Skip to main content

Detection and Quantification of Coronary Calcification

  • Chapter
Coronary Radiology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

A number of radiological techniques have the potential to detect calcification of the coronary arteries, namely plain chest radiography, fluoroscopy, conventional computed tomography (CT), electron-beam tomography (EBT), multi-detector CT, intravascular ultrasound, magnetic resonance imaging (MRI), and transthoracic and transesophageal echocardiography. We will discuss the methods that are most commonly used for visualization of coronary calcification in turn. Coronary calcification has been demonstrated incidentally with plain chest radiography. However, most patients with coronary artery disease have no visible calcifications in the coronary arteries on chest radiographs. The accuracy of chest radiography was 42% compared to fluoroscopy, which is also an insensitive technique (see below) (SouzA et al. 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach S, Ropers D, Holle J et al (2000) In-plane coronary arterial motion velocity: measurement with electron-beam ct. Radiology 216: 457–463

    Google Scholar 

  • Achenbach S, Meissner F, Ropers D et al (2001a) Overlapping cross-sections significantly improve the reproducibility of coronary calcium measurements by electron beam tomography: a phantom study. J Comput Assist Tomogr 25: 569–573

    Article  Google Scholar 

  • Achenbach S, Ropers D, Mohlenkamp S et al (2001b) Variability of repeated coronary artery calcium measurements by electron beam tomography. Am J Cardiol 87:210–213, A218

    Google Scholar 

  • Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15: 827–832

    Article  Google Scholar 

  • Aldrich RF, Brensike JF, Battaglini JW et al (1979) Coronary calcifications in the detection of coronary artery disease and comparison with electrocardiographic exercise testing. Results from the national heart, lung, and blood institute’s type ii coronary intervention study. Circulation 59: 1113–1124

    Article  Google Scholar 

  • Atlas SW, Grossman RI, Hackney DB et al (1988) Calcified intra-cranial lesions: Detection with gradient-echo-acquisition rapid mr imaging. AJR Am J Roentgenol 150: 1383–1389

    Article  Google Scholar 

  • Bartel AG, Chen JT, Peter RH et al (1974) The significance of coronary calcification detected by fluoroscopy. A report of 360 patients. Circulation 49: 1247–1253

    Article  Google Scholar 

  • Baskin KM, Stanford W, Thompson BH et al (1995) Comparison of electron beam and helical computed tomography in assessment of coronary artery calcification. Circulation 92: 1–651

    Article  Google Scholar 

  • Becker CR, Knez A, Jakobs TF et al (1999) Detection and quantification of coronary artery calcification with electron-beam and conventional ct. Eur Radiol 9: 620–624

    Article  Google Scholar 

  • Becker CR, Jakobs TF, Aydemir S et al (2000) Helical and single-slice conventional ct versus electron beam ct for the quantification of coronary artery calcification. Am J Roentgenol 174: 543–547

    Article  Google Scholar 

  • Becker CR, Kleffel T, Crispin A et al (2001) Coronary artery calcium measurement: agreement of multirow detector and electron beam ct. AJR Am J Roentgenol 176: 1295–1298

    Article  Google Scholar 

  • Bielak LF, Kaufmann RB, Moll PP et al (1994) Small lesions in the heart identified at electron beam ct: calcification or noise? Radiology 192: 631–636

    Google Scholar 

  • Bierner M, Fleck E, Dirschinger J et al (1978) Significance of coronary artery calcification: Relationship to localization and severity of coronary artery stenosis (author’s translation). Herz 3: 336–343

    Google Scholar 

  • Broderick LS, Shemesh J, Wilensky RL et al (1996) Measurement of coronary artery calcium with dual-slice helical ct compared with coronary angiography: Evaluation of ct scoring methods, interobserver variations, and reproducibility. Am J Roentgenol 167: 439–444

    Article  Google Scholar 

  • Budoff MJ, Mao S, Zalace CP et al (2001) Comparison of spiral and electron beam tomography in the evaluation of coronary calcification in asymptomatic persons. Int J Cardiol 77: 181–188

    Article  Google Scholar 

  • Callister TQ, Raggi P, Cooil B et al (1998a) Effect of hmg-coa reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 339: 1972–1978

    Article  Google Scholar 

  • Callister TQ, Cooil B, Raya SP et al (1998b) Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam ct volumetric method. Radiology 208: 807–814

    Google Scholar 

  • Callister T, Janowitz W, Raggi P (2000) Sensitivity of two electron beam tomography protocols for the detection and quantification of coronary artery calcium. Am J Roentgenol 175: 1743–1746

    Article  Google Scholar 

  • Carr JJ, Crouse JR III, Goff DC Jr et al (2000) Evaluation of subsecond gated helical ct for quantification of coronary artery calcium and comparison with electron beam ct. Am J Roentgenol 174: 915–921

    Article  Google Scholar 

  • De Korte PJ, Kessels AG, van Engelshoven JM et al (1995) Comparison of the diagnostic value of cinefluoroscopy and simple fluoroscopy in the detection of calcification in coronary arteries. Eur J Radiol 19: 194–197

    Article  Google Scholar 

  • Detrano R, Markovic D, Simpfendorfer C et al (1985) Digital subtraction fluoroscopy: a new method of detecting coronary calcifications with improved sensitivity for the prediction of coronary disease. Circulation 71: 725–732

    Article  Google Scholar 

  • Detrano R, Salcedo EE, Hobbs RE et al (1986) Cardiac cinefluoroscopy as an inexpensive aid in the diagnosis of coronary artery disease. Am J Cardiol 57: 1041–1046

    Article  Google Scholar 

  • Detrano R, Kang X, Mahaisavariya P et al (1994) Accuracy of quantifying coronary hydroxyapatite with electron beam tomography. Invest Radiol 29: 733–738

    Article  Google Scholar 

  • Detrano R, Tang W, Kang X et al (1995) Accurate coronary calcium phosphate mass measurements from electron beam computed tomograms. Am J Card Imaging 9: 167–173

    Google Scholar 

  • Friedrich GJ, Moes NY, Muhlberger VA et al (1994) Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern. Am Heart J 128: 435–441

    Article  Google Scholar 

  • Gianrossi R, Detrano R, Colombo A et al (1990) Cardiac fluoroscopy for the diagnosis of coronary artery disease: a meta analytic review. Am Heart J 120: 1179–1188

    Article  Google Scholar 

  • Hamby RI, Tabrah F, Wisoff BG et al (1974) Coronary artery calcification: clinical implications and angiographic correlates. Am Heart J 87: 565–570

    Article  Google Scholar 

  • Henkelman RM, Watts JF, Kucharczyk W (1991) High signal intensity in mr images of calcified brain tissue. Radiology 179: 199–206

    Google Scholar 

  • Hernigou A, Challande P, Boudeville JC et al (1996) Reproducibility of coronary calcification detection with electron-beam computed tomography. Eur Radiol 6: 210–216

    Article  Google Scholar 

  • Holland BA, Kucharcyzk W, Brant-Zawadzki M et al (1985) Mr imaging of calcified intracranial lesions. Radiology 157: 353–356

    Google Scholar 

  • Hung J, Chaitman BR, Lam J et al (1984) Noninvasive diagnostic test choices for the evaluation of coronary artery disease in women: a multivariate comparison of cardiac

    Google Scholar 

  • fluoroscopy, exercise electrocardiography and exercise thallium myocardial perfusion scintigraphy. J Am Coll Cardiol 4:8–16

    Google Scholar 

  • Kajinami K, Seki H, Takekoshi N et al (1993) Quantification of coronary artery calcification using ultrafast computed tomography: reproducibility of measurements. Coron Artery Dis 4: 1103–1108

    Article  Google Scholar 

  • Kaufmann RB, Sheedy PF, Breen JF et al (1994) Detection of heart calcification with electron beam ct: interobserver and intraobserver reliability for scoring quantification. Radiology 190: 347–352

    Google Scholar 

  • Knez A, Becker C, Becker A et al (2002) Determination of coronary calcium with multi-slice spiral computed tomography: a comparative study with electron-beam ct. Int J Cardiovasc Imaging 18: 295–303

    Article  Google Scholar 

  • Kostamaa H, Donovan J, Kasaoka S et al (1999) Calcified plaque cross-sectional area in human arteries: correlation between intravascular ultrasound and undecalcified histology. Am Heart J 137: 482–488

    Article  Google Scholar 

  • Mao S, Bakhsheshi H, Lu B et al (2001) Effect of electrocardiogram triggering on reproducibility of coronary artery calcium scoring. Radiology 220: 707–711

    Article  Google Scholar 

  • Margolis JR, Chen JT, Kong Y et al (1980) The diagnostic and prognostic significance of coronary artery calcification. A report of 800 cases. Radiology 137: 609–616

    Google Scholar 

  • Masuda Y, Naito S, Aoyagi Y et al (1990) Coronary artery calcification detected by ct: clinical significance and angiographic correlates. Angiology 41: 1037–1047

    Article  Google Scholar 

  • Mautner GC, Mautner SL, Froehlich J et al (1994) Coronary artery calcification: assessment with electron beam ct and histomorphometric correlation. Radiology 192: 619–623

    Google Scholar 

  • McCollough CH, Kaufmann RB, Cameron BM et al (1995) Electron-beam ct: use of a calibration phantom to reduce variability in calcium quantitation. Radiology 196: 159–165

    Google Scholar 

  • McCollough CH, Bruesewitz MR, Daly TR et al (2000) Motion artifacts in subsecond conventional ct and electron-beam ct: pictorial demonstration of temporal resolution. Radiographics 20: 1675–1681

    Google Scholar 

  • McGuire J, Schneider HJ, Chou TC (1968) Clinical significance of coronary artery calcification seen fluoroscopically with the image intensifier. Circulation 37: 82–87

    Article  Google Scholar 

  • Mintz GS, Douek P, Pichard AD et al (1992) Target lesion calcification in coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol 20: 1149–1155

    Article  Google Scholar 

  • Mintz GS, Popma JJ, Pichard AD et al (1995) Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation 91: 1959–1965

    Article  Google Scholar 

  • Möhlenkamp S, Behrenbeck TR, Pump H et al (2001) Reproducibility of two coronary calcium quantification algorithms in patients with different degrees of calcification. Int J Cardiovasc Imaging 17:133–142; discussion 143

    Google Scholar 

  • Molloi S, Detrano R, Ersahin A et al (1991) Quantification of coronary arterial calcium by dual energy digital subtraction fluoroscopy. Med Phys 18: 295–298

    Article  Google Scholar 

  • Moore EH, Greenberg RW, Merrick SH et al (1989) Coronary artery calcifications: significance of incidental detection on ct scans. Radiology 172: 711–716

    Google Scholar 

  • Ohnesorge B, Flohr T, Fischbach R et al (2002) Reproducibility of coronary calcium quantification in repeat examinations with retrospectively ecg-gated multisection spiral ct. Eur Radiol 12: 1532–1540

    Article  Google Scholar 

  • Potkin BN, Bartorelli AL, Gessert JM et al (1990) Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 81: 1575–1585

    Article  Google Scholar 

  • Rienmueller R, Lipton MJ (1987) Detection of coronary artery calcification by computed tomography. Dynam Cardiovasc Imaging 1: 139–145

    Google Scholar 

  • Rumberger JA, Simons DB, Fitzpatrick LA et al (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92: 2157–2162

    Article  Google Scholar 

  • Schmermund A, Erbel R, Silber S (2002) Age and gender distribution of coronary artery calcium measured by four-slice computed tomography in 2,030 persons with no symptoms of coronary artery disease. Am J Cardiol. 90: 168–73

    Article  Google Scholar 

  • Scott DS,Arora UK, Farb A et al (2000) Pathologic validation of a new method to quantify coronary calcific deposits in vivo using intravascular ultrasound. Am J Cardiol 85: 37–40

    Article  Google Scholar 

  • Shemesh J, Apter S, Rozenman J et al (1995) Calcification of coronary arteries: detection and quantification with double-helix ct. Radiology 197: 779–783

    Google Scholar 

  • Shields JP, Mielke CH Jr, Rockwood TH et al (1995) Reliability of electron beam computed tomography to detect coronary artery calcification. Am J Card Imaging 9: 62–66

    Google Scholar 

  • Souza AS, Bream PR, Elliott LP (1978) Chest film detection of coronary artery calcification. The value of the cac triangle. Radiology 129: 7–10

    Google Scholar 

  • Stanford W, Thompson BH (1999) Imaging of coronary artery calcification. Its importance in assessing atherosclerotic disease. Radiol Clin North Am 37: 257–272

    Article  Google Scholar 

  • Tanenbaum SR, Kondos GT, Veselik KE et al (1989) Detection of calcific deposits in coronary arteries by ultrafast computed tomography and correlation with angiography. Am J Cardiol 63: 870–872

    Article  Google Scholar 

  • Tang W, Young E, Detrano R et al (1994) Reproducibility of digital subtraction fluoroscopic readings for coronary artery calcification. Invest Radiol 29: 147–149

    Article  Google Scholar 

  • Timins ME, Pinsk R, Sider L et al (1991) The functional significance of calcification of coronary arteries as detected on ct. J Thorac Imaging 7: 79–82

    Article  Google Scholar 

  • Tuzcu EM, Berkalp B, de Franco AC et al (1996) The dilemma of diagnosing coronary calcification: angiography versus intravascular ultrasound. J Am Coll Cardiol 27: 832–838

    Article  Google Scholar 

  • Uretsky BF, Rifkin RD, Sharma SC et al (1988) Value of fluoroscopy in the detection of coronary stenosis: influence of age, sex, and number of vessels calcified on diagnostic efficacy. Am Heart J 115: 323–333

    Article  Google Scholar 

  • Wang S, Detrano RC, Secci A et al (1996) Detection of coronary calcification with electron-beam computed tomography: evaluation of interexamination reproducibility and comparison of three image-acquisition protocols. Am Heart J 132: 550–558

    Article  Google Scholar 

  • Woodhouse CE, Janowitz WR,Viamonte M Jr (1997) Coronary arteries: retrospective cardiac gating technique to reduce cardiac motion artifact at spiral ct. Radiology 204: 566569

    Google Scholar 

  • Yoon HC, Goldin JG, Greaser LE III et al (2000) Interscan variation in coronary artery calcium quantification in a large asymptomatic patient population. Am J Roentgenol 174: 803–809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vliegenthart, R. (2004). Detection and Quantification of Coronary Calcification. In: Oudkerk, M. (eds) Coronary Radiology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06419-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06419-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06421-4

  • Online ISBN: 978-3-662-06419-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics