Skip to main content

Image Formation and Data Processing

  • Chapter
  • 172 Accesses

Part of the book series: Diagnostic Imaging ((Med Radiol Diagn Imaging))

Abstract

For the past several years, computer speeds have tended to double every year. This is an exponential growth curve, and the cumulative gain is impressive: programs running for a day 10 years ago now require a minute. This allows algorithm designers to follow new strategies. Ingenious mathematics and clever numerical analysis now must face competition from inefficient and ugly brute-force computations, and soon will no longer be necessary. An important advantage is that problems which cannot be solved analytically can now be tackled with computation-intensive numerical procedures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ardekani BA, Braun M, Hutton BF et al. (1996) Minimum cross-entropy reconstruction of PET images using prior anatomical information. Phys Med Biol 41:2497–2517

    Article  PubMed  CAS  Google Scholar 

  • Alenius S, Ruotsolainen U (1997) Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med 24:258–265

    PubMed  CAS  Google Scholar 

  • Axelsson B, Msaki P, Israelsson A (1984) Subtraction of Comp-ton scattered photons in single-photon emission computed tomography. J Nucl Med 23:290–294

    Google Scholar 

  • Barrett HH, Yao J, Rolland JP et al. (1993) Model observers for assessment of image quality: Proc Natl Acad Sci USA 90:9758–9765

    Article  PubMed  CAS  Google Scholar 

  • Barrett HH, Wilson DW, Tsui BMW (1994) Noise properties of the EM algorithm: I. Theory. Phys Med Biol 39:833–846

    Article  CAS  Google Scholar 

  • Beekman FJ, Kamphuis C, Viergever MA (1996) Improved SPECT quantitation using fully three-dimensional iterative spatially variant scatter response compensation. IEEE Trans Med Imaging 15:491–499

    Article  PubMed  CAS  Google Scholar 

  • Beekman FJ, Slijpen ETP, Niessen WJ (1998) Selection of task-dependent diffusion filters for the post-processing of SPECT images. Phys Med Biol 43:1713–1730

    Article  PubMed  CAS  Google Scholar 

  • Bellini S, Piacentini M, Cafforio C, Rocca F (1979) Compensation of tissue absorption in emission tomography. IEEE Trans. Acoust Speech Signal Proc 27:213–218

    Article  Google Scholar 

  • Bowsher JE, Johnson VE, Turkington TG et al. (1996) Bayesian reconstruction and use of anatomical a Priori information for emission tomography. IEEE Trans Med Imaging 15:673–686

    Article  PubMed  CAS  Google Scholar 

  • Buvat I, Benali H, Todd-Pokropek A et al. (1995) Scatter correction in scintigraphy: the state of the art. Eur J Nucl Med 21:675–694

    Article  Google Scholar 

  • Case JA, Pan TS, King MA, Luo DS, Penney BC, Rabin MSZ (1995) Reduction of truncation artifacts in fan beam transmission imageing using a spatially varying gamma prior. IEEE Trans Nucl Sci 42:2260–2265

    Article  Google Scholar 

  • Chan MT, Leahy RM, Mumcuoglu EU et al. (1997) Comparing lesion detection performance in PET image reconstruction algorithms: a case study. IEEE Trans Nucl Sei 44:1558–1563

    Article  Google Scholar 

  • Chatziioannou A, Dahlbom M (1996) Detailed investigation of transmission and emission data smoothing protocols and their effects on emission images. IEEE Trans Nucl Sci 43:290–294

    Article  CAS  Google Scholar 

  • Coakley K, Llacer J (1991) The use of cross-validation as a stopping rule in emission tomography image reconstruction. SPIE Med Imaging V:226–233

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    Google Scholar 

  • de Vries DJ, King MA, Soares EJ et al. (1997) Evaluation of the effect of scatter correction on lesion detection in hepatic SPECT imaging. IEEE Trans Nucl Sci 44:1733–1740

    Article  Google Scholar 

  • Falcon C, Juvells I, Pavia J, Ros D (1998) Evaluation of a cross-validation stopping rule in MLE SPECT reconstruction. Phys Med Biol 43:1271–1283

    Article  PubMed  CAS  Google Scholar 

  • Ferreira NC, Trebossen R, Bendriem B (1998) Assessment of 3-D PET quantitation: influence of out of the field of view radioactive sources and of attenuating media. IEEE Trans Nucl Sci 45:1670–1675

    Article  CAS  Google Scholar 

  • Fessier DU, Ficaro EP, Clinthorne NH et al. (1997) Grouped-co-ordinate ascent algorithms for penalized-likelihood transmission image reconstruction. IEEE Trans Med Imaging 16:166–175

    Article  Google Scholar 

  • Fulton RR, Hutton BF, Braun M et al. (1994) Use of 3D reconstruction to correct for patient motion in SPECT. Phys Med Biol 39:563–574

    Article  PubMed  CAS  Google Scholar 

  • Gagnon D, Todd-Pokropek A, Arsenault A et al. (1989) Introduction to holospectral imaging in nuclear medicine for scatter subtraction. IEEE Trans Med Imaging 8:245–250

    Article  PubMed  CAS  Google Scholar 

  • Gilland DR, Tsui BM, Metz CE et al. (1992) An evaluation of maximum-likelihood expectation maximization reconstruction for SPECT by ROC analysis. J Nucl Med 33:451–457

    PubMed  CAS  Google Scholar 

  • Glick S J, Penney BC, King MA et al. (1994) Noniterative compensation for the distant-dependent detector response and photon attenuation in SPECT imaging. IEEE Trans Med Imaging 13:363–374

    Article  PubMed  CAS  Google Scholar 

  • Herman GT (1980) Image reconstruction from projections, the fundamentals of computerized tomography. Academic, New York

    Google Scholar 

  • Huang SC, Phelps ME (1986) In: Phelps ME, Mazziotta JC, Schelbert HR (eds) Positron emission tomgoraphy and autoradiography. Raven, New York, pp 287–346

    Google Scholar 

  • Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–609

    Article  PubMed  CAS  Google Scholar 

  • Huesman RH (1984) A new fast algorithm for the evaluation of regions of interest and statistical uncertainty in computed tomography. Phys Med Biol 29:543–552

    Article  PubMed  CAS  Google Scholar 

  • Hutton BF, Lau YH (1998) Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT. Phys Med Biol 43:1679–1693

    Article  PubMed  CAS  Google Scholar 

  • Hutton BF, Osiecki A, Meikle SR (1996) Transmission-based scatter correction of 180 degrees myocardial single-photon emission tomographic studies. Eur J Nucl Med 23:1300–1308

    Article  PubMed  CAS  Google Scholar 

  • Iida H, Narita Y, Kado H et al. (1998) Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 39:181–189

    PubMed  CAS  Google Scholar 

  • Jang S, Jaszczak RJ, Tsui BMW et al. (1998) ROC evaluation of SPECT myocardial lesion detectability with and without single iteration non-uniform Chang attenuation compensation using an anthropomorphic female phantom. IEEE Trans Nucl Sci 45:2080–2088

    Article  Google Scholar 

  • Jaszczak RJ, Greer KL, Floyd CE et al. (1984) Improved SPECT quantification using compensation for scattered photons. J Nucl Med:25:893–900

    PubMed  CAS  Google Scholar 

  • Karp JS, Becker AJ, Matej S et al. (1998) Data processing and image reconstruction methods for the HEAD PENN-PET scanner. Phys Med Biol 45:1144–1151

    CAS  Google Scholar 

  • Kaufman L (1987) Implementing and accelerating the EM algorithm for positron emission tomography. IEEE Trans Med Imaging MI-6:37–51

    Article  PubMed  CAS  Google Scholar 

  • King MA, Schwinger RB, Penney BC et al. (1986) Digital restoration of indium-111 and iodine-123 SPECT images with optimized Metz filters. J Nucl Med 27:1327–1336

    PubMed  CAS  Google Scholar 

  • King MA, Tsui BMW, Pan TS et al. (1996) Attenuation compensation for cardiac single-photon emission computed tomographic imaging: 2. Attenuation compensation algorithms. J Nucl Cardiol 3:55–64

    Article  PubMed  CAS  Google Scholar 

  • King MA, de Vries DJ, Pan TS et al. (1997) An investigation of the filtering of TEW scatter estimates used to compensate for scatter with ordered subset reconstructions. IEEE Trans Nucl Sci 44:1140–1145

    Article  Google Scholar 

  • Kohli V, King MA, Glick S J et al. (1998) Comparison of frequency-distance relationship and Gaussian-diffusion-based methods of compensation for distance-dependent spatial resolution in SPECT imaging. Phys Med Biol 43:1025–1037

    Article  PubMed  CAS  Google Scholar 

  • Lalush DS, Tsui BM (1993) A generalized Gibbs prior for maximum a posteriori reconstruction in SPECT. Phys Med Biol 38:729–741

    Article  PubMed  CAS  Google Scholar 

  • Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comp Assist To-mogr 8:306–316

    CAS  Google Scholar 

  • Lewitt RM (1992) Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys Med Biol 37:705–716

    Article  PubMed  CAS  Google Scholar 

  • Li J, Jaszczak RJ, Wang H et al. (1995) A filtered backprojection algorithm for fan beam SPECT which corrects for patient motion. Phys Med Biol 40:283–294

    Article  PubMed  CAS  Google Scholar 

  • Liow JS; Strother SC (1993) The convergence of object dependent resolution in maximum likelihood based tomographic image reconstruction. Phys Med Biol 38:55–70

    Article  PubMed  CAS  Google Scholar 

  • Llacer J, Veklerov E (1989) Feasible images and practical stopping rules for iterative algorithms in emission tomography. IEEE Trans Med Imaging 8:186–193

    Article  PubMed  CAS  Google Scholar 

  • Llacer J, Veklerov E, Baxter LR et al. (1993) Results of a clinical receiver operating characteristic study comparing filtered backprojection and maximum likelihood estimator images in FDG PET studies J Nucl Med 34:1198–1203

    PubMed  CAS  Google Scholar 

  • Manglos SH, Gagne GM, Bassano DA (1993) Quantitative analysis of image truncation in focal-beam CT. Phys Med Biol 38:1443–1457

    Article  Google Scholar 

  • Matsunari I, Boning G, Ziegler SI et al. (1998) Effects of misalignment between transmission and emission scans on attenuation-corrected cardiac SPECT. J Nucl Med 39:411–416

    PubMed  CAS  Google Scholar 

  • McCord ME, Bacharach SL, Bonow RO et al. (1992) Misalignment between PET transmission and emission scans: its effect on myocardial imaging. J Nucl Med 33:1209–1214

    PubMed  CAS  Google Scholar 

  • Meikle SR, Dahlbom M, Cherry SR (1993) Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med 34:143–144

    PubMed  CAS  Google Scholar 

  • Meikle SR, Matthews JC, Cunningham VJ et al. (1998) Parametric image reconstruction using spectral analysis of PET projection data. Phys Med Biol 43:651–666

    Article  PubMed  CAS  Google Scholar 

  • Michel C, Bol A, De Voider AG, Goffinet AM (1989) Online brain attenuation correction in PET: towards a fully automated data handling in a clinical environment. Eur J Nucl Med 15:712–718

    Article  PubMed  CAS  Google Scholar 

  • Mumcuoglu EU, Leahy RM, Cherry SR (1996) Bayesian reconstruction of PET images: methodology and performance analysis. Phys Med Biol 41:1777–1807

    Article  PubMed  CAS  Google Scholar 

  • Narita Y, Iida H, Eberl S et al. (1997) Monte Carlo evaluation of accuracy and noise properties of two scatter correction methods for Tl-201 cardiac SPECT. IEEE Trans Nucl Sci 44:2465–2472

    Article  CAS  Google Scholar 

  • Nuyts J, Bosmans H, Suetens P (1993) An analytical model for scatter in a homogeneously attenuating medium. IEEE Trans. Med. Imaging 12:421–429

    Article  PubMed  CAS  Google Scholar 

  • Nuyts J, Dupont P, Van den Maegdenbergh V et al. (1995) A study of the liver-heart artifact in emission tomography. J Nucl Med 36:133–139

    PubMed  CAS  Google Scholar 

  • Nuyts J, Maes A, Vrolix M et al. (1996) Three-dimensional correction for spill-over and recovery of myocardial PET images. J Nucl Med 37:767–774

    PubMed  CAS  Google Scholar 

  • Nuyts J, De Man B, Dupont P et al. (1998) Iterative reconstruction for helical CT: a simulation study. Phys Med Biol 4:729–737

    Article  Google Scholar 

  • Ollinger JM (1996) Model-based scatter correction for fully 3D PET. Phys Med Biol 41:153–176

    Article  PubMed  CAS  Google Scholar 

  • Raylman RR, Hutchins GD, Beanlands RSB et al. (1994) Modeling of carbon-11-acetate kinetics by simultaneously fitting data from multiple ROIs coupled by common parameters. J Nucl Med 35:1286–1291

    PubMed  CAS  Google Scholar 

  • Rockmore AJ, Macovski A (1976) A maximum likelihood approach to emission image reconstruction from projections. IEEE Trans Nucl Sci NS-23:1428–1432

    Article  Google Scholar 

  • Schiepers C, Nuyts J, Wu C et al. (1997) PET with F-18 fluoride: effects of iterative versus filtered backprojection reconstruction on kinetic modeling. IEEE Trans Nucl Sci 44:1591–1593

    Article  CAS  Google Scholar 

  • Schmidlin P (1972) Iterative separation of sections in tomographic scintigrams. Nuklearmedizin 11:1–16

    CAS  Google Scholar 

  • Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging MI-1:113–122

    Article  PubMed  CAS  Google Scholar 

  • Snyder DL, Miller MI (1985) The use of sieves to stabilize images produced with the EM algorithm for emission tomography. IEEE Trans Nucl Sci NS-32:3864–3872

    Article  Google Scholar 

  • Snyder DL, Miller MI, Thomas LJ et al. (1987) Noise and edge artifacts in maximum likelihood reconstructions for emission tomography. IEEE Trans Med Imaging MI-6:228–238

    Article  PubMed  CAS  Google Scholar 

  • Tai YC, Lin KP, Dahlbom M, Hoffman EJ (1996) A hybrid attenuation correction technique to compensate for lung density in 3D total body PET. IEEE Trans Nucl Sci 43:323–330

    Article  Google Scholar 

  • Tanaka E (1987) A fast reconstruction algorithm for stationary positron emission tomography based on a modified EM algorithm. IEEE Trans Med Imaging MI-6:98–105

    Article  PubMed  CAS  Google Scholar 

  • Veklerov E, Llacer J (1987) Stopping rule for the MLE algorithm based on statistical hypothesis testing. IEEE Trans Med Imaging MI-6:313–319

    Article  PubMed  CAS  Google Scholar 

  • Walrand SHM, van Elmbt LR, Pauwels S (1994) Quantitation in SPECT using an effective model of the scattering. Phys Med Biol 39:719–734

    Article  PubMed  CAS  Google Scholar 

  • Welch A, Gullberg GT (1997) Implementation of model-based nonuniform scatter correction scheme for SPECT. IEEE Trans Med Imaging 16:717–726

    Article  PubMed  CAS  Google Scholar 

  • Wells RG, Celler A, Harrop R (1997) Experimental validation of an analytical method of calculating SPECT projection data. IEEE Trans Nucl Sei 44:1283–1290

    Article  CAS  Google Scholar 

  • Wilson DW, Tsui BMW, Barrett HH (1994) Noise properties of the EM algorithm: II. Monte Carlo simulations. Phys Med Biol 39:833–846

    Article  PubMed  Google Scholar 

  • Wu HM, Huang SC, Allada et al. (1996) Derivation of input function from FDG-PET studies in small hearts. J Nucl Med 37:1717–1722

    PubMed  CAS  Google Scholar 

  • Xia W, Lewitt RM, Edholm PR (1995) Fourier correction for spatially variant collimator blurring in SPECT. IEEE Trans Med Imaging 14:100–115

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Cutler PD, Luk WK (1996) Adaptive, segmented attenuation correction for whole-body PET imaging. IEEE Trans Nucl Sci 43:331–336

    Article  Google Scholar 

  • Yang JT, Yamamoto K, Sadato N et al. (1997) Clinical value of triple-energy window scatter correction in simultaneous dual-isotope single-photon emission tomography with I-123-BMIPP and Tl-201. Eur J Nucl Med 24:1099–1106

    PubMed  CAS  Google Scholar 

  • Zhou Y, Cloughesy T, Hoh CK et al. (1997) A modeling-based factor extraction method for determining spatial heterogeneity of Ga-68 EDTA kinetics in brain tumors. IEEE Trans Nucl Sci 44:2522–2527

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nuyts, J. (2000). Image Formation and Data Processing. In: Schiepers, C. (eds) Diagnostic Nuclear Medicine. Diagnostic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06590-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06590-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06592-1

  • Online ISBN: 978-3-662-06590-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics