channels by fatty acids. TINS 14:96–100

    PubMed  CAS  Google Scholar 

  • Petitet F, Blanchard JC, Doble A (1995) Effects of AMPA receptor modulators on the production of arachidonic acid from striatal neurons. Eur J Pharmacol 291:143–151

    PubMed  CAS  Google Scholar 

  • Petitet F, Glowinski J, Beaujouan JC (1991) Evoked release of acetylcholine in the rat striatum by stimulation of tachykinin NK1 receptors. Eur J Pharmacol 192:203–204

    PubMed  CAS  Google Scholar 

  • Roberts PJ, Anderson SD (1979) Stimulatory effect of L-glutamate and related amino acids on 3H-dopamine release from rat striatum: an in vitro model for glutamate actions. J Neurochem 32:1539–1545

    PubMed  CAS  Google Scholar 

  • Robinson PJ (1992) Potencies of protein kinase C inhibitors are dependent on the activators used to stimulate the enzyme. Biochem Pharmacol 44:1325–1334

    PubMed  CAS  Google Scholar 

  • Rodriguez-Alvarez J, Lafon-Cazal M, Blanco I, Bockaert J (1997) Different routes of Ca2+ influx in NMDA-mediated generation of nitric oxide and arachidonic acid. Eur J Neurosci 9:867–870

    PubMed  CAS  Google Scholar 

  • Romo R, Chéramy A, Godeheu G, Glowinski J (1984) Distinct commissural pathways are involved in the enhanced release of dopamine induced in the contralateral caudate nucleus and substantia nigra by unilateral application of GABA in the cat thalamic motor nuclei. Brain Res 308:43–52

    PubMed  CAS  Google Scholar 

  • Romo R, Schultz W (1985) Prolonged changes in dopaminergic terminal excitability and short changes in dopaminergic neuron discharge rate after short peripheral stimulation in monkey. Neurosci Lett 62:335–340

    PubMed  CAS  Google Scholar 

  • Romo R, Chéramy A, Godeheu G, Glowinski J (1986a) In vivo presynaptic control of dopamine release in the cat caudate nucleus I. Opposite changes in neuronal activity and release evoked from thalamic motor nuclei. Neuroscience 19:1067–1079

    PubMed  CAS  Google Scholar 

  • Romo R, Chéramy A, Godeheu G, Glowinski J (1986b) In vivo presynaptic control of dopamine release in the cat caudate nucleus III. Further evidence for the implication of corticostriatal glutamatergic neurons. Neuroscience 19:1091–1099

    PubMed  CAS  Google Scholar 

  • Sandor NT, Brassai A, Puskas A, Lendvai B (1995) Role of nitric oxide in modulating neurotransmitter release from rat striatum. Brain Res Bull, 36:483–486

    PubMed  CAS  Google Scholar 

  • Shibata M, Araki N, Ohta K, Hamada J, Shimazu K, Fukuuchi Y (1996) Nitric oxide regulates NMDA-induced dopamine release in rat striatum. NeuroReport 7:605–608

    PubMed  CAS  Google Scholar 

  • Shigemoto R, Nakanishi S, Mizuno N (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluRl) in the central nervous system: An in situ hybridization study in adult and developing rat. J Comp Neurol 322:121–135

    PubMed  CAS  Google Scholar 

  • Snell LD, Johnson KM (1986) Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs. J Pharmacol Exp Ther 238:938–946

    PubMed  CAS  Google Scholar 

  • Standaert DG, Testa CM, Young AB, Penney JB (1994) Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J Comp Neurol 343:1–16

    PubMed  CAS  Google Scholar 

  • Starke K (1981) Presynaptic receptors. Ann Rev Pharmacol Toxicol 21:7–30

    CAS  Google Scholar 

  • Stella N, Tencé M, Glowinski J, Prémont J (1994a) Glutamate-evoked release of arachidonic acid from mouse brain astrocytes. J Neurosci 14:568–575

    PubMed  CAS  Google Scholar 

  • Stella N, Siciliano J, Piomelli D, El-Etr M, Glowinski J, Prémont J (1994b) Interleukin 1 enhances receptor-dependent and independent induced release of arachidonic acid from mouse striatal astrocytes. Soc Neurosci Abstr 20:1052–1052

    Google Scholar 

  • Stella N, Estelies A, Siciliano J, Tencé M, Desagher S, Piomelli D, Glowinski J (1997) Interleukin-1 enhances the ATP-evoked release of arachidonic acid from mouse astrocytes. J Neurosci 17:2939–2946

    PubMed  CAS  Google Scholar 

  • Stewart TL, Michel AD, Black MD, Humphrey PPA (1996) Evidence that nitric oxide causes calcium-independent release of 3H-dopamine from rat striatum in vitro. J Neurochem 66:131–137

    PubMed  CAS  Google Scholar 

  • Stoessl AJ (1994) Localization of striatal and nigral tachykinin receptors in the rat. Brain Res 646:13–18

    PubMed  CAS  Google Scholar 

  • Strasser A, McCarron RM, Ishii H, Stanimirovic D, Spatz M (1994) L-arginine induces dopamine release from the striatum in vivo. NeuroReport 5:2298–2300

    PubMed  CAS  Google Scholar 

  • Tanganelli S, Von Euler G, Fuxe K, Agnati LF, Ungerstedt U (1989) Neurotensin counteracts apomorphine-induced inhibition of dopamine release as studied by micro-dialysis in rat neostriatum. Brain Res 502:319–324

    PubMed  CAS  Google Scholar 

  • Tencé M, Cordier J, Glowinski J, Prémont J (1992) Endothelin-evoked release of arachidonic acid from mouse astrocytes in primary culture. Eur J Neurosci 4: 993–999

    PubMed  Google Scholar 

  • Tencé M, Murphy NP, Cordier J, Prémont J, Glowinski J (1995) Synergistic effects of acetylcholine and glutamate on the release of arachidonic acid from cultured striatal neurons. J Neurochem 64:1605–1613

    PubMed  Google Scholar 

  • Tepper JM, Sawyer SF, Young SJ, Groves PM (1986) Autoreceptor-mediated changes in dopaminergic terminal excitability: effects of potassium channel blockers. Brain Res 367:230–237

    PubMed  CAS  Google Scholar 

  • Testa CM, Standaert DG, Young AB, Penney JB (1994) Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 14:3005–3018

    PubMed  CAS  Google Scholar 

  • Tremblay L, Kernel ML, Desban M, Gauchy C, Glowinski J (1992) Distinct presynaptic control of dopamine release in striosomal- and matrix-enriched areas of the rat striatum by selective agonists of NK1, NK2, and NK3 tachykinin receptors. Proc. Natl. Acad. Sci. USA 89:11214–11218

    PubMed  CAS  Google Scholar 

  • Vilaro MT, Palacios JM, Mengod G (1990) Localization of M5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 114:154–159

    PubMed  CAS  Google Scholar 

  • Volterra A, Trotti D, Cassutti P, Tromba C, Galimberti R, Lecchi P, Racagni G (1992a) A role for the arachidonic acid cascade in fast synaptic modulation: ion channels and transmitter uptake systems as target proteins. Adv Exp Med Biol 318:147–158

    PubMed  CAS  Google Scholar 

  • Volterra A, Trotti D, Cassutti P, Tromba C, Salvaggio A, Melcangi RC, Racagni G (1992b) High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J Neurochem 59:600–606

    PubMed  CAS  Google Scholar 

  • Wang JK (1991) Presynaptic glutamate receptors modulate dopamine release from striatal synaptosomes. J Neurochem 57:819–822

    PubMed  CAS  Google Scholar 

  • Weiner DM, Levey AI, Brann MR (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA 87: 7050–7054

    PubMed  CAS  Google Scholar 

  • Whitty CJ, Walker PD, Goebel DJ, Poosch MS, Bannon MJ (1995) Quantitation, cellular localization and regulation of neurokinin receptor gene expression within the rat substantia nigra. Neuroscience 64:419–425

    PubMed  CAS  Google Scholar 

  • Williams RJ, Glowinski J (1996) Cyclothiazide unmasks an AMPA-evoked release of arachidonic acid from cultured striatal neurones. J Neurochem 67:1551–1558

    PubMed  CAS  Google Scholar 

  • Wilson CJ, Chang HT, Kitai ST (1990) Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci 10:508–519

    PubMed  CAS  Google Scholar 

  • Yu AC, Chan PH, Fishman RA (1986) Effects of arachidonic acid on glutamate and gamma-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons. J Neurochem 47:1181–1189

    PubMed  CAS  Google Scholar 

  • Yung KKL, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995) Immunocy-tochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65:709–730

    PubMed  CAS  Google Scholar 

  • Zhu XZ, Luo LG (1992) Effect of nitroprusside (nitric oxide) on endogenous dopamine release from rat striatal slices. J Neurochem 59:932–935

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glowinski, J., Cheramy, A., Kemel, ML. (2002). Presynaptic Regulation of Dopamine Release. In: Di Chiara, G. (eds) Dopamine in the CNS II. Handbook of Experimental Pharmacology, vol 154 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06765-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06765-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07659-6

  • Online ISBN: 978-3-662-06765-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics