The Structural Variety and Metabolism of Proteins

  • Klaus Urich


Individual eukaryote cells contain in the order of 104 different proteins, and each animal species contains an even greater number due to differences between the tissues of an individual and between the individuals themselves; furthermore, the protein spectrum changes during the course of development. The number of different proteins to be found in extant organisms may be as high as 1012. The description of this variety, its origin and biological significance is the most extensive theme in comparative biochemistry. This chapter will concern itself with the possibilities for structural variation and the general metabolism of proteins; further chapters will deal with comparative studies of individual proteins.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe K. et al.: Molecular cloning of a cysteine protei-nase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds. J. biol. Chem. 262: 16793–97 (1987)PubMedGoogle Scholar
  2. 2.
    Adam S. A. et al.: Identification of specific binding proteins for a nuclear location sequence. Nature 337: 276–279 (1989)PubMedCrossRefGoogle Scholar
  3. 3.
    Aitken A.: Identification of protein consensus sequences. VHC Pubs. ( Horwood ), New York 1990Google Scholar
  4. 4.
    Alexander M. E. and Dresden M. H.: Collagenolytic enzymes from the starfish, Pyenopodia helianthoides. Comp. Biochem. Physiol. Pt. B 67: 505–509 (1980)CrossRefGoogle Scholar
  5. 5.
    Argos P. and Rao J. K. M.: Relationships between exons and the predicted structure of membrane-bound proteins. Biochim. biophys. Acta 827: 283–297 (1985)Google Scholar
  6. 6.
    Armstrong P. B. et al.: Structure of a2-macroglobulin from the arthropod Limus polyphemus. J. Biol. Chem. 266: 2526–30 (1991)PubMedGoogle Scholar
  7. 7.
    Arribas. C., Sampedro J. and Izquierdo M.: The ubiquitin genes in Drosophila melanogaster: transcription and polymorphism. Biochim. biophys. Acta 868: 119–127 (1986)Google Scholar
  8. 8.
    Baba T. et al.:Activation and maturation mechanisms of boar acrosin zymogen based on the deduced primary structure. J. Biol. Chem. 264: 11920–27 (1989)Google Scholar
  9. 9.
    Baici A. and Seemüller U.: Kinetics of the inhibition of human leucocyte elastase by eglin from the leech Hirudo medicinalis. Biochem. J. 218: 829–833 (1984)PubMedGoogle Scholar
  10. 10.
    Bao J. J. et al.: Molecular evolution of serpins: Homologous structure of the human alantichymotrypsin and al-antitrypsin genes. Biochemistry 26: 7755–59 (1987). Correction: Biochemistry 27: 8508 (1988)Google Scholar
  11. 11.
    Barrett A. J. and McDonald J. K.: Mammalian pro-teases, Vol. I: Endopeptidases. Acad Press, New York 1980Google Scholar
  12. 12.
    Barrett A. J.: The cystatins: a new class of peptidase inhibitors. Trends biochem. Sci. 12: 193–196Google Scholar
  13. 13.
    Baudys M. and Kostka V.: Covalent structure of chicken pepsinogen. Eur. J. Biochem. 136: 89–99 (1983)PubMedCrossRefGoogle Scholar
  14. 14.
    Bauw G. et al.: Protein-electroblotting and -microsequencing strategies in generating protein data bases from two-dimensional gels. Proc. Nat. Acad. Sci. USA 86: 7701–05 (1989)PubMedCrossRefGoogle Scholar
  15. 15.
    Berger E. G. and Baumann H.: An evolutionary switch in tissue-specific gene expression. Abundant expression of al-antitrypsin in the kidney of a wild mouse species. J. biol. Chem. 260: 1160–65 (1985)PubMedGoogle Scholar
  16. 16.
    Blankenship D. T. et al: Amino acid sequence of ghilanten: anticoagulant-antimetastatic principle of the South American leech, Haementeria ghilianii Biochem. biophys. Res. Commun. 166: 1384–89 (1990)Google Scholar
  17. 17.
    Bode W. et al.: The 2.0 A X-ray structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. Embo J. 7: 2593–99 (1988)PubMedGoogle Scholar
  18. 18.
    Bond J. S. and Butler P. E.: Intracellular proteases. Annual Rev. Biochem. 56: 333–364 (1987)CrossRefGoogle Scholar
  19. 19.
    Bork P.: Recognition of functional regions in primary structures using a set of property patterns. FEBS Letters 257: 191–195 (1989)PubMedCrossRefGoogle Scholar
  20. 20.
    Borst P.: How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes). Biochim. biophys. Acta 866: 179–203 (1986)Google Scholar
  21. 21.
    Bradshaw R. A.: Protein translocations and turnover in eukaryotic cells. Trends biochem. Sci. 14: 276–279 (1989)Google Scholar
  22. 22.
    Brenner S.: The molecular evolution of genes and proteins: a tale of two serines. Nature 334: 528–530 (1988)PubMedCrossRefGoogle Scholar
  23. 23.
    Brown C. M. et al.: Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res. 18: 6339–45 (1990)PubMedCrossRefGoogle Scholar
  24. 24.
    Candelas G. et al.: Translational pauses during a spider fibroin synthesis. Biochem. biophys. Res. Cotnmun. 116: 1033–38 (1983)Google Scholar
  25. 25.
    Carling D. and Hardie D. G.: The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim. biophys. Acta 1012: 81–86 (1989)Google Scholar
  26. 26.
    Carrell R. and Travis J.: al-Antitrypsin and the serpins: variation and countervariation. Trends biochem. Sci. 10: 20–24 (1985)Google Scholar
  27. 27.
    Cavener D. E. and Ray S. C.: Eukaryotic start and stop translation sites. Nucleic Acids Res. 19: 3185–92 (1991)PubMedCrossRefGoogle Scholar
  28. 28.
    Chang P. K. and Dignam J. D.: Pimary structure of alanyl-transfer RNA synthetase and the regulation of its messenger RNA levels in Bombyx mori. J. Biol. Chem. 265: 20898–906 (1990)PubMedGoogle Scholar
  29. 29.
    Chao S. et al.: Molecular cloning and primary stucture of rat al-antitrypsin. Biochemistry 29: 323–329 (1990)PubMedCrossRefGoogle Scholar
  30. 30.
    Chappell L. C. and Dresden M. H.: Purification of cysteine proteinases from adult Schistosoma man-soni. Arch. Biochem. Biophys. 256: 560–568 (1987)PubMedCrossRefGoogle Scholar
  31. 31.
    Charbonneau H. et al.: Human placenta proteintyrosine-phosphatase• Amino acid sequence and relationship to a family of receptor-like proteins. Proc. Nat. Acad. Sci. USA 86: 5252–56 (1989)PubMedCrossRefGoogle Scholar
  32. 32.
    Cheeseman M. T. and Gooding R. H.: Proteolytic enzymes from tsetse flies, Glossina morsitans and Glossina palpalis (Diptera: Glossinidae). Insect Biochem. 15: 677–680 (1985)CrossRefGoogle Scholar
  33. 33.
    Chothia C. and Finkelstein A. V.: The classification and origins of protein folding patterns. Annual Rev. Biochem. 59: 1007–1039 (1990)CrossRefGoogle Scholar
  34. 34.
    Clark V. M. and Curthoys P.: Cause of subunit heterogeneity in purified rat renal phosphate-dependent glutaminase. J. biol. Chem. 254: 4939–41 (1979)PubMedGoogle Scholar
  35. 35.
    Cochrane B. J. and Richmond R. C.: Studies of esterase-6 in Drosophila melanogaster. 1. Genetics of a posttranslational modification. Biochem. Genetics 17: 167–183 (1979)CrossRefGoogle Scholar
  36. 36.
    Cohen P.: The structure and regulation of protein phosphatases. Annual Rev. Biochem. 58: 453–508 (1989)CrossRefGoogle Scholar
  37. 37.
    Cohen P. T. W. et al.: Protein serine threonine phosphatases–An expanding family. FEBS Letters 268: 355–359 (1990)PubMedCrossRefGoogle Scholar
  38. 38.
    Colella R. et al.: Chicken white cystatin. Molecular cloning, nucleotide sequence, and tissue distribution. J. Biol. Chem. 264: 17164–69 (1989)PubMedGoogle Scholar
  39. 39.
    Collier I. E. et al.: The structure of the human skin fibroblast collagenase gene. J. Biol. Chem. 263: 10711–13 (1988)PubMedGoogle Scholar
  40. 40.
    Combest W. L. and Gilbert L. I.: Particulate associated cAMP-dependent protein kinase activity in the brain of the tobacco hornworm, Manduca sexta. Insect Biochem. 19: 663–672 (1989)CrossRefGoogle Scholar
  41. 41.
    Conlon J. M. and Thim L.: A peptide from the eel pancreas with structural similarity to human pancreatic secretory trypsin inhibitor. Eur. J. Biochem. 174: 149–153 (1988)PubMedCrossRefGoogle Scholar
  42. 42.
    Craik C. S., Rutter W. J. and Fletterick R.: Splice junctions: association with variation in protein structure. Science 220: 1125–29 (1983)PubMedCrossRefGoogle Scholar
  43. 43.
    Creighton T. E.: Protein folding. Biochem. J. 270: 1–16 (1990)PubMedGoogle Scholar
  44. 44.
    Dahlman B et al.: The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Letters 251: 125–131 (1989)CrossRefGoogle Scholar
  45. 45.
    Dahms, N. M., Lobel P. and Kornfeld S: Mannose 6-phosphate receptors and lysosomal enzyme targeting (Minireview). J. Biol. Chem. 264: 12115–18 (1989)PubMedGoogle Scholar
  46. 46.
    van Damme H. T. F. et al.: Elongation factor 1-beta of Artemia: Localization of functional sites and homology to elongation factor 1-delta. Biochim. biophys. Acta 1050: 241–247 (1990)Google Scholar
  47. 47.
    Dang C. V. and Dang C. V.: Multienzyme complex of aminoacyl-tRNA synthetases: an essence of being eukaryotic (Review). Biochem. J. 239: 249–255 (1986)PubMedGoogle Scholar
  48. 48.
    Das S. et al.: A cylic nucleotide-independent protein kinase in Leishmania donovani. Biochem. J. 240: 641–649 (1986)PubMedGoogle Scholar
  49. 49.
    Davis, A. H., Nanduri J. and Watson D. C.: Cloning and gene expression of Schistosoma mansoni protease. J. biol. Chem. 262: 12851–55 (1987)PubMedGoogle Scholar
  50. 50.
    Davis C. A. et al.: A gene family in Drosophila melanogaster coding for trypsin-like enzymes. Nucleic Acids Res. 13: 6605–19 (1985)PubMedCrossRefGoogle Scholar
  51. 51.
    Dayhof M. O. (ed.): Atlas of protein sequence and structure, Vol. 5 and Suppl. 1–3. Nat. Biomed. Res. Foundation, Washington 1972–78Google Scholar
  52. 52.
    Delbridge M. L. and Kelly L. E.: Sequence analysis and chromosomal localization of a gene encoding a cystatin-like protein from Drosophila melanogaster. FEBS Letters 274: 141–145 (1990)PubMedCrossRefGoogle Scholar
  53. 53.
    Dendinger J. E. and O’Connor K. L.: Purification and characterization of a trypsin-like enzyme from the midgut gland of the Atlantic blue crab, Callinectes sapidus. Comp. Biochem. Physiol. Pt. B 95: 525–530 (1990)CrossRefGoogle Scholar
  54. 54.
    Deng L. R. et al.: Isolation and properties of two allelic chymotrypsin inhibitors from the hemolymph of the silkworm, Bombyx mori. Insect Biochem. 20: 531–536 (1990)CrossRefGoogle Scholar
  55. 55.
    Diarra-Mehrpour M. et al.: Human plasma inter-atrypsin inhibitor is encoded by four genes on three chromosomes. Eur. J. Biochem. 179: 147–154 (1989)PubMedCrossRefGoogle Scholar
  56. 56.
    Djé M. K. et al.: Three genes under different developmental control encode elongation factor 1-a in Xenopus laevis. Nucleic Acids Res. 18: 3489–93 (1990)PubMedCrossRefGoogle Scholar
  57. 57.
    Dombradi V. et al.: Cloning and chromosomal localization of Drosophila cDNA encoding the catalytic subunit of protein phosphatase la–High conservation between mammalian and insect sequences. Eur. J. Biochem. 183: 603–610 (1989)PubMedCrossRefGoogle Scholar
  58. 58.
    Donovan M. A. and Laue T M.: A novel trypsin inhibitor from the hemolymph of the horseshoe crab Limulus polyphemus. J. Biol. Chem. 266: 2121–25 (1991)PubMedGoogle Scholar
  59. 59.
    Driscoll J. and Goldberg A. L.: The proteasome (multicatalytic protease) is a component of the 1500kDa proteolytic complex which degrades ubiquitinconjugated proteins. J. Biol. Chem. 265: 4789–92 (1990)PubMedGoogle Scholar
  60. 60.
    Dufton M. J.: Proteinase inhibitors and dendrotoxins. Sequence classification, structural prediction and structure/activity. Eur. J. Biochem. 153: 647–654 (1987)CrossRefGoogle Scholar
  61. 61.
    Dunbar B. S.: Two-dimensional electrophoresis and immunological techniques. Plenum, New York 1987CrossRefGoogle Scholar
  62. 62.
    Dunwiddie C. et al.: Antistasin, a leech-derived inhibitor of factor Xa. Kinetic analysis of enzyme inhibition and identification of the reactive site. J. Biol. Chem. 264: 16695–99 (1989)Google Scholar
  63. 63.
    Edelman A. M., Blumenthal D. K. and Krebs E. G.: Protein serine/threonine kinases. Annual Rev. Biochem. 56: 567–613 (1987)CrossRefGoogle Scholar
  64. 64.
    Ehlers M. R. W. et al.: Molecular cloning of human testicular angiotensin-converting enzyme: The testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc. Nat. Acad. Sci. USA 86: 7741–45 (1989)PubMedCrossRefGoogle Scholar
  65. 65.
    Enghild J. J. et al.: Alpha-macroglobulin from Limulus polyphemus exhibits proteinase inhibitory activity and participates in a hemolytic system. Biochemistry 29: 10070–80 (1990)PubMedCrossRefGoogle Scholar
  66. 66.
    Estell D. A. and Laskowski M. jr.: Dermasterias imbricata Trypsin I: an enzyme which rapidly hydrolyzes the reactive site peptide bonds of protein trypsin inhibitors. Biochemistry 19: 124–131 (1980)PubMedCrossRefGoogle Scholar
  67. 67.
    Falkenburg P. E. and Kloetzel P. M.: Identification and characterization of three different subpopulations of the Drosophila multicatalytic proteinase (proteasome). J. Biol. Chem. 264: 6660–66 (1989)PubMedGoogle Scholar
  68. 68.
    Fasman G. D. (ed.): Prediction of protein structure and the principles of protein conformation. Plenum, New York 1989Google Scholar
  69. 69.
    Faust P. L., Kornfeld S. and Chirgwin J. M.: Cloning and sequence analysis of cDNA for human cathepsin D. Proc. Nat. Acad. Sci. USA 82: 4910–14 (1985)PubMedCrossRefGoogle Scholar
  70. 70.
    Feldman S and Pizzo S. V.: Purification and characterization of frog a-macroglobulin: Receptor recognition of an amphibian glycoprotein. Biochemistry 24: 2569–75 (1985)PubMedCrossRefGoogle Scholar
  71. 71.
    Fini M. E. et al.: A gene for rabbit synovial cell collagenase: member of a family of metalloproteinases that degrade the connective tissue matrix. Biochemistry 26: 6156–65 (1987)PubMedCrossRefGoogle Scholar
  72. 72.
    Fischer E. H., Charbonneau H. and Tonks N. K.: Protein tyrosine phosphatases. A diverse family of intracellular and transmembrane enzymes. Science 253: 401–406 (1991)PubMedCrossRefGoogle Scholar
  73. 73.
    Folco E. J. et al.: Multicatalytic proteinase in fish muscle. Arch. Biochem. Biophys. 267: 599–605 (1988)PubMedCrossRefGoogle Scholar
  74. 74.
    Foster J. L., Higgins G. C. and Jackson E R.: Cloning, sequence, and expression of the Drosophila cAMP-dependent protein kinase catalytic subunit gene. J. biol. Chem. 263: 1676–81 (1988)PubMedGoogle Scholar
  75. 75.
    Freedman R. B. and Hawkins H. C. (eds.): The enzymology of posttranslational modification of proteins. Acad. Press, New York 1985Google Scholar
  76. 76.
    Gabius H. J. et al.. Evolutionary aspects of accuracy of phenylalananyl-tRNA synthetase. Accuracy of fungal and animal mitochondrial enzymes and their relationship to their cytoplasmic counterparts and a prokarytic enzyme. Biochemistry 22: 5306–15 (1983)Google Scholar
  77. 77.
    Garden S. J. et al.: A novel rat carboxypeptidase, CPA2: characterization, molecular cloning, and evolutionary implications on substrate specificity in the carboxypeptidase gene family. J. Biol. Chem. 263: 17828–36 (1988)Google Scholar
  78. 78.
    Gebhard W. et al.: Two out of the three kinds of subunits of inter-a-trypsin inhibitor are structurally related. Eur. J. Biochem. 181: 571–576 (1989)PubMedCrossRefGoogle Scholar
  79. 79.
    Ghersa P. et al.: Initiation of translation at a UAG stop codon in the aldolase gene of Plasmodium falciparum. Embo J. 9: 1645–49 (1990)PubMedGoogle Scholar
  80. 80.
    Gildberg A.: Aspartic proteinases in fishes and aquatic invertebrates. Comp. Biochem. Physiol. Pt. B 91: 425–35 (1988)CrossRefGoogle Scholar
  81. 81.
    Gockel S. F. and Lebherz H. G.: „Conformational” isoenzymes in ascarid enolase. J. biol. Chem. 256: 3877–83 (1981)PubMedGoogle Scholar
  82. 82.
    Godar D. E. et al.: Structural organization of the multienzyme complex of mammalian aminoacyltRNA synthetases. Biochemistry 27: 6921–28 (1988)PubMedCrossRefGoogle Scholar
  83. 83.
    Goldberg M. E.: The second translation of the genetic message: protein folding and assembly. Trends biochem. Sci. 10: 388–391 (1985)Google Scholar
  84. 84.
    Gordon E. D. et al.: Eukaryotic initiation factor 4D, the hypusine-containing protein, is conserved among eukaryotes. J. biol. Chem. 262: 16585–89 (1987)PubMedGoogle Scholar
  85. 85.
    Gordon J. I. et al.: Protein N-myristoylation (Minireview). J. Biol. Chem. 266: 8647–50 (1991)PubMedGoogle Scholar
  86. 86.
    Gould S. J. et al.: Peroxisomal protein import is conserved between yeast, plants, insects and mammals. Embo J. 9: 85–90 (1990)PubMedGoogle Scholar
  87. 87.
    Grant G. A., Sacchettini J. C. and Welgus H. G.: A collagenolytic serine protease with trypsin-like specificity from the fiddler crab Uca pugilator. Biochemistry 22: 354–358 (1983)PubMedCrossRefGoogle Scholar
  88. 88.
    Grinblat Y., Brown N. H. and Kafatos F. C.: Isolation and characterization of the Drosophila translational elongation factor 2 gene. Nucleic Acids Res. 17: 7303–14 (1989)PubMedCrossRefGoogle Scholar
  89. 89.
    Gross R. E. et al.: Cloning, characterization, and expression of the gene for the catalytic subunit of cAMP-dependent protein kinase in Caenorhabditis elegans. Identification of highly conserved and unique isoforms generated by alternative splicing. J. Biol. Chem. 265: 6896–6907 (1990)PubMedGoogle Scholar
  90. 90.
    Grossman A.: Information transfer in biological systems. Targeting of proteins to specific organelles or to the extracellular environment (secretion). Comp. Biochem. Physiol. Pt. B 91: 389–424 (1988)CrossRefGoogle Scholar
  91. 91.
    Guerard F. and le Gal Y.: Characterization of a chymosin-like pepsin from the dogfish Scyliorhinus canicula. Comp. Biochem. Physiol. Pt. B 88: 823–827 (1987)CrossRefGoogle Scholar
  92. 92.
    Gundersen R. E. and Nelson D. L.: A novel Ca-dependent protein kinase from Paramecium tetraurelia. J. biol. Chem. 262: 4602–09 (1987)PubMedGoogle Scholar
  93. 93.
    Haass C. et al.: The Drosophila PROS-28.1 gene is a member of the proteasome gene family. Gene 90: 235–241 (1990)PubMedCrossRefGoogle Scholar
  94. 94.
    Hamed M. B. B. and Attias J.: Isolation and partial characterization of two alkaline proteases of the greater wax moth Galleria melonella (L.). Insect Biochem. 17: 653–658 (1987)CrossRefGoogle Scholar
  95. 95.
    Hameed, K. S. and Haard N. E: Isolation and characterization of cathepsin D from Atlantic short finned squid Illex illecerebrosus. Comp. Biochem. Physiol. Pt. B 82: 241–246 (1985)CrossRefGoogle Scholar
  96. 96.
    Hanks S. K., Quinn A M. and Hunter T.: The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains Science 241: 42–52 (1988)Google Scholar
  97. 97.
    Hansen L. J., Huang W. I. and Jagus R.: Inhibitor of translational initiation in sea urchin eggs prevents mRNAutilization. J. biol. Chem. 262: 6114–20 (1987)PubMedGoogle Scholar
  98. 98.
    Hardie D. G. and Coggins J. R. (eds.): Multidomain proteins. Structure and funktion. Elsevier, Amsterdam 1986Google Scholar
  99. 99.
    Hartl F. U. and Neupert W.: Protein sorting to mitochondria: Evolutionary conservations of folding and assembly. Science 247: 930–938 (1990)PubMedCrossRefGoogle Scholar
  100. 100.
    Hasty K. A. et al.: Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases. J. Biol. Chem. 265: 11421–24 (1990)PubMedGoogle Scholar
  101. 101.
    Hayono T. et al.: Primary structure of human pepsinogen C gene. J. biol. Chem. 263: 1382–85 (1988)Google Scholar
  102. 102.
    von Heijne G.: Signal sequences. The limits of variation. J. mol. Biol. 184: 99–105 (1985)CrossRefGoogle Scholar
  103. 103.
    Helaakoski T. et al.: Molecular cloning of the a-subunit of human prolyl 4-hydroxylase: The complete cDNA-derived amino acid sequence and evidence for alternative splicing. Proc. Nat. Acad. Sci. USA 86: 4392–96 (1989)PubMedCrossRefGoogle Scholar
  104. 104.
    van Hemert E. J. et al.: The primary structure of elongation factor EF-la from the brine shrimp Arte-mia. Embo J. 3: 1109–13 (1984)PubMedGoogle Scholar
  105. 105.
    Hershey J. W. B.: Protein phosphorylation controls translation rates. J. Biol. Chem. 264: 20823–26 (1989)PubMedGoogle Scholar
  106. 106.
    Hill R. E. and Hastie N. D.: Accelerated evolution in the reactive center regions of serine protease inhibitors. Nature 326: 96–99 (1987)PubMedCrossRefGoogle Scholar
  107. 107.
    Hille A. et al.: Occurrence of tyrosine sulfate in proteins. A balance sheet. 1. Secretory and lysosomal proteins. Eur. J. Biochem. 188: 577–586 (1990)PubMedCrossRefGoogle Scholar
  108. 108.
    Holm I. et al.: Evolution of aspartyl proteases by gene duplication: the mouse renin gene is organized in two homologous clusters of four exons. Embo J. 3: 557–562 (1984)PubMedGoogle Scholar
  109. 109.
    Holmes W. E. et al.: Primary structure of human a2antiplasmin, a serine protease inhibitor (serpin). J. biol. Chem. 262: 1659–64 (1987)PubMedGoogle Scholar
  110. 110.
    Holmquist R.: Evaluation of compositional nonrandomness in proteins. J. mol. Evol. 11: 349–360 (1978)PubMedCrossRefGoogle Scholar
  111. 111.
    Horii A. et al.: On the cDNAs for two types of rat pancreatic secretory trypsin inhibitor. Biochem. biophys. Res. Commun. 162: 151–159 (1989)Google Scholar
  112. 112.
    Houseman J. G. and Downe A. E. R.: Cathepsin D-like activity in the posterior midgut of hemipteran insects. Comp. Biochem. Physiol. Pt. B 75: 509–512 (1983)CrossRefGoogle Scholar
  113. 113.
    Houseman J. G., Campbell F. C. and Morrison P. E.: A preliminary characterization of digestive proteases in the posterior midgut of the stable fly Stomoxys calcitrans (L.) (Diptera: Muscidae). Insect Biochem. 17: 213–218 (1987)CrossRefGoogle Scholar
  114. 114.
    Hu E. and Rubin C. S.: Casein kinase II from Caenorhabditis elegans. Properties and developmental regulation of the enzyme; cloning and sequence analyses of cDNA and the gene for the catalytic subunit. J. Biol. Chem. 265: 5072–80 (1990)PubMedGoogle Scholar
  115. 115.
    Hunter T.: A thousand and one protein kinases. Cell 135. 50: 823–829 (1987)CrossRefGoogle Scholar
  116. 116.
    Isackson P. J., Ullrich A. and Bradshaw R. A.: Mouse 7 S nerve growth factor: Complete sequence of a cDNA coding for the a-subunit precursor and its 136. relationship to serine proteases. Biochemistry 23: 5997–6002 (1984)PubMedCrossRefGoogle Scholar
  117. 117.
    Ishihara T. et al.: Primary structure and transcrip- 137. tional regulation of rat pepsinogen C gene. J. Biol. Chem. 264: 10193–99 (1989)PubMedGoogle Scholar
  118. 118.
    Ito A. et al.: The complete primary structure of calcineurin A, a calmodulin binding protein homologous with protein phosphatases 1 and 2A. Biochem. bio- 138. phys. Res. Commun. 163: 1492–97 (1989)Google Scholar
  119. 119.
    Jaenicke R.: Protein folding. Local structures, domains, subunits and assemblies. Biochemistry 30: 139. 3147–61 (1991)PubMedCrossRefGoogle Scholar
  120. 120.
    James M. N. G., Delbaere L. T. J. and Brayer G. D.: Amino acid sequence alignment of bacterial and 140. mammalian pancreatic serine proteases based on topological equivalences. Can. J. Biochem. 56: 396–402 (1978) 141.Google Scholar
  121. 121.
    James M. N. G., Sielecki A. R.: Molecular structure of an aspartic proteinase zymogen, at 1.8 A resolution. Nature 319: 33–38 (1986)PubMedCrossRefGoogle Scholar
  122. 122.
    Jany K. D. and Haug H.: Amino acid sequence of the 142. chymotryptic protease II from the larvae of the hornet, Vespa crabo. FEBS Letters 158: 98–102 (1983)CrossRefGoogle Scholar
  123. 123.
    Jennings M. L.: Topography of membrane proteins. 143. Annual Rev. Biochem. 58: 999–1027 (1989)CrossRefGoogle Scholar
  124. 124.
    Jentsch, S., Seufert W. and Hauser H. P.: Genetic 144. analysis of the ubiquitin system (Review). Biochim. biophys. Acta 1089: 127–139 (1991)Google Scholar
  125. 125.
    Jeppson J. O. and Laurell C. B.: The amino acid substitutions of human al-antitrypsin M3, X and Z. 145. FEBS Letters 231: 327–330 (1988)CrossRefGoogle Scholar
  126. 126.
    Joernvall H., Hooeg J.-O. and Gustaysson A.-M.: Methods in protein sequence analysis. Birkhaeuser, Basel 1991 146.Google Scholar
  127. 127.
    Jonnalagadda S. et al.: Multiple (a-NH-ubiquitin) protein endoproteases in cells. J. Biol. Chem. 264: 10637–42 (1989) 147.Google Scholar
  128. 128.
    Jordao B. P. and Terra W. R.: Distribution, properties, and functions of midgut carboxypeptidases and 148. dipeptidases from Musca domestica larvae. Arch. Insect Biochem. Physiol. 11: 231–244 (1989)Google Scholar
  129. 129.
    Kageyama T. and Takahashi K.: The complete amino acid sequence of monkey pepsinogen A. J. biol. 149. Chem. 261: 4395–4405 (1986)Google Scholar
  130. 130.
    Kageyama T. and Takahashi K.: The complete amino acid sequence of monkey progastricsin. J. biol. 150. Chem. 261: 4406–19 (1986)Google Scholar
  131. 131.
    Kalderon D. and Rubin G. M.: cGMP-dependent protein kinase genes in Drosophila. J. Biol. Chem. 151. 264: 10738–48 (1989)Google Scholar
  132. 132.
    Kang P. J. et al.: Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348: 137–143 (1990) 152.Google Scholar
  133. 133.
    Kanost M. R.: Isolation and characterization of four serine proteinase inhibitors (serpins) from hemolymph of Manduca sexta. Insect Biochem. 20: 141–147 (1990)CrossRefGoogle Scholar
  134. 134.
    Kato I. and Tominaga N: Trypsin-subtilisin inhibitor 153. from Red Sea turtle eggwhite consists of two tandem domains - one Kunitz - one of a new family. Fed. Proc. Abstract of 67th Annual Meeting Nr. 3168 (1983)Google Scholar
  135. 135.
    Kato I. et al.: Chicken ovomucoid: Determination of its amino acid sequence, determination of the trypsin reactive site, and preparation of all three of its domains Biochemistry 26: 193–201 (1987)Google Scholar
  136. 136.
    Katunuma N., Umezawa H. and Holzer H. (eds.): Proteinase inhibitors. Medical and biological aspects. Springer, Berlin 1983Google Scholar
  137. 137.
    Kavanagh E. J. and Tillinghast E. K.: The alkaline proteases of Argiope–II. Fractionation of protease activity and isolation of a silk fibroin digesting protease. Comp. Biochem. Physiol. Pt. B 74: 365–372 (1983)CrossRefGoogle Scholar
  138. 138.
    Kawamura M., Wadano A. and Miura K.: Purification and characterization of insect cathepsin D. Insect Biochem. 17: 77–83 (1987)CrossRefGoogle Scholar
  139. 139.
    Kenny A. J. and Ingram J.: Is there a tripeptidyl peptidase in the renal brushborder membrane ? Biochem. J. 255: 373–376 (1988)PubMedGoogle Scholar
  140. 140.
    Kikkawa U., Kishimoto A. and Nishizuka Y.: The protein kinase C family: Heterogeneity and its implications. Annual Rev. Biochem. 58: 31–44 (1989)CrossRefGoogle Scholar
  141. 141.
    Kikuchi Y. and Tamiya N.: Chemical taxonomy of the hinge-ligament proteins of bivalves according to their amino acid compositions. Biochem. J. 242: 505–510 (1987)PubMedGoogle Scholar
  142. 142.
    Kim P. S. and Baldwin R. L.: Intermediates in the folding reactions of small proteins. Annual Rev. Biochem. 59: 631–660 (1990)CrossRefGoogle Scholar
  143. 143.
    Kirchhoff L. V. et al.: Ubiquitin genes in trypanosomatidae. J. Biol. Chem. 263: 12698–704 (1988)PubMedGoogle Scholar
  144. 144.
    Klier H. J., Vonfigura K. and Pohlmann R: Isolation and analysis of the human 46-kDa mannose 6-phosphate receptor gene. Eur. J. Biochem. 197: 23–28 (1991)PubMedCrossRefGoogle Scholar
  145. 145.
    Klimova O. A. et al.: The isolation and properties of collagenolytic proteases from crab hepatopancreas. Biochem. biophys. Res. Commun. 166: 1411–20 (1990)Google Scholar
  146. 146.
    Koster A. et al.: Molecular cloning of the mouse 46kDa mannose 6-phosphate receptor (MPR-46). Biol. Chem. Hoppe-Seyler 372: 297–300 (1991)PubMedCrossRefGoogle Scholar
  147. 147.
    Kreil G.: Transfer of proteins across membranes. Annual Rev. Biochem. 50: 317–348 (1981)CrossRefGoogle Scholar
  148. 148.
    Kruh G. D. et al.: The complete coding sequence of arg defines thr. Abelson subfamily of cytoplasmic tyrosine kinases. Proc. Nat. Acad. Sci. USA 87: 5802–06 (1990)PubMedCrossRefGoogle Scholar
  149. 149.
    Lane C. D. et al.: The sequestration, processing and retention of honey-bee promelittin made in amphibian oocytes. Eur. J. Biochem. 113: 273–281 (1981)PubMedCrossRefGoogle Scholar
  150. 150.
    Laskowski M. et al: Amino acid sequences of ovomucoid third domain from 25 additional species of birds. J. Protein Chem. 9: 715–726 (1990)PubMedCrossRefGoogle Scholar
  151. 151.
    Laycock M. V. et al.: Purification and characterization of a digestive cysteine proteinase from the American lobster (Homarus americanus). Biochem. J. 263: 439–444 (1989)PubMedGoogle Scholar
  152. 152.
    Lazure C. et al.: The complete amino acid sequence of rat submaxillary gland tonin does contain the aspartic acid at the active site: confirmation by protein sequence analyses. Biochem. Cell Biol. 65: 321–337 (1987)PubMedCrossRefGoogle Scholar
  153. 153.
    Lecroisey A. et al.: Complete amino acid sequence of the collagenase from the insect Hypoderma lineatum. J. biol. Chem. 262: 7546–51 (1987)PubMedGoogle Scholar
  154. 154.
    Lee H., Simon J. A. and Lis J. T.: Structure and expression of ubiquitin genes of Drosophila melanogaster. Mol. cell. Biol. 8: 4727–35 (1988)Google Scholar
  155. 155.
    Lee L. W. et al.: Relationships among the subunits of the high molecular weight proteinase, macropain (proteasome). Biochim. biophys. Acta 1037: 178–185 (1990)Google Scholar
  156. 156.
    Lehuerou I. et al.: Isolation and nucleotide sequence of a cDNA clone for bovine pancreatic anionic trypsinogen. Structural identity with the trypsin family. Eur. J. Biochem. 193: 767–773 (1990)CrossRefGoogle Scholar
  157. 157.
    Lepage T. and Gache C.: Purification and characterization of the sea urchin embryo hatching enzyme. J. Biol. Chem. 264: 4787–93 (1989)PubMedGoogle Scholar
  158. 158.
    Light A. and Janska H.: Enterokinase (enteropeptidase): comparative aspects. Trends biochem. Sci. 14: 110–112 (1989)Google Scholar
  159. 159.
    Lin Y. M.: Characterization and peptidase specificity of lugworm (Arenicola cristata) protease C. Biochem. Physiol. Pt. B 95: 745–753 (1990)CrossRefGoogle Scholar
  160. 160.
    Litchfield D. W. et al.: Subunit structure of casein kinase II from bovine testis. Demonstration that the a and a’ subunits are distinct polypeptides. J. Biol. Chem. 265: 7638–44 (1990)PubMedGoogle Scholar
  161. 161.
    Lu X. et al.: Cloning, structure, and expression of the gene for a novel regulatory subunit of cDNAdependent protein kinase in Caenorhabditis elegans. J. Biol. Chem. 265: 3293–3303 (1990)PubMedGoogle Scholar
  162. 162.
    Luaces A. L. and Barrett A. J.: Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of Entamoeba histolytica. Biochem. J. 250: 903–909 (1988)PubMedGoogle Scholar
  163. 163.
    Ma Z. M., Grubbs J. H. and Sly W. S.: Cloning, sequencing, and functional characterization of the murine 46-kDa mannose 6-phosphate receptor. J. Biol. Chem. 266: 10589–95 (1991)PubMedGoogle Scholar
  164. 164.
    Macdonald R. J., Stary S. J. and Swift G. H.: Two similar but nonallelic pancreatic trypsinogens. Nucleotide sequence of the cloned cDNAs. J. biol. Chem 257: 9724–32 (1982)PubMedGoogle Scholar
  165. 165.
    Mahlke K. et al.: Sorting pathways for mitochondrial inner membrane proteins. Eur. J. Biochem. 192: 551–555 (1990)PubMedCrossRefGoogle Scholar
  166. 166.
    Mallya S. K. et al.: Characterization of 58-kilodalton human neutrophil collagenase. Comparison with human fibroblast collagenase. Biochemistry 29: 10628–34 (1990)PubMedCrossRefGoogle Scholar
  167. 167.
    Marecum J. A.: A trypsin inhibitor from the coelomic fluid of the sea star Asterias forbesi. Biol. Bull. 172: 357–361 (1987)CrossRefGoogle Scholar
  168. 168.
    van Marrewijk W. A. and Ravesetin H J L: Amino acid metabolism of Astacus leptodactylus Esch.–I. Composition of the free and protein-bound amino acids in different organs of the crayfish. Comp. Biochem. Physiol. Pt. B 47: 531–542 (1974)CrossRefGoogle Scholar
  169. 169.
    Martinage A. et al.: Primary structure of histone H2B from gonads of the starfish Asterias rubens. Identification of an N-dimethylproline residue at the aminoterminal. Eur. J. Biochem. 147: 351–359 (1985)PubMedCrossRefGoogle Scholar
  170. 170.
    Martzen M. R. et al.: Primary structure of the major pepsin inhibitor from the intestinal parasitic nematode Ascaris suum. Biochemistry 29: 7366–72 (1990)PubMedCrossRefGoogle Scholar
  171. 171.
    Marumo K. and Waite H.: Prolyl 4-hydroxylase in the foot of the marine mussel Mytilus edulis L.: Purification and characterization. J. exp. Zool. 244: 365–374 (1987)PubMedCrossRefGoogle Scholar
  172. 172.
    Mateu M. G., Vicente O. and Sierra J. M.: Protein synthesis in Drosophila melanogaster embryos–Purification and characterization of polypeptide chain-initiation factor 2. Eur. J. Biochem. 162: 221–229 (1987)PubMedCrossRefGoogle Scholar
  173. 173.
    Matthews J. A., Brown J. W. S. and Hall T. C.: Phaseolin mRNA is translated to yield glycosylated polypeptides in Xenopus oocytes. Nature 294: 175–176 (1981)PubMedCrossRefGoogle Scholar
  174. 174.
    Mayer R. J. and Doherty E: Intracellular protein catabolism: state of the art. FEBS Letters 198: 181–193 (1986)PubMedCrossRefGoogle Scholar
  175. 175.
    McCammon J. A. and Harvey S. C. (eds.): Dynamics of proteins and nucleic acids. Cambridge Univ. Press, Cambridge 1987Google Scholar
  176. 176.
    McDonald J. K. and Barrett A. J.: Mammalian pro-teases, Vol. 2: Exopeptidases. Acad. Press, London 1986Google Scholar
  177. 177.
    Mclllhinney R. A. J.: The facts of life: The importance and function of protein acylation. Trends biochem. Sci. 15: 387–391 (1990)Google Scholar
  178. 178.
    Mehta H. B. et al.: Structural studies on the eukaryotic chain initiation factor 2 from rabbit reticulocytes and brine shrimp Artemia embryos. Phosphorylation by the hemecontrolled repressor and casein kinase II. J. biol. Chem. 261: 6705–11 (1986)PubMedGoogle Scholar
  179. 179.
    Meloun B., Chechova D. and Jonakova V.: Homologies in the structures of bull seminal plasma acrosin inhibitors and comparison with other homologous proteinase inhibitors of the Kazal type. HoppeSeyler’s Z. physiol. Chem. 364: 1665–70 (1983)Google Scholar
  180. 180.
    Miglietta L. A. P. and Nelson D. L.: A novel cGMPdependent protein kinase from Paramecium. J. Biol. Chem. 263: 16096–105 (1988)PubMedGoogle Scholar
  181. 181.
    Moestrup S. K. and Gliemann J.: Purification of the rat hepatic a2-macroglobulin receptor as an approximately 440-kDa single chain protein. J. Biol. Chem. 264: 15574–77 (1989)PubMedGoogle Scholar
  182. 182.
    Moss D. W.: Isoenzymes. Chapman Hall, London 1982CrossRefGoogle Scholar
  183. 183.
    Muramatsu T. and Morita T.: Anionic trypsin-like enzymes from the crab Eriocheir japonicus De Haan active in more acidic media. Comp. Biochem. Physiol. Pt. B 70: 527–533 (1981)CrossRefGoogle Scholar
  184. 184.
    Murdock L. L. et al.: Cysteine digestive proteinases in Coleoptera. Comp. Biochem. Physiol. Pt. B 87: 783–787 (1987)CrossRefGoogle Scholar
  185. 185.
    Mykles D. L.: Purification and characterization of a multicatalytic proteinase from crustacean muscle: Comparison of latent and heat-activated forms. Arch. Biochem. Biophys. 274: 216–228 (1989)PubMedCrossRefGoogle Scholar
  186. 186.
    Nanbu M., Kobayashi K. and Horiuchi S.: Purification and characterization of cathepsin D-like protei-nase from the tadpole tail of bullfrog, Rana catesbeiana. Comp. Biochem. Physiol. Pt. B 89: 569–575 (1988)CrossRefGoogle Scholar
  187. 187.
    Nelson R. B. and Siman R.: Clipsin, a chymotrypsinlike protease in rat brain which is irreversibly inhibited by al-antichymotrypsin. J. Biol. Chem. 265: 3836–43 (1990)PubMedGoogle Scholar
  188. 188.
    Nene V. et al.: A single exon codes for the enzyme domain of a protozoan cysteine protease. J. Biol. Chem. 265: 18047–50 (1990)PubMedGoogle Scholar
  189. 189.
    Neurath H.: Evolution of proteolytic enzymes. Science 224: 350–357 (1984)PubMedCrossRefGoogle Scholar
  190. 190.
    Neves A., Guerreiro P. and Rodrigues-Pousada C.: Striking changes in polyubiquitin genes of Tetrahymena pyriformis. Nucleic Acids Res. 18: 656 (1990)PubMedCrossRefGoogle Scholar
  191. 191.
    Nigg E. A., Baeuerle P. A. and Luhrmann R.: Nuclear import-export. In search of signals and mechanisms (Meeting Review). Cell 66: 15–22 (1991)Google Scholar
  192. 192.
    Nuske J. H.: Protein methylase II in five taxa from three phyla. Comp. Biochem. Physiol. Pt. B 86: 37–47 (1987)CrossRefGoogle Scholar
  193. 193.
    O’Donoghue G. V. and Johnson D. B.: A soluble aminopeptidase of Holothuria forskali intestinal mucosa: purification and active centre studies. Comp. Biochem. Physiol. Pt. B 85: 397–405 (1986)CrossRefGoogle Scholar
  194. 194.
    Ogata S., Misumi Y. and Ikehara Y.: Primary structure of rat liver dipeptidyl peptidase IV deduced from its cDNA and identification of the NH2-terminal signal sequence as the membrane anchoring domain. J. Biol. Chem. 264: 3596–3601 (1989)PubMedGoogle Scholar
  195. 195.
    Ogita Z. I. and Markert C. L.: Isozymes. Wiley-Liss, New York 1990Google Scholar
  196. 196.
    Okada S and Aikawa T.: Cathepsin D-like acid proteinase in the mantle of the marine mussel, Mytilus edulis. Comp. Biochem. Physiol. Pt. B 84: 333–341 (1986)CrossRefGoogle Scholar
  197. 197.
    Okada Y. and Yokota Y.: Purification and properties of cathepsin B from sea urchin eggs. Comp. Biochem. Physiol. Pt. B 96: 381–386 (1990)CrossRefGoogle Scholar
  198. 198.
    Okotore R. O. and Uhlenbruck G.: Proteinase-inhibitors in albumin glands of Achatina fulica. Z. Naturforsch. Sect. C 37: 142–144 (1982)Google Scholar
  199. 199.
    Olsen J. et al.: Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA. FEBS Letters 238: 307–314 (1988)Google Scholar
  200. 200.
    Ono H. and Tuboi S.: Purification and identification of a cytosolic factor required for import of precursors of mitochondrial proteins into mitochondria. Arch. Biochem. Biophys. 280: 299–304 (1990)PubMedCrossRefGoogle Scholar
  201. 201.
    Orgad S. et al.: The structure of protein phosphatase2A is as highly conserved as that of protein phosphatase-1. FEBS Letters 275: 44–48 (1990)PubMedCrossRefGoogle Scholar
  202. 202.
    Orlowski M.: The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry 29: 10289–97 (1990)PubMedCrossRefGoogle Scholar
  203. 203.
    Osnes K. K. and Mohr V.: On the purification and characterization of exopeptidases from Antarctic krill, Euphausia superba. Comp. Biochem. Physiol. Pt. B 83: 445–458 (1986)CrossRefGoogle Scholar
  204. 204.
    Ou W. J. et al.: Purification and characterization of a processing protease from rat liver mitochondria. Embo J. 8: 2605–12 (1989)PubMedGoogle Scholar
  205. 205.
    Oxender D. L. (ed.): Protein structure, folding, and design. Alan R. Liss, New York 1987Google Scholar
  206. 206.
    Park M. H.: The essential role of hypusine in eukaryotic translation initiation factor (eIF-4D). Purification of eIF-4D and its precursors and comparison of their activities. J. Biol. Chem. 264: 18531–35 (1989)PubMedGoogle Scholar
  207. 207.
    Pearson J. D. et al: Amino acid sequence and characterization of a protein inhibitor of protein kinase C. J. Biol. Chem. 265: 4583–91 (1990)PubMedGoogle Scholar
  208. 208.
    Peaucellier G.: Purification and characterization of proteases from the polychaete annelid Sabellaria alveolata (L.). Eur. J. Biochem. 136: 435–445 (1983)PubMedCrossRefGoogle Scholar
  209. 209.
    Pellegrini A. and von Fellenberg R.: Pre-a2-elastase inhibitor of the horse: a hybrid molecule between alproteinase inhibitor and a2-ßl-glycoprotein. Biochim. biophys. Acta 830: 20–24 (1985)Google Scholar
  210. 210.
    Pfanner N. and Neupert W.: The mitochondrial protein import apparatus. Annual Rev. Biochem. 59: 331–353 (1990)CrossRefGoogle Scholar
  211. 211.
    Pinter M. and Friedrich P.: The calcium-dependent proteolytic system calpain-calpastatin in Drosophila melanogaster. Biochem. J. 253: 467–473 (1988)PubMedGoogle Scholar
  212. 212.
    Pontremoli S. and Melloni L.: Extralysosomal protein degradation. Annual Rev. Biochem. 55: 455–481 (1986)CrossRefGoogle Scholar
  213. 213.
    Potempa J., Shieh B. H. and Travis J.: Alpha-2antiplasmin: A serpin with two separate but overlapping reactive sites. Science 241: 699–700 (1988)PubMedCrossRefGoogle Scholar
  214. 214.
    Pratt R. E., Ouelette A. J. and Dzau V. J.: Biosynthesis of renin: multiplicity of active and intermediate forms. Proc. Nat. Acad. Sci. USA 80: 6809–13 (1983)PubMedCrossRefGoogle Scholar
  215. 215.
    Prehn S. et al.: Structure and biosynthesis of the signal-sequence receptor. Eur. J. Biochem. 188: 439–455 (1990)PubMedCrossRefGoogle Scholar
  216. 216.
    Pungercar J. et al.: Complete primary structure of lamb preprochymosin deduced from cDNA. Nucleic Acids Res. 18: 4602 (1990)PubMedCrossRefGoogle Scholar
  217. 217.
    Qiu T., Combest W. L. and Gilbert L. I.: Characterization of a calcium and diacylglycerol-activated and phospholipid-dependent protein kinase in the pupal brain of the tobacco hornworm, Manduca sexta. Insect Biochem. 20: 405–420 (1990)CrossRefGoogle Scholar
  218. 218.
    Ragg H. and Preibisch G.: Structure and expression of the gene coding for the human serpin hLS2. J. Biol. Chem. 263: 12129–34 (1988)PubMedGoogle Scholar
  219. 219.
    Ramesh N., Sugumaran M. and Mole J. E.: Purification and characterization of two trypsin inhibitors from the hemolymph of Manduca sexta larvae. J. Biol. Chem. 263: 11523–27 (1988)PubMedGoogle Scholar
  220. 220.
    Rawlings N. D. and Barrett A. J.: Evolution of proteins of the cystatin superfamily. J. mol. Evol. 30: 60–71 (1990)PubMedCrossRefGoogle Scholar
  221. 221.
    Rechsteiner M. C.: Ubiquitin. Plenum, New York 1988Google Scholar
  222. 222.
    Regan L., Dignam J. D. and Schimmel P.: A bacterial and silkworm aminoacyl-tRNA synthetase have a common epitope which maps to the catalytic domain of each. J. biol. Chem. 261: 5241–44 (1986)PubMedGoogle Scholar
  223. 223.
    Reisinger P. W. M. et al.: The amino-acid sequences of the double-headed proteinase inhibitors from cat, lion and dog submandibular glands. Biol. Chem. Hoppe-Seyler 368: 717–726 (1987)PubMedCrossRefGoogle Scholar
  224. 224.
    Ritonja A. et al: Amino acid sequence of a cystatin from venom of the African puff adder (Bitis arie-tans). Biochemical J. 246: 799–802 (1987)Google Scholar
  225. 225.
    Ritonja A. et al.: Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Letters 255: 211–214 (1989)PubMedCrossRefGoogle Scholar
  226. 226.
    Ritonja T. et al: Amino acid sequences of the human kidney cathepsins H and L. FEBS Letters 228: 341–345 (1988)PubMedCrossRefGoogle Scholar
  227. 227.
    Rocamora N. and Agell N.: Methylation of chick UbI and UbII polyubiquitin genes and their differential expression during spermatogenesis. Biochem. J. 267: 821–829 (1990)PubMedGoogle Scholar
  228. 228.
    Roemisch K. et al.: Homology of 54K protein of signal-recognition particle, docking protein and two E. coli proteins with putative FTP-binding domains. Nature 340: 478–482 (1989)Google Scholar
  229. 229.
    Rogers J.: Exon shuffling and intron insertion in serine protease genes. Nature 315: 458–459 (1985)PubMedCrossRefGoogle Scholar
  230. 230.
    Rogers S., Wells R. and Rechsteiner M.: Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368 (1986)PubMedCrossRefGoogle Scholar
  231. 231.
    Rottmann M. et al.: Specific phosphorylation of proteins in pore complex-laminae from the sponge Geodia cydonium by the homologous aggregation factor and phorbol ester. Role of protein kinase C in the phosphorylation of DNA topoisomerase II. Embo J. 6: 3639–44 (1987)Google Scholar
  232. 232.
    Rubarteli A. et al.: A novel secretory pathway for interleukin-lß, a protein lacking a signal sequence. Embo J. 9: 1503–10 (1990)Google Scholar
  233. 233.
    Sakal E., Applebaum S. W. and Birk Y.: Purification and characterization of trypsins from the digestive tract of Locusta migratoria. Int. J. Peptide Prot. Res. 34: 498–505 (1989)CrossRefGoogle Scholar
  234. 234.
    Sakanari J. A. et al.: Serine proteases from nematode and prozoan parasites. Isolation of sequence homo-logs using generic molecular probes. Proc. Nat. Acad. Sci. USA 86: 4863–67 (1989)PubMedCrossRefGoogle Scholar
  235. 235.
    Sallenave J. M. and Bellot R.: Evidence of an a2macroglobulin-like molecule in plasma of Salamandra salamandra: structural and functional similarity with human a2-macroglobulin. FEBS Letters 219: 37–39 (1987)PubMedCrossRefGoogle Scholar
  236. 236.
    Sanchez-Chiang L. et al.: Cathepsins D from sea urchin egg Tetrapygus niger–isolation by affinity chromatography and properties. Comp. Biochem. Physiol. 85B: 81–87 (1986)Google Scholar
  237. 237.
    Sasaki T. and Suzuki Y: Alkaline proteases in digestive juice of the silkworm, Bombyx mori. Biochim. biophys. Acta 703: 1–10 (1982)Google Scholar
  238. 238.
    Sasaki T.: Amino acid sequence of a novel Kunitztype chymotrypsin inhibitor from hemolymph of silkworm larvae, Bombyx mori. FEBS Letters 168: 227–230 (1984)CrossRefGoogle Scholar
  239. 239.
    Satir B. H. et al.: Species distribution of a phosphoprotein (parafusin) involved in exocytosis. Proc. Nat. Acad. Sci. USA 86: 930–932 (1989)PubMedCrossRefGoogle Scholar
  240. 240.
    Saus J. et al.: The complete primary structure of human matrix metalloproteinase-3. Identification with stromelysin. J. Biol. Chem. 263: 6742–45 (1988)PubMedGoogle Scholar
  241. 241.
    Sawada H. et al.: Trypsin-like enzyme from eggs of the ascidian (protochordate) Halocynthia roretzi. Purification, properties, and physiological role. J. biol. Chem. 260: 15694–98 (1985)PubMedGoogle Scholar
  242. 242.
    Schaeffer E. et al.: Isolation and characterization of two new Drosophila protein kinase C genes, including one specificaly expressed in photoreceptor cells. Cell 57: 403–412 (1989)PubMedCrossRefGoogle Scholar
  243. 243.
    Scharf M., Engels J. and Tripier D.: Primary structure of new „iso-hirudins”. FEBS Letters 255: 105–110 (1989)PubMedCrossRefGoogle Scholar
  244. 244.
    Schulman H. and Lou L. L.: Multifunctional Ca/ calmodulin-dependent protein kinase: domain structure and regulation. Trends biochem. Sci. 14: 62–66 (1989)Google Scholar
  245. 245.
    Schulz G. E. and Schirmer R. H.: Principles of protein structure. Springer, Berlin 1984Google Scholar
  246. 246.
    Shamsuzzaman K. and Haard N. E: Purification and characterization of a chymosin-like protease from the gastric mucosa of harp seal (Pagophilus groenlandicus). Can. J. Biochem. Cell Biol. 62: 699–708 (1984)PubMedCrossRefGoogle Scholar
  247. 247.
    Sharma B. R., Martin M. M. and Shafer J. A.: Alkaline proteases from the gut fluids of detritus-feeding larvae of the crane fly, Tipula abdominalis (Say) (Diptera, Tipulidae). Insect Biochem. 14: 37–44 (1984)CrossRefGoogle Scholar
  248. 248.
    Sharp P. M. and Li W.: Ubiquitin genes as a paradigm of concerted evolution of tandem repeats. J. mol. Evol. 25: 58–64 (1987)PubMedCrossRefGoogle Scholar
  249. 249.
    Shen S. S. and Ricke L. A.: Protein kinase C from sea urchin eggs. Comp. Biochem. Physiol. Pt. B 92: 251–154 (1989)CrossRefGoogle Scholar
  250. 250.
    Shugerman R. P. et al.: A unique „mini” pepsinogen isolated from bullfrog esophageal glands. J. biol. Chem. 257: 795–798 (1982)PubMedGoogle Scholar
  251. 251.
    Silver P. A.: How proteins enter the nucleus (Review). Cell 64: 489–497 (1991)PubMedCrossRefGoogle Scholar
  252. 252.
    Soderling T. R.: Protein kinases. Regulation by auto-inhibitory domains. J. Biol. Chem. 265: 1823–26 (1990)PubMedGoogle Scholar
  253. 253.
    Somero G. N. and Hand S. C.: Protein assembly and metabolic regulation: Physiological and evolutionary perspectives. Physiol. Zool. 63: 443–471 (1990)Google Scholar
  254. 254.
    Sommer J. et al.: cDNA sequence coding for a rat glia-derived nexin and its homology to members of the serpin superfamily. Biochemistry 26: 6407–10 (1987)Google Scholar
  255. 255.
    Sorimachi H. et al.: Molecular cloning of cDNAs for two subunits of rat multicatalytic proteinase. Existence of N-terminal conserved and C-terminal diverged sequences among subunits. Eur. J. Biochem. 193: 775–781 (1990)PubMedCrossRefGoogle Scholar
  256. 256.
    Sottrup-Jensen L.: a-Macroglobulins• shape and mechanism of proteinase complex formation (Minireview). J. Biol. Chem. 264: 11539–42 (1989)Google Scholar
  257. 257.
    Sottrup-Jensen L. et al.: The a-macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian amacroglobulins J. Biol. Chem. 264: 15781–89 (1989)PubMedGoogle Scholar
  258. 258.
    Stadtman E. R.: Covalent modification reactions are marking steps in protein turnover. Biochemistry 29: 6323–31 (1990)PubMedCrossRefGoogle Scholar
  259. 259.
    Starkey P. M. and Barrett A. J.: Evolution of a2macroglobulin. The structure of a protein homologous with human a2-macroglobulin from plaice (Platessa platessa L.) plasma. Biochem J. 205: 105–115 (1982)PubMedGoogle Scholar
  260. 260.
    Stoecker W. et al.: Astacus proteinase, a zinc metalloenzyme. Biochemistry 27: 5026–32 (1988)CrossRefGoogle Scholar
  261. 261.
    Strandberg L., Lawrence D. and Ny T.: The organization of the human plasminogen-activator-inhibitor gene. Implications on the evolution of the serine-protease inhibitor family. Eur. J. Biochem. 176: 609–616 (1988)PubMedCrossRefGoogle Scholar
  262. 262.
    Strauss A. W., Boime I. and Kreil G. (eds.): Protein compartmentalization. Springer, Berlin 1986Google Scholar
  263. 263.
    Suzuki T. and Natori S.: Changes in the amount of sarcostatin A, a new cysteine proteinase inhibitor, during the development of adult Sarcophaga peregrina. Insect Biochem. 16: 589–595 (1986)CrossRefGoogle Scholar
  264. 264.
    Swinkels B. W., Evers R. and Borst P.: The topogenic signal of the glycosomal (microbody) phosphoglycerate kinase of Crithidia fasciculata resides in a carboxy-terminal extension. Embo J. 7: 1159–65 (1988)PubMedGoogle Scholar
  265. 265.
    Sziegoleit A.: A novel proteinase from human pancreas. Biochem. J. 219: 735–742 (1984)PubMedGoogle Scholar
  266. 266.
    Taggart R. T. et al.: Variable numbers of pepsinogen genes are located in the centromeric region of human chromosome 11 and determine the high-frequency electrophoretic polymorphism. Proc. Nat. Acad. Sci. USA 82: 6240–44 (1985)PubMedCrossRefGoogle Scholar
  267. 267.
    Taggart R. T. et al.: Human pepsinogen C (progastricsin). Isolation and cDNA sequence clones, localization to chromosome 6, and sequence homology 284. with pepsinogen A. J. Biol. Chem. 264: 375–379 (1989)PubMedGoogle Scholar
  268. 268.
    Takada Y. et al.: Human peroxisomal L- 285. alanine:glyoxylate aminotransferase. Evolutionary loss of a mitochondrial targeting signal by point mutation of the initiation codon. Biochem. J. 268: 517–520 286. (1990)Google Scholar
  269. 269.
    Takahashi S. Y.: Characterization of the guanosine 287. 3’:5’-monophosphate-dependent protein kinase from silkworm eggs and analysis of the endogenous protein substrates. J. comp. Physiol. B 155: 693–701 (1985) 288.Google Scholar
  270. 270.
    Takio K. et al.: Homology of amino acid sequences of rat liver Cathepsins B and H with that of papain. 289. Proc. Nat. Acad. Sci. USA 80: 3666–70 (1983)PubMedCrossRefGoogle Scholar
  271. 271.
    Tan F et al.: Molecular cloning and sequencing of the cDNA for human membrane-bound carboxypeptidase M. Comparison with carboxypeptidases A, B, 290. H, and N. J. Biol. Chem. 264: 13165–70 (1989)Google Scholar
  272. 272.
    Tani T. et al.: Nucleotide sequence of the human pancreatic trypsinogen-III cDNA. Nucleic Acids Res. 18: 1631 (1990) 291.Google Scholar
  273. 273.
    Tanji M., Kageyama T. and Takahashi K.: Tuna pepsinogens and pepsins: Purification, characterization and amino-terminal sequences. Eur. J. Biochem. 177: 292. 251–259 (1988)PubMedCrossRefGoogle Scholar
  274. 274.
    Taylor S. S., Buechler J. A. and Yonemoto W.: cAMP-dependent protein kinase: Framework for a 293. diverse family of regulatory enzymes. A.nual Rev. Biochem. 59: 971–1005 (1990) 294.Google Scholar
  275. 275.
    Thalhofer H. P. and Hofer H. W.: Purification and properties of cyclic-3’,5’-GMP-dependent kinase from the nematode Ascaris suum. Arch. Biochem. 295. Biophys. 273: 535–542 (1989)Google Scholar
  276. 276.
    Titani K. et al Amino acid sequence of crayfish (Astacus fluviatilis) trypsin I-f. Biochemistry 22: 1459–65 (1983)Google Scholar
  277. 277.
    Titani K. et al.: Amino acid sequence of crayfish 296. (Astacus fluviatilis) carboxypeptidase B. Biochemistry 23: 1245–50 (1984)CrossRefGoogle Scholar
  278. 278.
    Titani K. et al.: Amino acid sequence of a unique protease from the crayfish Astacus fluviatilis. Biochemistry 26: 222–226 (1987) 297.Google Scholar
  279. 279.
    Tsai I. H., Liu H. C. and Chuang K. L.: Properties of two chymotrypsins from the digestive gland of the prawn Penaeus monodon. FEBS Letters 203: 257–261 (1986) 298.Google Scholar
  280. 280.
    Tschesche H., Kolkenbrock H. and Bode W.: The covalent structure of the elastase inhibitor from Anemonia sulcata–A „non-classical” Kazal-type protein. 299. Biol. Chem. Hoppe-Seyler 368: 1297–1304 (1987)PubMedCrossRefGoogle Scholar
  281. 281.
    Ulloa R. M. et al.: Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi. Biochem. J. 255: 319–326 (1988) 300.Google Scholar
  282. 282.
    Urch U. A. and Hedrick J. L.: Isolation and characterization of the hatching enzyme from the amphibian, Xenopus laevis. Arch. Biochem. Biophys. 206: 301. 424–431 (1981)PubMedCrossRefGoogle Scholar
  283. 283.
    Vacquier V. D., Carver K. R. and Stout C. D.: Species-specific sequences of abalone lysin, the sperm protein that creates a hole in the egg envelope. Proc. Nat. Acad. Sci. USA 87: 5792–96 (1990)PubMedCrossRefGoogle Scholar
  284. 284.
    Vendrell J., Cuchillo C. M. and Aviles S. X.: The tryptic activation pathway of monomeric procarboxypeptidase A. J. Biol. Chem. 265: 6949–53 (1990)PubMedGoogle Scholar
  285. 285.
    Viswanathan S. and Dignam J D: Seryl-tRNA synthetase from Bombyx mori. Purification and properties. J. biol. Chem. 263: 535–541 (1988)PubMedGoogle Scholar
  286. 286.
    Vogel R.: Natürliche Enzym-Inhibitoren. Thieme, Stuttgart 1984Google Scholar
  287. 287.
    van Waarde A.: What is the function of protein carboxyl methylation? (Review). Comp. Biochem. Physiol. 86B: 423–438 (1987)CrossRefGoogle Scholar
  288. 288.
    Wagner P. et al.: Active transport of proteins into the nucleus (Minireview). FEBS Letters 275: 1–5 (1990)PubMedCrossRefGoogle Scholar
  289. 289.
    Walldorf U. and Hovemann B. T.: Apis mellifera cytoplasmic elongation factor 1-alpha (EF-1-alpha) is closely related to Drosophila melanogaster EF-1alpha. FEBS Letters 267: 245–249 (1990)PubMedCrossRefGoogle Scholar
  290. 290.
    Warner A. H. and Shridhar V.: Purification and characterization of a cytosol protease from dormant cysts of the brine shrimp Artemia. J. biol. Chem 260: 7008–14 (1985)PubMedGoogle Scholar
  291. 291.
    Waxman L. et al.: Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 248: 593–596 (1990)PubMedCrossRefGoogle Scholar
  292. 292.
    Wernet W., Flockerzi V. and Hofmann E: The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Letters 251: 191–196 (1989)PubMedCrossRefGoogle Scholar
  293. 293.
    Wold F. and Moldave K. (eds.): Posttranslational modifications, 2 vol. set. Acad. Press, New York 1984Google Scholar
  294. 294.
    Wolfe E. H. et al.: Chicken skeletal muscle has three Ca-dependent proteinases. Biochim. biophys. Acta 998: 236–250 (1989)Google Scholar
  295. 295.
    Woodley C. L. et al.: Protein synthesis in brine shrimp embryos. Regulation of the formation of the ternary complex (Met-tRNA, eIF-2-GTP) by two purified protein factors and phosphorylation of Arte-mia eIF-2. Eur. J. Biochem. 117: 543–551 (1981)PubMedCrossRefGoogle Scholar
  296. 296.
    Wun T. C. et al.: Cloning and characterization of a cDNA coding for the lipoprotein-associated coagulation inhibitor shows that it consists of three tandem Kunitz-type inhibitory domains. J. Biol. Chem. 263: 6001–04 (1988)PubMedGoogle Scholar
  297. 297.
    Yamada Y., Matsui T. and Aketa K.: Purification and characterization of a chymotrypsin-like enzyme from sperm of the sea urchin, Hemicentrotus pulcherrimus. Eur. J. Biochem. 122: 57–62 (1982)PubMedCrossRefGoogle Scholar
  298. 298.
    Yamakami K.: Purification and properties of a thiol protease from lung fluke adult Paragonimus ohirai. Comp. Biochem. Physiol. 83B: 501–506 (1986)Google Scholar
  299. 299.
    Ye R. D. et al.: Structure of the gene for human plasminogen activator inhibitor-2. The nearest mammalian homologue of chicken ovalbumin J Biol. Chem. 264: 5495–5502 (1989)PubMedGoogle Scholar
  300. 300.
    Yoshinaka R. et al.: Enzymatic characterization of anionic trypsin of the catfish (Parasilurus asotus). Comp. Biochem. Physiol. Pt. B. 77: 1–6 (1984)CrossRefGoogle Scholar
  301. 301.
    Yoshinaka R et al.: Distribution of pancreatic elastase and metalloproteinase in vertebrates. Comp. Biochem. Physiol. Pt. B 83: 45–49 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Klaus Urich
    • 1
  1. 1.Institut für ZoologieUniversität MainzMainzGermany

Personalised recommendations