Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 293))

  • 10k Accesses

Abstract

In this chapter, we introduce some basic techniques and notions which will be used throughout the sequel. Once and for all, we consider below, a filtered probability space (Ω, F, F t , P) and we suppose that each F t contains all the sets of P-measure zero in F. As a result, any limit (almost-sure, in the mean, etc.) of adapted processes is an adapted process; a process which is indistinguishable from an adapted process is adapted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and Comments

  1. Itô, K., and Watanabe, S. Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier 15(1965) 15–30.

    Google Scholar 

  2. Doléans-Dade, C., and Meyer, P.A. Intégrales stochastiques par rapport aux martingales locales. Sém. Prob. IV, Lect. Notes in Mathematics, vol. 124. Springer, Berlin Heidelberg New York 1970, pp. 77–107.

    Google Scholar 

  3. Dellacherie, C., and Meyer, P.A. Probabilités et potentiel. Hermann, Paris, vol. I 1976, vol. H 1980, vol. III 1983, vol. IV 1987.

    Google Scholar 

  4. Métivier, M. Semimartingales: a course on stochastic processes. de Gruyter, Berlin New York 1982.

    Google Scholar 

  5. Kunita, H. Stochastic differential equations and stochastic flows of diffeomorphisms. Ecole d’Eté de Probabilités de Saint-Flour XII, Lect. Notes in Mathematics, vol. 1097. Springer, Berlin Heidelberg New York 1984, pp. 143–303.

    Google Scholar 

  6. Getoor, R.K., and Sharpe, M.J. Conformal martingales. Invent. Math. 16(1972) 271–308.

    Article  MathSciNet  MATH  Google Scholar 

  7. Stricker, C. Quasi-martingales, martingales locales, semi-martingales et filtrations. Z.W. 39(1977) 55–63.

    Article  MathSciNet  MATH  Google Scholar 

  8. Yor, M. Sur quelques approximations d’intégrales stochastiques. Sém. Prob. XI, Lect. Notes in Mathematics, vol. 528. Springer, Berlin Heidelberg New York 1977, pp. 518–528.

    Google Scholar 

  9. Sharpe, M.J. Local times and singularities of continuous local martingales. Sém. Prob. XIV, Lect. Notes in Mathematics, vol. 784. Springer, Berlin Heidelberg New York 1980, pp. 76–101.

    Google Scholar 

  10. Maisonneuve, B. Une mise au point sur les martingales locales continues définies sur un intervalle stochastique. Sém. Prob. XI, Lect. Notes in Mathematics, vol. 528. Springer, Berlin heidelberg New York 1977, pp. 435–445.

    Google Scholar 

  11. Dellacherie, C., and Meyer, P.A. Probabilités et potentiel. Hermann, Paris, vol. I 1976, vol. H 1980, vol. III 1983, vol. IV 1987.

    Google Scholar 

  12. Paley, R., Wiener, N., and Zygmund, A. Note on random functions. Math. Z. 37(1933) 647–668.

    Article  MathSciNet  Google Scholar 

  13. Kunita, H., and Watanabe, S. On square-integrable martingales. Nagoya J. Math. 30(1967) 209–245.

    MathSciNet  MATH  Google Scholar 

  14. Itô, K. Stochastic integral. Proc. Imp. Acad. Tokyo 20(1944) 519–524.

    Article  MATH  Google Scholar 

  15. Métivier, M. Semimartingales: a course on stochastic processes. de Gruyter, Berlin New York 1982.

    Google Scholar 

  16. Isaacson, D. Stochastic integrals and derivatives. Ann. Math. Sci. 40(1969) 1610–1616.

    MathSciNet  MATH  Google Scholar 

  17. Yoeurp, C. Sur la dérivation des intégrales stochastiques. Sém. Prob. XIV, Lect. Notes in Mathematics, vol. 784. Springer, Berlin Heidelberg New York 1980, pp. 249–253.

    Google Scholar 

  18. Donati-Martin, C., and Yor, M. Mouvement brownien et inégalité de Hardy dans L2. Sém. Prob. XXIII, Lect. Notes in Mathematics, vol. 1372. Springer, Berlin Heidelberg New York 1989, pp. 315–323.

    Google Scholar 

  19. Chan, J., Dean, D.S., Jansons, K.M., and Rogers, L.C.G. On polymer conformations in elongational flows. Comm. Math. Phys. 160(2) (1994) 239–257.

    Article  MathSciNet  MATH  Google Scholar 

  20. Dean, D.S., and Jansons, K.M. A note on the integral of the Brownian Bridge. Proc. R. Soc. London A 437(1992) 792–730.

    MathSciNet  Google Scholar 

  21. Kunita, H., and Watanabe, S. On square-integrable martingales. Nagoya J. Math. 30(1967) 209–245.

    MathSciNet  MATH  Google Scholar 

  22. Kunita, H. Some extensions of Itô’s formula. Sém. Prob. XV, Lect. Notes in Mathematics, vol. 850. Springer, Berlin Heidelberg New York 1981, pp. 118–141.

    Google Scholar 

  23. Kunita, H. Stochastic flows and stochastic differential equations. Cambridge University Press 1990.

    Google Scholar 

  24. Föllmer, H. Calcul d’Itô sans probabilités. Sém. Prob. XV, Lect. Notes in Mathematics, vol. 850. Springer, Berlin Heidelberg New York 1981, pp. 143–150.

    Google Scholar 

  25. Doléans-Dade, C. On the existence and unicity of solutions of stochastic integral equations. Z.W. 36(1976) 93–101.

    Article  MATH  Google Scholar 

  26. Kazamaki, N. Continuous Exponential martingales and BMO. Lect. Notes in Mathematics, vol. 1579. Springer, Berlin Heidelberg New York 1994.

    Google Scholar 

  27. Kunita, H., and Watanabe, S. On square-integrable martingales. Nagoya J. Math. 30(1967) 209–245.

    MathSciNet  MATH  Google Scholar 

  28. Ruiz de Chavez, J. Le théorème de Paul Lévy pour des mesures signées. Sém. Prob. XVIII, Lect. Notes in Mathematics, vol. 1059. Springer, Berlin Heidelberg New York 1984, pp. 245–255.

    Google Scholar 

  29. Robbins, H., and Siegmund, D. Boundary crossing probabilities for the Wiener process and sample sums. Ann. Math. Stat. 41(1970) 1410–1429.

    Article  MathSciNet  MATH  Google Scholar 

  30. Donati-Martin, C., and Yor, M. Mouvement brownien et inégalité de Hardy dans L2. Sém. Prob. XXIII, Lect. Notes in Mathematics, vol. 1372. Springer, Berlin Heidelberg New York 1989, pp. 315–323.

    Google Scholar 

  31. Calais, J.Y., and Génin, M. Sur les martingales locales continues indexées par] 0, oo[. Sém. Proba. XXII, Lect. Notes in Mathematics, vol. 986. Springer, Berlin Heidelberg New York 1988, pp. 454–466.

    Google Scholar 

  32. Carlen, E., and Krée, P. Sharp LP-estimates on multiple stochastic integrals. Ann. Prob. 19(1) (1991) 354–368.

    Article  MATH  Google Scholar 

  33. Getoor, R.K., and Sharpe, M.J. Conformal martingales. Invent. Math. 16(1972) 271–308.

    Article  MathSciNet  MATH  Google Scholar 

  34. Lenglart, E. Relation de domination entre deux processus. Ann. I.H.P. 13(1977) 171–179.

    MathSciNet  MATH  Google Scholar 

  35. Lenglart, E., Lépingle, D., and Pratelli, M. Une présentation unifiée des inégalités en théorie des martingales. Sém. Prob. XIV, Lect. Notes in Mathematics, vol. 784. Springer, Berlin Heidelberg New York 1980, pp. 26–48.

    Google Scholar 

  36. Burkholder, D.L. Distribution function inequalities for martingales. Ann. Prob. 1(1973) 19–42.

    Article  MathSciNet  MATH  Google Scholar 

  37. Bass, R.F. 4-inequalities for functionals of Brownian motion. Sém. Prob. XXI. Lect. Notes in Mathematics, vol. 1247. Springer, Berlin Heidelberg New York 1987, pp. 206–217.

    Google Scholar 

  38. Davis, B. On the Barlow-Yor inequalities for local time. Sém. Prob. XXI, Lect. Notes in Mathematics, vol. 1247. Springer, Berlin Heidelberg New York 1987, pp. 218–220.

    Google Scholar 

  39. Durrett, R. Brownian motion and martingales in analysis. Wadsworth, Belmont, Calif. 1984.

    Google Scholar 

  40. Yor, M. Inégalités de martingales continues arrètées à un temps quelconque, I, II. In: Grossissements de filtrations: exemples et applications. Lect. Notes in Mathematics, vol. 1118. Springer, Berlin Heidelberg New York 1985, pp. 110–171.

    Chapter  Google Scholar 

  41. Chou, S. Sur certaines généralisations de l’inégalité de Fefferman Sém. Prob. XVIII, Lect. Notes in Mathematics, vol. 1059. Springer, Berlin Heidelberg New York 1984, pp. 219–222.

    Google Scholar 

  42. Chung, K.L., and Williams, R.T. Introduction to stochastic integration. Second edition. Birkhäuser, Boston 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Revuz, D., Yor, M. (1999). Stochastic Integration. In: Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenschaften, vol 293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06400-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06400-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08400-3

  • Online ISBN: 978-3-662-06400-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics