Skip to main content

A Brief Introduction to Hydrocode Modeling of Impact Cratering

  • Chapter
Cratering in Marine Environments and on Ice

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

Numerical modeling is a fundamental tool for understanding the dynamics of impact cratering, especially at planetary scales. In particular, processes like melting/vaporization and crater collapse, typical of planetary-scale impacts, are not reproduced in the laboratory, and can only be investigated by numerical modeling. The continuum dynamics of impact cratering events is fairly well understood and implemented in numerical codes; however, the response of materials to shocks is governed by specific material properties. Accurate material models are thus crucial for realistic simulation of impact cratering, and still represent one of the major problems associated with numerical modeling of impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amsden AA, Ruppel HM, Hirt CW (1980) SALE: A simplified ALE computer program for fluid flow at all speeds. Los Alamos National Laboratories LA-8095: 101 pp

    Google Scholar 

  • Anderson Jr CE (1987) An overview of the theory of hydrocodes. International Journal of Impact Engineering 5: 33–59

    Article  Google Scholar 

  • Artemieva NA (2000) Tektite origin in oblique impact: Numerical modeling [abs]. In Meteorite Impacts in Precambrian Shields. ESF-IMPACT Workshop 4 ( Lappajärvi, Finland ): 56

    Google Scholar 

  • Artemieva NA (2001) Tektite production in oblique impacts [abs]. Lunar and Planetary Science XXXII: #1216 (CD-ROM)

    Google Scholar 

  • Artemieva NA, Ivanov BA (2001) Numerical simulation of oblique impacts: Impact melt and transient cavity [abs]. Lunar and Planetary Science XXXII: #1321 (CD-ROM)

    Google Scholar 

  • Artemieva NA, Ivanov BA (2002) Ejection of Martian meteorites–Can they fly? [abs]. Lunar and Planetary Science XXXIII: #1113 (CD-ROM)

    Google Scholar 

  • Collins GS (2002) Numerical Modelling of Large Impact Crater Collapse. PhD Thesis. Imperial College, University of London.

    Google Scholar 

  • Collins GS, Melosh HJ, Morgan JV, Warner MR (2002) Hydrocode simulations of Chicxulub crater collapse and peak-ring formation. Icarus 157: 24–33

    Article  Google Scholar 

  • Dent B (1973) Gravitationally induced stresses around a large impact crater. [abs] EOS, Transactions, American Geophyscal Union 54, 11: 1207

    Google Scholar 

  • Grieve RAF, Cintala MJ (1992) An analysis of differential impact melt-crater scaling and implications for the terrestrial impact record. Meteoritics 27: 526–538

    Article  Google Scholar 

  • Ivanov BA, Artemieva NA (2000) How oblique should be impact to launch Martian Meteorites? [abs]. Lunar and Planetary Science XXXI: #1309 (CD-ROM)

    Google Scholar 

  • Ivanov BA, Artemieva NA (2001) Transient cavity scaling for oblique impact [abs]. Lunar and Planetary Science XXXII: #1327 (CD-ROM)

    Google Scholar 

  • Ivanov BA, Artemieva NA (2002) Numerical modeling of the formation of large impact craters. In Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: Impacts and beyond. Geological Society of America Special Paper 356: 619–630

    Google Scholar 

  • Ivanov BA, DeNiem D, Neukum G (1997) Implementation of dynamic strength models into 2D hydrocodes: Applications for atmospheric breakup and impact cratering. International Journal of Impact Engineering 20: 411–430

    Google Scholar 

  • Jaeger JC, Cook NGW (1969) Fundamentals of rock mechanics. Chapman and Hall, London 593 pp

    Google Scholar 

  • Johnson GR, Holmquist TJ (1994) An improved computational constitutive model for brittle materials. In: Schmidt SC, Shaner JW, Samara GA, Ross M (eds) High-Pressure Science and Technology-1993, American Institute of Physics Press, Woodbury NY, pp 981–984

    Google Scholar 

  • Kerley GI (1989) Equation of state for calcite minerals. I. Theoretical model for dry calcium carbonate. High Pressure Research 2: 29–47

    Article  Google Scholar 

  • Kerley GI (1991) User’s manual for PANDA II: A computer code for calculating equations of state. Sandia Report SAND88–2291, Sandia National Laboratories, Albuquerque, NM

    Google Scholar 

  • Lundborg N (1968) Strength of rock-like materials. Int. Journal Rock Mech. Min. Sci. 5: 427–454

    Article  Google Scholar 

  • McGlaun JM, Thompson SL, Elrick MG (1990) CTH: A three-dimensional shock wave physics code. International Journal of Impact Engineering 10: 351–360

    Google Scholar 

  • McKinnon WB (1978) An investigation into the role of plastic failure in crater modification. Proceedings of the Lunar and Planetary Science Conference 9: 3965–3973

    Google Scholar 

  • Melosh HJ (1977) Crater modification by gravity: A mechanical analysis of slumping. In Roddy DJ, Pepin RO, Merrill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 1245–1260

    Google Scholar 

  • Melosh HJ (1989) Impact Cratering. A Geologic Process. Oxford University Press, New York 245 pp

    Google Scholar 

  • Melosh HJ (2000) A new and improved equation of state for impact computations [abs]. Lunar and Planetary Science XXXI: #1903 (CD-ROM)

    Google Scholar 

  • Melosh HJ, Ivanov BA (1999) Impact crater collapse. Annual Reviews of Earth and Planetary Science 27: 385–415

    Article  Google Scholar 

  • Melosh HJ, Ryan EV, Asphaug E (1992) Dynamic fragmentation in impacts: Hydrocode simulation of laboratory impacts. Journal of Geophysics Research 97: 14735–14759

    Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Annual Reviews of Astronomy and Astrophysics 30: 543–574

    Article  Google Scholar 

  • Nolan M, Asphaug E, Melosh HJ, Greenberg R (1996) Impact craters on asteroids: Does strength or gravity controls their size? Icarus 124: 359–371

    Article  Google Scholar 

  • O’Keefe JD, Ahrens TJ (1977) Impact-induced energy partitioning, melting, and vaporization on terrestrial planets. Proceedings of the Lunar Science Conference 8: 3357–3374

    Google Scholar 

  • O’Keefe JD, Ahrens TJ (1993) Planetary cratering mechanics. Journal of Geophysics Research 98: 17001–17028

    Google Scholar 

  • O’Keefe JD, Ahrens TJ (1999) Complex craters: Relationships of stratigraphy and rings to impact conditions. Journal of Geophysics Research 104: 27091–27104

    Google Scholar 

  • O’Keefe JD, Stewart ST, Lainhart ME, Ahrens TJ (2001) Damage and rock-volatile mixture effects on impact crater formation. International Journal of Impact Engineering 26: 543–553

    Article  Google Scholar 

  • Pierazzo E, Vickery AM, Melosh HJ (1997) A reevaluation of impact melt production. Icarus 127: 408–423

    Article  Google Scholar 

  • Pierazzo E, Crawford DA (1998) Modeling Chicxulub as an oblique impact event: Results of hydrocode simulations [abs]. Lunar and Planetary Science XXIX: #1704 (CD-ROM)

    Google Scholar 

  • Pierazzo E, Melosh HJ (1999) Hydrocode modeling of Chicxulub as an oblique impact event. Earth and Planetary Science Letters 165: 163–176

    Article  Google Scholar 

  • Pierazzo E, Melosh HJ (2000a) Hydrocode modeling of oblique impacts: The fate of the projectile. Meteoritics and Planetary Science 35: 117–130

    Google Scholar 

  • Pierazzo E, Melosh HJ (2000b) Melt production in oblique impacts. Icarus 145: 252–261

    Article  Google Scholar 

  • Pierazzo E, Melosh HJ (2000c) Understanding oblique impacts from experiments, observations, and modeling. Annual Reviews of Earth and Planetary Science 28: 141–167

    Article  Google Scholar 

  • Pierazzo E, Spitale JN, Kring DA (2001) Hydrocode modeling of the Ries impact event [abs]. Lunar and Planetary Science XXXII: #2106 (CD-ROM)

    Google Scholar 

  • Quaide WL, Gault DE, Schmidt RA (1965) Gravitative effects on lunar impact structures. Annals of the New York Academy of Science 123: 563–572

    Article  Google Scholar 

  • Shuvalov VV (1999) 3D hydrodynamic code SOVA for interfacial flows, application to the thermal layer effect. Shock Waves 9(6): 381–390

    Google Scholar 

  • Stesky RM, Brace WF, Riley DK, Robin PYF (1974) Friction in faulted rock at high temperature and pressure. Tectonophysics 23: 177–203

    Article  Google Scholar 

  • Stöffler D, Artemieva NA, Pierazzo E (2002) Modeling the Ries-Steinheim impact event and the formation of the Moldavite strewn field. Meteoritics and Planetary Science 37: 1893–1908

    Article  Google Scholar 

  • Tillotson JH (1962) Metallic equations of state for hypervelocity impacts. Technical Report General Atomic Report GA-3216, San Diego, 140 pp

    Google Scholar 

  • Thompson SL (1979) CSQII–An Eulerian finite differences program for two-dimensional material response. Part 1. Material Section. Technical Report SAND77–1339. Sandia National Laboratories, Albuquerque, NM, 87 pp

    Google Scholar 

  • Thompson SL, Lauson HS (1972) Improvements in the chart-D radiation-hydrodynamic code III: Revised analytical equation of state. Technical Report SC-RR-61 0714. Sandia National Laboratories, Albuquerque, NM, 119 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pierazzo, E., Collins, G. (2004). A Brief Introduction to Hydrocode Modeling of Impact Cratering. In: Dypvik, H., Burchell, M.J., Claeys, P. (eds) Cratering in Marine Environments and on Ice. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06423-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06423-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07376-2

  • Online ISBN: 978-3-662-06423-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics