Skip to main content

The Hubbard model: Some Rigorous Results and Open Problems

  • Chapter
Book cover Condensed Matter Physics and Exactly Soluble Models

Abstract

The Hubbard model of interacting electrons, like the Ising model of spin-spin interactions, is the simplest possible model displaying many “real world” features, but it is much more difficult to analyze qualitatively than the Ising model. After a third of a century of research, we are still not sure about many of its basic properties. This mini-review will explore what is known rigorously about the model and it will attempt to describe some open problems that are possibly within the range of rigorous mathematical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aizenman and E.H. Lieb, Magnetic properties of some itinerant-electron systems at T > 0, Phys. Rev. Lett. 65, 1470 - 1473 (1990).

    Article  ADS  Google Scholar 

  2. P.W. Anderson, New approach to the theory of superexchange interactions, Phys. Rev. 115, 2 - 13 (1959).

    Article  MATH  Google Scholar 

  3. H.A. Bethe, Zeits. f. Phys. 71, 205-226 (1931); English trans.: D.C. Mattis, The Many-Body Problem, World Scientific (1993), pp. 689 - 716.

    Google Scholar 

  4. C.F. Coll III, Excitation spectrum of the one-dimensional Hubbard model, Phys. Rev. B 9, 2150 - 2159 (1974).

    Article  Google Scholar 

  5. S. Chakravarty, L. Chayes and S.A. Kivelson, Absence of pair binding in the U= 00 Hubbard Model, Lett. Math. Phys. 23, 265 - 270 (1991).

    MathSciNet  ADS  MATH  Google Scholar 

  6. C.A. Coulson and G.S. Rushbrooke, Note on the method of molecular orbitals, Proc. Cambridge Philos. Soc. 36, 193 - 200 (1940).

    Google Scholar 

  7. F.J. Dyson, E.H. Lieb and B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactions J. Stat. Phys. 18, 335 - 383 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  8. DWI B. Doucot and X.G. Wen, Instability of the Nagaoka state with more than one hole, Phys. Rev. B 40, 2719 - 2722 (1989).

    Article  Google Scholar 

  9. F.H.L. Essler, V.E. Korepin and K. Schoutens, Complete solution of the one-dimensional Hubbard model, Phys. Rev. Lett. 67, 3848-3851 (1991). The details are in Completeness of the SO(4) extended Bethe ansatz for the one-dimensional Hubbard model, Nucl. Phys. B 384, 431 - 458 (1982).

    MathSciNet  Google Scholar 

  10. F.H.L. Essler and V.E. Korepin, Scattering matrix and excitation spectrum of the Hubbard model, preprint (1993).

    Google Scholar 

  11. S. Fujimoto and N. Kawakami, Persistent currents in mesoscopic Hubbard rings with spin-orbit interaction, Yukawa Institute preprint (July 1993).

    Google Scholar 

  12. L.M. Falicov and J.C. Kimball, Simple model for semiconductor-metal transitions: SmB6 and transition metal oxides, Phys. Rev. Lett. 22, 997 - 999 (1969).

    Article  ADS  Google Scholar 

  13. M. Flicker and E.H. Lieb, Delta function fermi gas with two-spin deviates, Phys. Rev. 161, 179 - 188 (1967).

    Article  Google Scholar 

  14. FL2] J.K. Freericks and E.H. Lieb, The ground state of a general electron-phonon Hamiltonian is a spin singlet,in preparation.

    Google Scholar 

  15. Y. Fand, A.E. Ruckenstein, E. Dagatto and S. Schmitt-Rink, Holes in the infinite U Hubbard model: Instability of the Nagaoka state, Phys. Rev. B 40, 7406 - 7409 (1989).

    Article  Google Scholar 

  16. GD] D.K. Ghosh, Nonexistence of magnetic ordering in the one-and two-dimensional Hubbard model,Phys. Rev. Lett. 27, 1584-1586 (1971), [Errata, 28 330 (1972)].

    Google Scholar 

  17. GM] M. Gaudin, Un système à une dimension de fermions en interaction, Phys. Letters 24A, 55 - 56 (1967).

    Article  Google Scholar 

  18. M.C. Gutzwiller, The effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett. 10, 159 - 162 (1963).

    Article  ADS  Google Scholar 

  19. J. Hubbard, Electron correlations in narrow energy bands, Proc. Roy. Soc. (London), A276, 238 - 257 (1963).

    Article  ADS  Google Scholar 

  20. Also in Ann. N.Y. Acad. Sci. 172, 583 - 617 (1971).

    Google Scholar 

  21. Th. Hanisch and E. Müller-Hartmann: Ferromagnetism in the Hubbard Model: Instability of the Nagaoka State on the Square Lattice, Ann. Physik 2, 381-397 (1993); See also E. Müller-Hartmann, Th. Hanisch and R. Hirsch: Ferromagnetism of Hubbard Models, Physica B 186-188, 834 - 836 (1993).

    Google Scholar 

  22. J. Kanamori, Electron correlation and ferromagnetism of transition metals, Prog. Theor. Phys. 30, 275 - 289 (1963).

    Article  ADS  MATH  Google Scholar 

  23. K. Kubo and K. Kishi, Rigorous bounds on the susceptibility of the Hubbard model, Phys. Rev. B 41, 4866 - 4868 (1990).

    Article  Google Scholar 

  24. T. Kennedy and E.H. Lieb, An itinerant electron model with crystalline or magnetic long range order, Physica 138A, 320 - 358 (1986).

    Article  MathSciNet  Google Scholar 

  25. T. Kennedy, E.H. Lieb and S. Shastry, Existence of Néel order in some spin 1/2 Heisenberg antiferromagnets, J. Stat. Phys. 53, 1019 - 1030 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Koma, An extension of the thermal Bethe ansatz - one-dimensional Hubbard model, Prog. Theor. Phys. 83, 655 - 659 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. KT] T. Koma and H. Tasaki, Decay of superconducting and magnetic correlations in one-and

    Google Scholar 

  28. two-dimensional Hubbard models,Phys. Rev. Lett. 68, 3248-3251 (1992).

    Google Scholar 

  29. LE1] E.H. Lieb, Two theorems on the Hubbard model,Phys. Rev. Lett. 62, 1201-1204 (1989), [Errata 62, 1927 (1989)].

    Google Scholar 

  30. E.H. Lieb, Models, in Proceedings of the Solvay institute 14th conference on chemistry at the University of Brussels, May 1969, Phase transitions, Interscience, 1971.

    Google Scholar 

  31. E.H. Lieb, Flux phase of the half-filled band, Phys. Rev. 73, 2158 - 2161 (1994).

    Google Scholar 

  32. E.H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. 130, 1605 - 1616 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  33. LL2] E.H. Lieb and M. Loss, Fluxes, Laplacians and Kasteleyn's theorem,Duke Math. J. 71, 337-363 (1993).

    Google Scholar 

  34. E.H. Lieb, M. Loss and R.J. McCann, Uniform density theorem for the Hubbard model, J. Math. Phys. 34, 891 - 898 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. E.H. Lieb and D.C. Mattis, Theory of ferromagnetism and the ordering of electronic energy levels, Phys. Rev. 125, 164 - 172 (1962).

    Article  MATH  Google Scholar 

  36. E.H. Lieb and D.C. Mattis, Ordering energy levels of interacting spin systems, J. Math. Phys. 3, 749 - 751 (1962).

    Article  ADS  MATH  Google Scholar 

  37. W. von der Linden and D.M. Edwards, Ferrromagnetism in the Hubbard model, J. Phys. Cond. Matt. 3, 4917 - 4940 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  38. E.H. Lieb and F.Y. Wu, Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension, Phys. Rev. Lett. 20, 1445 - 1448 (1968).

    Article  ADS  Google Scholar 

  39. A.D. MacLachlan, The pairing of electronic states in alternant hydrocarbons, Mol. Phys. 2, 271-284 (1959); Electrons and holes in alternant hydrocarbons, Mol. Phys. 4, 49 - 56 (1961).

    Google Scholar 

  40. A. Mielke, Ferromagnetic ground states for the Hubbard model on line graphs, J. Phys. A 24, L73-L77 (1991); Ferromagnetism in the Hubbard model on line graphs and further considerations, J. Phys. A 24, 3311-3321 (1991); Exact ground states for the Hubbard model on the kagome lattice, J. Phys. A 25, 4335-4345 (1992); Ferromagnetism in the Hubbard model and Hund's rule, Phys. Lett. A 174, 443 - 448 (1993).

    Google Scholar 

  41. A. Mielke, The one-dimensional Hubbard model for large or infinite U, J. Stat. Phys. 62, 509 - 528 (1991).

    Article  ADS  Google Scholar 

  42. J.B. McGuire, Interacting fermions in one dimension. I. Repulsive potential, J. Math. Phys. 6, 432 - 439 (1965).

    Google Scholar 

  43. O. McBryan and T. Spencer, On the decay of correlations in SOW-symmetric ferromagnets, Commun. Math. Phys. 53, 299 - 302 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  44. MT] A. Mielke and H. Tasaki, Ferromagnetism in the Hubbard model,Commun. Math. Phys. (in press).

    Google Scholar 

  45. W. Metzner and D. Vollhardt, Correlated lattice fermions in d= 00 dimensions, Phys. Rev. Lett. 62, 324 - 327 (1989).

    Article  ADS  Google Scholar 

  46. Y. Nagaoka, Ferromagnetism in a narrow, almost half-filled s band, Phys. Rev. 147, 392 - 405 (1966).

    Article  Google Scholar 

  47. A.A. Ovchinnikov, Zh.Eksp. Teor. Fiz. 57, 2137-2143 (1969). Engl. trans. Excitation spectrum in the one-dimensional Hubbard model, Sov. Phys. JETP 30, 1160 - 1163 (1970).

    Google Scholar 

  48. J.A. Pople, Electron interaction in unsaturated hydrocarbons, Trans. Faraday Soc. 49, 13751385 (1953).

    Google Scholar 

  49. R. Pariser and R.G. Parr, A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated hydrocarbons I. and II., J. Chem. Phys. 21, 466-471, 767 - 776 (1953).

    Google Scholar 

  50. A. Süth, Absence of highest spin ground states in the Hubbard model, Commun. Math. Phys. 140, 43 - 62 (1991).

    Article  ADS  Google Scholar 

  51. SA2] A. Sütó, Bounds on ferromagnetism at T > 0 in the hard-core lattice model,Phys. Rev. B. 43, 8779-8781 (1991); The U = 00 Hubbard model at positive temperature in From' Phase Transitions to Chaos,G. Gyorgi ed., World Scientific (1992).

    Google Scholar 

  52. B.S. Shastry, Infinite conservation laws in the one-dimensional Hubbard model, Phys. Rev. Lett. 56, 1529-1531 (1986), [Errata 56, 2334 (1986)] and Exact integrability of the one-dimensional Hubbard model, Phys. Rev. Lett. 56, 2453-2456 (1986). The general method is clarified in Decorated star-triangle relations and exact integrability of the one-dimensional Hubbard model, J. Stat. Phys. 50, 57 - 79 (1988).

    Google Scholar 

  53. H. Shiba, Magnetic susceptibility at zero temperature for the one-dimensional Hubbard model, Phys. Rev. B 6, 930 - 938 (1972).

    Article  Google Scholar 

  54. B.S. Shastry, H.R. Krishnamurthy and P.W. Anderson, Instability of the Nagaoka ferromagnetic state of the U= 00 Hubbard model, Phys. Rev. B 41, 275 - 2379 (1990).

    Article  Google Scholar 

  55. S.Q. Shen and Z.M. Qiu, Exact demonstration of off-diagonal long-range order in the ground state of a Hubbard model, Phys. Rev. Lett. 71, 4238 - 4240 (1993).

    Article  ADS  Google Scholar 

  56. S.Q. Shen, Z.M. Qiu and G.S. Tian, The Nagaoka state and its stability in the one-band Hubbard model, Phys. Lett. A 178, 426 - 430 (1993).

    Article  ADS  Google Scholar 

  57. S.Q. Shen and Z.M. Qiu and Tian, Ferrimagnetic long-range order in the hubbard model, submitted to Phys. Rev. Lett. (1993).

    Google Scholar 

  58. B. Tóth, Failure of saturated ferromagnetism for the Hubbard model with two holes, Lett. Math. Phys. 22, 321 - 333 (1991).

    ADS  Google Scholar 

  59. D.J. Thouless, Proc. Phys. Soc. (London), Exchange in Solid 3 He and the Heisenberg Hamiltonian 86, 893 - 904 (1965).

    Google Scholar 

  60. G.S. Tian, A simplified proof of Nagaoka's theorem, J. Phys. A 23, 2231 - 2236 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  61. G.S. Tian, The Nagaoka state in the one-band Hubbard model with two and more holes, J. Phys. A 24 513 - 521 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  62. G.S. Tian, Stability of the Nagaoka state in the one-band Hubbard model, Phys. Rev. B 44, 4444 - 4448 (1991).

    Google Scholar 

  63. G.S. Tian, Rigorous theorems on off-diagonal long range order in the negative U Hubbard model, Phys Rev. B 45 3145 - 3148 (1992).

    Article  Google Scholar 

  64. H. Tasaki, Extension of Nagaoka's theorem on the large U Hubbard Model, Phys. Rev. B 40, 9192 - 9193 (1989).

    Article  Google Scholar 

  65. H. Tasaki, Ferromagnetism in Hubbard models with degenerate single-electron ground states, Phys. Rev. Lett. 69, 1608 - 1611 (1992).

    Article  ADS  Google Scholar 

  66. M. Takahashi, Magnetization curve for the half-filled Hubbard model, Prog. Theor. Phys. 42, 1098-1105 (1969) and Magnetic susceptibility for the half-filled Hubbard model, Prog. Theor. Phys. 43, 1619 (1970).

    Google Scholar 

  67. S.A. Trugman, Exact results for the U= 00 Hubbard model, Phys. Rev. B 42, 6612 - 6613 (1990).

    Article  MATH  Google Scholar 

  68. K. Ueda, H. Tsunetsugu and M. Sigrist, Singlet ground state of the periodic Anderson model at half filling: a rigorous result, Phys. Rev. Lett. 68, 1030 - 1033 (1992).

    Article  ADS  Google Scholar 

  69. F. Woynarovich and H.P. Eckle, Finite size corrections for the low lying states of a half-filled Hubbard chain, J. Phys. A 20, L443 - 449 (1987).

    Article  ADS  Google Scholar 

  70. F. Woynarovich, Excitations with complex wavenumbers in a Hubbard chain: I. States with one pair of complex wavenumbers, J. Phys. C 15, 85-96 and II. States with several pairs of complex wavenumbers, 97-109 (1982).

    Google Scholar 

  71. M.B. Walker and Th.W. Ruijgrok, Absence of magnetic ordering in one and two dimensions in a many-band model for interacting electrons in a metal, Phys. Rev. 171, 513 - 515 (1968).

    Article  Google Scholar 

  72. C.N. Yang, Some exact results for the many-body problem in one-dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19, 1312 - 1315 (1967).

    Article  ADS  MATH  Google Scholar 

  73. C.N. Yang and S.C. Zhang, SO(4) symmetry in a Hubbard model, Mod. Phys. Lett. B4, 759 - 766 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H. (2004). The Hubbard model: Some Rigorous Results and Open Problems. In: Nachtergaele, B., Solovej, J.P., Yngvason, J. (eds) Condensed Matter Physics and Exactly Soluble Models. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06390-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06390-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06093-9

  • Online ISBN: 978-3-662-06390-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics