Measles Virus and Dendritic Cell Functions: How Specific Response Cohabits with Immunosuppression

  • C. Servet-Delprat
  • P.-O. Vidalain
  • H. Valentin
  • C. Rabourdin-Combe
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 276)


Measles virus (MV) infection induces both an efficient MV-specific immune response and a transient but profound immunosuppression characterised by a panlymphopenia that occasionally results in opportunistic infections responsible for a high rate of mortality in children. On the basis of in vitro studies, the putative roles of dendritic cells (DCs) in MV infection are discussed. (1) DCs could participate in anti-MV innate immunity because MV turns on TNF-related apoptosis-inducing ligand (TRAIL)-mediated DC cytotoxicity. (2) Cross-priming by non-infected DCs might be the route of MV adaptive immune response. (3) After CD40-ligand activation in secondary lymphoid organs, MV-infected DCs could initiate the formation of Warthin-Finkeldey multinucleated giant cells, replicating MV and responsible for in vivo spreading of MV. (4) We review how integrated viral attack of the host immune system also targets DCs: Progress in understanding the immunobiology of MV-infected DCs that could account for MV-induced immunosuppression observed in vivo is presented and their potential role in lymphopenia is underlined. In conclusion, future research directions are proposed.


Dendritic Cell Measle Virus Secondary Lymphoid Organ Human Dendritic Cell Dendritic Cell Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



acquired immunodeficiency syndrom


antigen presenting cells


CD40 ligand


dendritic cell(s)


double strand RNA




human immunodeficiency virus








major histocompatibility complex class I/II


measles virus




toll receptor


TNF-related apoptosis-inducing ligand


Warthin-Finkeldey cells


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adema GJ, Hartgers F, Verstraten R, de Vries E, Marland G, Menon S, Foster J, Xu Y, Nooyen P, McClanahan T et al. 1997. A dendritic-cell-derived C-C chemokine that preferentially attracts naïve T cells. Nature 387 (6634): 713–7.PubMedCrossRefGoogle Scholar
  2. Albert ML, Sauter B, Bhardwaj N. 1998. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392 (6671): 86–9.PubMedCrossRefGoogle Scholar
  3. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413 (6857): 732–8.PubMedCrossRefGoogle Scholar
  4. Andjelic S, Hsia C, Suzuki H, Kadowaki T, Koyasu S, Liou HC. 2000. Phosphatidylinositol 3-kinase and NF-kappa B/Rel are at the divergence of CD40-mediated proliferation and survival pathways. J Immunol 165 (7): 3860–7.PubMedGoogle Scholar
  5. Arron JR, Vologodskaia M, Wong BR, Naramura M, Kim N, Gu H, Choi Y. 2001. A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (trance) and CD40L-mediated Akt activation. J Biol Chem 276 (32): 30011–7.PubMedCrossRefGoogle Scholar
  6. Auwaerter PG, Kaneshima H, McCune JM, Wiegand G, Griffin DE. 1996. Measles virus infection of thymic epithelium in the SCID-hu mouse leads to thymocyte apoptosis. J Virol 70 (6): 3734–3740.PubMedGoogle Scholar
  7. Avota E, Avots A, Niewiesk S, Kane LP, Bommhardt U, ter Meulen V, SchneiderSchaulies S. 2001. Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 7 (6): 725–31.PubMedCrossRefGoogle Scholar
  8. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. 1998. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393 (6684): 478–80.PubMedCrossRefGoogle Scholar
  9. Bjorck P, Banchereau J, Flores-Romo L. 1997. CD40 ligation counteracts Fas-induced apoptosis of human dendritic cells. Int Immunol 9 (3): 365–72.PubMedCrossRefGoogle Scholar
  10. Esolen LM, Ward BJ, Moench TR, Griffin DE. 1993. Infection of monocytes during measles. J Infect Dis 168 (1): 47–52.PubMedCrossRefGoogle Scholar
  11. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M. 1999. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99 (1): 23–33.PubMedCrossRefGoogle Scholar
  12. Fugier-Vivier I, Servet-Delprat C, Rivailler P, Rissoan MC, Liu YJ, RabourdinCombe C. 1997. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186 (6): 813–23.PubMedCrossRefGoogle Scholar
  13. Furukawa S, Matsubara T, Tsuji K, Motohashi T, Okumura K, Yabuta K. 1991. Serum soluble CD4 and CD8 levels in Kawasaki disease. Clin Exp Immunol 86 (1): 134–9.PubMedCrossRefGoogle Scholar
  14. Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR et al. 2000. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100 (5): 587–97.PubMedCrossRefGoogle Scholar
  15. Gougeon ML, Lecoeur H, Dulioust A, Enouf MG, Crouvoiser M, Goujard C, Debord T, Montagnier L. 1996. Programmed cell death in peripheral lymphocytes from HIV-infected persons: increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression. J Immunol 156 (9): 3509–20.PubMedGoogle Scholar
  16. Graves M, Griffin DE, Johnson RT, Hirsch RL, de Soriano IL, Roedenbeck S, Vais-berg A. 1984. Development of antibody to measles virus polypeptides during complicated and uncomplicated measles virus infections. J Virol 49 (2): 409–12.PubMedGoogle Scholar
  17. Grazia Cappiello M, Sutterwala FS, Trinchieri G, Mosser DM, Ma X. 2001. Suppression of Il-12 transcription in macrophages following Fc gamma receptor ligation. J Immunol 166 (7): 4498–506.PubMedGoogle Scholar
  18. Griffin DE, Ward BJ. 1993. Differential CD4 T cell activation in measles. J Infect Dis 168 (2): 275–81.PubMedCrossRefGoogle Scholar
  19. Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, Fanger NA. 1999. Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 189 (8): 1343–54.PubMedCrossRefGoogle Scholar
  20. Grosjean I, Caux C, Bella C, Berger I, Wild F, Banchereau J, Kaiserlian D. 1997. Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ Tcells. J Exp Med 186 (6): 801–12.PubMedCrossRefGoogle Scholar
  21. Groux H. 2001. An overview of regulatory Tcells. Microbes Infect 3 (11): 883–9.PubMedCrossRefGoogle Scholar
  22. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H. 1999. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189 (3): 451–60.PubMedCrossRefGoogle Scholar
  23. Iezzi G, Scheidegger D, Lanzavecchia A. 2001. Migration and function of antigen-primed nonpolarized T lymphocytes in vivo. J Exp Med 193 (8): 987–93.PubMedCrossRefGoogle Scholar
  24. Ilonen J, Makela MJ, Ziola B, Salmi AA. 1990. Cloning of human T cells specific for measles virus haemagglutinin and nucleocapsid. Clin Exp Immunol 81 (2): 212–7.PubMedCrossRefGoogle Scholar
  25. Jacobson S, Sekaly RP, Jacobson CL, McFarland HF, Long EO. 1989. HLA class II-restricted presentation of cytoplasmic measles virus antigens to cytotoxic T cells. J Virol 63 (4): 1756–62.PubMedGoogle Scholar
  26. Karp CL, Wysocka M, Wahl LM, Ahearn JM, Cuomo PJ, Sherry B, Trincheri G, Griffin DE. 1996. Mechanism of suppression of cell-mediated immunity by measles virus. Science 273: 228–31.PubMedCrossRefGoogle Scholar
  27. Koppi TA, Tough-Bement T, Lewinsohn DM, Lynch DH, Alderson MR. 1997. CD40 ligand inhibits Fas/CD95-mediated apoptosis of human blood-derived dendritic cells. Eur J Immunol 27 (12): 3161–5.PubMedCrossRefGoogle Scholar
  28. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. 2000. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1 (4): 311–6.PubMedCrossRefGoogle Scholar
  29. Leopardi R, Hyypia T, Vainionpaa R. 1992. Effect of interferon-alpha on measles virus replication in human peripheral blood mononuclear cells. Apmis 100(2):125– 31.Google Scholar
  30. Liu S, Yu Y, Zhang M, Wang W, Cao X. 2001. The involvement of TNF-alpha-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-beta-stimulated human dendritic cells to tumor cells. J Immunol 166 (9): 5407–15.PubMedGoogle Scholar
  31. Ludewig B, Graf D, Gelderblom HR, Becker Y, Kroczek RA, Pauli G. 1995. Spontaneous apoptosis of dendritic cells is efficiently inhibited by TRAP (CD40-ligand) and TNF-alpha, but strongly enhanced by interleukin- 10. Eur J Immunol 25 (7): 1943–50.PubMedCrossRefGoogle Scholar
  32. Manchester M, Eto DS, Valsamakis A, Liton PB, Fernandez-Munoz R, Rota PA, Bellini WJ, Forthal DN, Oldstone MB. 2000. Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74 (9): 3967–74.PubMedCrossRefGoogle Scholar
  33. Marie JC, Kehren J, Trescol-Biemont MC, Evlashev A, Valentin H, Walzer T, Tedone R, Loveland B, Nicolas JF, Rabourdin-Combe C et al. 2001. Mechanism ofGoogle Scholar
  34. measles virus-induced suppression of inflammatory immune responses. Immunity 14(1):69–79.Google Scholar
  35. McChesney MB, Fujinami RS, Lampert PW, Oldstone MB. 1986. Viruses disrupt functions of human lymphocytes. II. Measles virus suppresses antibody production by acting on B lymphocytes. J Exp Med 163 (5): 1331–6.PubMedGoogle Scholar
  36. Miura Y, Misawa N, Maeda N, Inagaki Y, Tanaka Y, Ito M, Kayagaki N, Yamamoto N, Yagita H, Mizusawa H et al. 2001. Critical contribution of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to apoptosis of human CD4+ T cells in HIV-1-infected hu-PBL-NOD-SCID mice. J Exp Med 193 (5): 651–60.PubMedCrossRefGoogle Scholar
  37. Murray CJ, Lopez AD. 1997. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349 (9061): 1269–76.PubMedCrossRefGoogle Scholar
  38. Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D. 1993. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67 (10): 6025–32.PubMedGoogle Scholar
  39. Naniche D, Yeh A, Eto D, Manchester M, Friedman RM, Oldstone MB. 2000. Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of Alpha/Beta interferon production. J Virol 74 (16): 7478–84.PubMedCrossRefGoogle Scholar
  40. Norrby E, Gollmar Y. 1972. Appearance and persistence of antibodies against differ- ent virus components after regular measles infections. Infect Immun 6 (3): 240–7.PubMedGoogle Scholar
  41. Nozawa Y, Ono N, Abe M, Sakuma H, Wakasa H. 1994. An immunohistochemical study of Warthin-Finkeldey cells in measles. Pathol Int 44 (6): 442–47.PubMedCrossRefGoogle Scholar
  42. Okada H, Kobune F, Sato TA, Kohama T, Takeuchi Y, Abe T, Takayama N, Tsuchiya T, Tashiro M. 2000. Extensive lymphopenia due to apoptosis of uninfected lymphocytes in acute measles patients. Arch Virol 145 (5): 905–20.PubMedCrossRefGoogle Scholar
  43. Okada H, Sato TA, Katayama A, Higuchi K, Shichijo K, Tsuchiya T, Takayama N, Takeuchi Y, Abe T, Okabe N et al. 2001. Comparative analysis of host responses related to immunosuppression between measles patients and vaccine recipients with live attenuated measles vaccines. Arch Virol 146 (5): 859–74.PubMedCrossRefGoogle Scholar
  44. Orenstein JM. 1998. The Warthin-Finkeldey-type giant cell in HIV infection, what is it? Ultrastruct Pathol 22 (4): 293–303.PubMedCrossRefGoogle Scholar
  45. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. 1996. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271 (22): 12687–90.PubMedCrossRefGoogle Scholar
  46. Ravanel K, Castelle C, Defrance T, Wild TF, Charron D, Lotteau V, RabourdinCombe C. 1997. Measles virus nucleocapsid protein binds to FcgammaRII and inhibits human B cell antibody production. J Exp Med 186 (2): 269–78.PubMedCrossRefGoogle Scholar
  47. Ridge JP, Di Rosa F, Matzinger P. 1998. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393 (6684): 474–78.PubMedCrossRefGoogle Scholar
  48. Schnorr JJ, Xanthakos S, Keikavoussi P, Kampgen E, Ter Meulen V, SchneiderSchaulies S. 1997. Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression. Proc Natl Acad Sci USA 94 (10): 5326–31.PubMedCrossRefGoogle Scholar
  49. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. 1998. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393 (6684): 480–83.PubMedCrossRefGoogle Scholar
  50. Sedger LM, Shows DM, Blanton RA, Peschon JJ, Goodwin RG, Cosman D, Wiley SR. 1999. IFN-gamma mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J Immunol 163 (2): 920–6.PubMedGoogle Scholar
  51. Servet-Delprat C, Vidalain PO, Azocar O, Le Deist F, Fischer A, Rabourdin-Combe C. 2000a. Consequences of Fas-mediated human dendritic cell apoptosis induced by measles virus. J Virol 74 (9): 4387–93.PubMedCrossRefGoogle Scholar
  52. Servet-Delprat C, Vidalain PO, Bausinger H, Manie S, Le Deist F, Azocar O, Hanau D, Fischer A, Rabourdin-Combe C. 2000b. Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. J Immunol 164(4):1753– 60.Google Scholar
  53. Song K, Chen Y, Goke R, Wilmen A, Seidel C, Goke A, Hilliard B. 2000. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J Exp Med 191 (7): 1095–104.PubMedCrossRefGoogle Scholar
  54. Steineur MP, Grosjean I, Bella C, Kaiserlian D. 1998. Langerhans cells are susceptible to measles virus infection and actively suppress T cell proliferation. Eur J Dermatol 8 (6): 413–20.PubMedGoogle Scholar
  55. Tajima M, Kudow S. 1976. Morphology of the Warthin-Finkeldey giant cells in monkeys with experimentally induced measles. Acta Pathol Jpn 26 (3): 367–80.PubMedGoogle Scholar
  56. Tatsuo H, Ono N, Tanaka K, Yanagi Y. 2000. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406 (6798): 893–7.PubMedCrossRefGoogle Scholar
  57. Valentin H, Azocar O, Horvat B, Williems R, Garrone R, Evlashev A, Toribio ML, Rabourdin-Combe C. 1999. Measles virus infection induces terminal differentiation of human thymic epithelial cells. J Virol 73 (3): 2212–21.PubMedGoogle Scholar
  58. Binnendijk RS, Poelen MC, de Vries P, Voorma HO, Osterhaus AD, Uytdehaag FG. 1989. Measles virus-specific human T cell clones. Characterization of specificity and function of CD4+ helper/cytotoxic and CD8+ cytotoxic T cell clones. J Immunol 142 (8): 2847–54.PubMedGoogle Scholar
  59. Vidalain PO, Azocar O, Lamouille B, Astier A, Rabourdin-Combe C, Servet-Delprat C. 2000. Measles virus induces functional TRAIL production by human dendritic cells. J.Virol. 74 (1): 556–9.PubMedCrossRefGoogle Scholar
  60. Vidalain PO, Azocar O, Rabourdin-Combe C, Servet-Delprat C. 2001. measles virus-infected dendritic cells develop immunosuppressive and cytotoxic activities. Immunobiol, 204: 629–638.Google Scholar
  61. Vidalain PO, Azocar O, Yagita H, Rabourdin-Combe C, Servet-Delprat C. 2001. Cytotoxic activity of human dendritic cells is differentially regulated by double-stranded rna and cd40 ligand. J Immunol 167 (7): 3765–72.PubMedGoogle Scholar
  62. Ward BJ, Griffin DE. 1993. Changes in cytokine production after measles virus vaccination: predominant production of IL-4 suggests induction of a Th2 response. Clin Immunol Immunopathol 67 (2): 171–177.PubMedCrossRefGoogle Scholar
  63. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA et al. 1995. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3(6):673–82.Google Scholar
  64. Zinkernagel RM. 2000. Localization dose and time of antigens determine immune reactivity. Semin Immunol 12(3):163–71; discussion 257–344.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • C. Servet-Delprat
    • 1
  • P.-O. Vidalain
    • 1
  • H. Valentin
    • 1
  • C. Rabourdin-Combe
    • 1
  1. 1.Immunobiologie Fondamentale et CliniqueCERVI-INSERM U503LyonFrance

Personalised recommendations