Skip to main content

Did the Puchezh-Katunki Impact Trigger an Extinction?

  • Chapter
Cratering in Marine Environments and on Ice

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

The 80 km diameter Puchezh-Katunki impact crater is the only one of the six largest known Phanerozoic craters that has not been previously considered as a factor in a biotic extinction event. The age of impact is currently regarded as Bajocian (Middle Jurassic), on the basis of palynostratigraphy of crater lake sediments, but there is no significant extinction in the Bajocian. Earlier K-Ar age determinations of impactites compared with a current Jurassic time scale permit that either the end-Triassic or the Early Jurassic (Pliensbachian-Toarcian) extinction was coeval with the Puchezh-Katunki crater. The stratigraphical and paleontological record contains clues that suggest that an impact may have occurred at these horizons. The age of the Puchezh-Katunki crater needs reevaluation through 40Ar/39Ar dating of impact rocks and/or revision of the palynology of the oldest crater fill. A definitive age determination will help constrain the impact-kill curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez L, Alvarez W, Asaro F, Michel H (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 1095–1108

    Article  Google Scholar 

  • Badjukov DD, Lobitzer H, Nazarov MA (1987) Quartz grains with planar features in the Triassic-Jurassic boundary sediments from the Northern Limestone Alps, Austria. [abs.] Lunar and Planetary Science 28: 38–39

    Google Scholar 

  • Benton MJ (1991) What really happened in the Late Triassic? Historical Biology 5: 263–278

    Article  Google Scholar 

  • Bice DM, Newton CR, McCauley S, Reiners PW, McRoberts CA (1992) Shocked quartz at the Triassic-Jurassic boundary in Italy. Science 255: 443–446

    Article  Google Scholar 

  • Bottomley R, Grieve R, Masaitis V (1997) The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary. Nature 388: 365–368

    Article  Google Scholar 

  • Brochwicz-Lewinski W, Gasiewicz A, Krumbein WE, Melendez G, Sequeiros L, Suffczynski S, Szatkowski K, Tarkowski R, Zbik M (1986) Anomalia irydowa na granicy jury srodkowej i gorney. Przeglad Geologiczny 33: 83–88 (in Polish)

    Google Scholar 

  • Brochwicz-Lewinski W, Gasiewicz A, Suffczynski S, Szatkowski K, Zbik M (1984) Lacunes et condensation a la limite Jurassique moyen-supérieur dans le sud de la Pologne: manifestation d’un phénomene mondial? Comptes Rendus de l’Académie des Sciences, Paris, Series II 299: 1359–1362

    Google Scholar 

  • Deutsch A, Schärer U (1994) Dating terrestrial impact events. Meteoritics 29: 301–322 Fowell SJ, Olsen PE (1993) Time calibration of Triassic/Jurassic microfloral turnover, eastern North America. Tectonophysics 222: 361–369

    Google Scholar 

  • Fowell SJ, Cornet B, Olsen PE (1994) Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup. In: Klein GD (ed) Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent. Geological Society of America Special Paper 288, pp 197–206

    Google Scholar 

  • Grieve R, Rupert J, Smith J, Therriault A (1995) The record of terrestrial impact cratering. GSA Today 5: 189–196

    Google Scholar 

  • Grieve RAF (1997) Extraterrestrial impact events: The record in the rocks and the strati- graphic column. Palaeogeography, Palaeoclimatology, Palaeoecology 132: 5–23

    Article  Google Scholar 

  • Grieve RAF (2001) Impact Crater website. http://gdcinfo.agg.nrcan.gc.ca:80/crater/ index_e.html/. Address of 2003:http://www.unb.ca/passc/ImpactDatabase

    Google Scholar 

  • Hallam A (1996) Major bio-events in the Triassic and Jurassic. In: Walliser OH (ed) Global Events and Event Stratigraphy in the Phanerozoic. Springer, Berlin, pp 265–283

    Chapter  Google Scholar 

  • Hesselbo SP, Robinson SA, Surlyk F, Piasecki S (2002) Terrestrial and marine mass extinction at the Triassic–Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism? Geology 30: 251–254

    Article  Google Scholar 

  • Hesselbo S, Morgans-Bell H, McElwain J, Rees PM, Stuart R (2001) A major carbon-cycle perturbation in the Middle Jurassic and accompanying climatic change adduced from the land plant record. [abs.] EUG XI, Strasbourg, Abstracts, http://www.campublic.co.uk/ EUGXI/CC03.pdf

    Google Scholar 

  • Hesselbo SP, Gröcke DR, Jenkyns HC, Bjerrum CJ, Farrimond P, Morgans Bell HS, Green OR (2000) Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406: 392–395

    Article  Google Scholar 

  • Hodych JP, Dunning GR (1992) Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology 20: 51–54

    Article  Google Scholar 

  • Jansa LF (1993) Cometary impacts into ocean: their recognition and the threshold constraint for biological extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 104: 271–286

    Article  Google Scholar 

  • Jéhanno C, Boclet D, Bonté P, Castellarin A, Rocchia R (1988) Identification of two populations of extra-terrestrial particles in a Jurassic hardground of the southern Alps. Proceedings of Lunar and Planetary Science Conference 18, pp 623–630

    Google Scholar 

  • Koeberl C, Armstrong RA, Reimold WU (1997) Morokweng, South-Africa - a large impact structure of Jurassic-Cretaceous boundary age. Geology 25: 731–734

    Google Scholar 

  • Krymholts GY (1972) Stratigraphy of the USR. Vol. 10: The Jurassic System (in Russian). Gosgeoltechizdat, Moscow, 524 pp

    Google Scholar 

  • Krymholts GY, Mesezhnikov MS, Westermann GEG (1988) The Jurassic ammonite zones of the Soviet Union. Geological Society of America Special Paper 288, Boulder, Colorado, 116 pp

    Google Scholar 

  • Little CTS (1996) The Pliensbachian-Toarcian (Lower Jurassic) extinction event. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous-Tertiary Event and Other Catastrophes in Earth History. Geological Society of America Special Paper 307: pp 505–512

    Google Scholar 

  • Masaitis VL, Mashchak MS, Naumov MV (1996) The Puchezh-Katunki astrobleme: A structural model of a giant impact crater. Solar System Research 30: 3–10

    Google Scholar 

  • Masaitis VL, Pevzner LA (1999) Deep Drilling in the Puchezh-Katunki Impact Structure (in Russian). VSEGEI Press, Saint-Petersburg, 392 pp

    Google Scholar 

  • Mossman DJ, Grantham RG, Langenhorst F (1998) A search for shocked quartz at the Triassic–Jurassic boundary in Fundy and Newark basins of the Newark Supergroup. Canadian Journal of Earth Sciences 35: 101–109

    Article  Google Scholar 

  • Olsen PE, Shubin NH, Anders MH (1987) New Early Jurassic tetrapod assemblages constrain Triassic-Jurassic tetrapod extinction event. Science 237: 1025–1029

    Article  Google Scholar 

  • Olsen PE, Kent DV, Sues H-D, Koeberl C, Huber H, Montanari A, Rainforth EC, Fowell SJ, Szajna MJ, Hartline BW (2002a) Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296: 1305–1307

    Article  Google Scholar 

  • Olsen PE, Koeberl C, Huber H, Montanari A, Fowell SJ, Et-Touhami M, Kent DV (2002b) The continental Triassic-Jurassic boundary in central Pangea: recent progress and preliminary report of an Ir anomaly. In: Koeberl C, MacLeod KG (eds) Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Paper 356, pp 505–522

    Google Scholar 

  • Pálfy J (in press) Volcanism of the Central Atlantic Magmatic Province as a potential driving force in the end-Triassic mass extinction. In: Hames W, McHone G, Renne P, Ruppel C (eds) The Central Atlantic Magmatic Province. American Geophysical Union, Washington, DC

    Google Scholar 

  • Pálfy J, Smith PL, Mortensen JK (2000) A U-Pb and 40Ar/39Ar time scale for the Jurassic. Canadian Journal of Earth Sciences 37: 923–944

    Article  Google Scholar 

  • Pálfy J, Demény A, Haas J, Hetényi M, Orchard M, Vetö I (2001) Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary. Geology 29: 1047–1050

    Article  Google Scholar 

  • Pálfy J, Smith PL, Mortensen JK (2002) Dating the end-Triassic and Early Jurassic mass extinctions, correlative large igneous provinces, and isotopic events. In: Koeberl C, MacLeod KG (eds) Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Paper 356, pp 523–532

    Google Scholar 

  • Plotnick RE, Sepkoski JJ Jr (2001) A multiplicative multifractal model for originations and extinctions. Paleobiology 27: 126–139

    Article  Google Scholar 

  • Poag CW (1997) Roadblocks on the kill curve: Testing the Raup hypothesis. Palaios 12: 582–590

    Article  Google Scholar 

  • Rampino MR, Haggerty BM (1996) Impact crises and mass extinction: A working hypothesis. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous-Tertiary Event and Other Catastrophes in Earth History. Geological Society of America Special Paper 307, pp 11–30

    Google Scholar 

  • Raup DM (1992) Large-body impact and extinction in the Phanerozoic. Paleobiology 18: 80–88

    Google Scholar 

  • Sepkoski JJ Jr. (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global Events and Event Stratigraphy in the Phanerozoic. Springer, Berlin, pp 35–51

    Chapter  Google Scholar 

  • Swisher CC, Grajales-Nishimura JM, Montanari A, Margolis SV, Claeys P, Alvarez W, Renne P, Cedillo-Pardo E, Maurasse F, Curtis GH, Smit J, McWilliams MO (1992) Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites. Science 257: 954–958

    Article  Google Scholar 

  • Ward PD, Haggart JW, Carter ES, Wilbur D, Tipper HW, Evans T (2001) Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292: 1148–1151

    Article  Google Scholar 

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe. Shell Internationale Petroleum, The Hague, 130 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pálfy, J. (2004). Did the Puchezh-Katunki Impact Trigger an Extinction?. In: Dypvik, H., Burchell, M.J., Claeys, P. (eds) Cratering in Marine Environments and on Ice. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06423-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06423-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07376-2

  • Online ISBN: 978-3-662-06423-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics