Skip to main content

Two-Dimensional Ising Model as a Soluble Problem of Many Fermions

  • Chapter
Book cover Condensed Matter Physics and Exactly Soluble Models

Abstract

The two-dimensional Ising model for a system of interacting spins (or for the ordering of an AB alloy) on a square lattice is one of the very few nontrivial many-body problems that is exactly soluble and shows a phase transition. Although the exact solution in the absence of an external magnetic field was first given almost twenty years ago in a famous paper by Onsager1 using the theory of Lie algebras, the flow of papers on both approximate and exact methods has remained strong to this day.2 One reason for this has been the interest in testing approximate methods on an exactly soluble problem. A second reason, no doubt, has been the considerable formidability of the Onsager method. The simplification achieved by Bruria Kaufman3 using the theory of spinor representations has diminished, but not removed, the reputation of the Onsager approach for incomprehensibility, while the subsequent application of this method by Yang4 to the calculation of the spontaneous magnetization has, if anything, helped to restore this reputation.

Present address: Belfer Graduate School of Science, Yeshiva University, New York, New York.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. For reviews, see G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25, 353 (1953); and C. Domb, Phil. Mag. Suppl. 9, 151 (1960).

    Google Scholar 

  3. B. Kaufman, Phys. Rev. 76, 1232 (1949); B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949). See also Y. Nambu, Progr. Theoret. Phys. (Kyoto) 5, 1 (1950); K. Husimi and I., Syózi, Progr. Theoret. Phys. (Kyoto) 5, 177 (1950); and L Syózi Progr. Theoret. Phys. (Kyoto) 5, 341 (1950).

    Google Scholar 

  4. C. N. Yang, Phys. Rev. 85, 808 (1952).

    Article  ADS  MATH  Google Scholar 

  5. B. L. van der Waerden, Z. Physik 118, 473 (1941).

    Article  ADS  Google Scholar 

  6. M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952). See also S. Sherman, J. Math, Phys. 1, 202 (1960); and P. N. Burgoyne, J. Math. Phys. 4, 1320 (1963) who have supplied proofs necessary to make the approach of Kac and Ward rigorous.

    Google Scholar 

  7. R. B. Potts and J. C. Ward, Progr. Theoret Phys. (Kyoto) 13, 38 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. C. A. Hurst and H. S. Green, J. Chem. Phys. 33, 1059 (1960). See also A. M. Dykhne and Yu. B. Rumer, Usp. Fiz. Nauk 75, 101 (1961) [English transl.: Soviet Phys.—Usp. 4, 698 (1962)].

    Google Scholar 

  9. P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  10. E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math, Phys. 4, 308 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  11. N. N. Bogolubov, Nuovo Cimento 7, 794 (1958).

    Article  Google Scholar 

  12. J. G. Valatin, Nuovo Cimento 7, 843 (1958).

    Article  MathSciNet  Google Scholar 

  13. See the review of Newell and Montroll, Ref. 2. This and related methods were originally discovered by E. W. Montroll, J. Chem. Phys. 9, 706 (1941);

    Google Scholar 

  14. H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941);

    Article  MathSciNet  ADS  Google Scholar 

  15. E. N. Lassettre and J. P. Howe, J. Chem. Phys. 9, 747 (1941); and R. Kubo, Busseiron Kenkyu 1, 1943.

    Google Scholar 

  16. H. Schmidt, Phys. Rev, 105, 425 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J. Bardeen, L. Cooper, and J. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. P. W. Anderson, Phys. Rev. 112, 1900 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  19. See remark of Domb, Ref. 2, p. 194.

    Google Scholar 

  20. J. Ashkin and W. E. Lamb, Phys. Rev. 64, 159 (1943).

    Article  ADS  Google Scholar 

  21. K.. Huang, Statistical Mechanics (John Wiley & Sons, Inc., New York, London, 1963), pp. 369 ff.

    Google Scholar 

  22. This situation is identical to;rhat we found for the “XY model” of quantum mechanical spins in one dimension, where it is discussed in more detail. See E. Lieb, D. Mattis, and T. Schultz, Ann. Phys. 16, 407 (1961), especially pp. 417 ff.

    Google Scholar 

  23. See V. Grenander and G. Szegö, Toeplits Forms and their Applications (University of California Press, Berkeley, Cali¬fornia, 1958 ). For a proof that is extendable to non-Hermitian kernels, as is the case here, see M. Kac, Probability and Related Topics in Physical Sciences (Interscience Publishers, Inc., New York, 1959 ).

    Google Scholar 

  24. Dr. Montroll and Dr. Potts have kindly informed us that their use of the Szegö-Kac theorem in this case is not correct as it appears in MPW, but that it can be corrected.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schultz, T.D., Mattis, D.C., Lieb, E.H. (2004). Two-Dimensional Ising Model as a Soluble Problem of Many Fermions. In: Nachtergaele, B., Solovej, J.P., Yngvason, J. (eds) Condensed Matter Physics and Exactly Soluble Models. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06390-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06390-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06093-9

  • Online ISBN: 978-3-662-06390-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics