Skip to main content

Nucleic Acids and Nuclear Proteins

  • Chapter
Comparative Animal Biochemistry
  • 411 Accesses

Abstract

DNA deserves the most attention in any book dealing with molecular variety in animals. The complete genetic information of the organism is encoded in the order of the bases, and with it also is the whole spectrum of genetically determined variation within and between individuals. One can view DNA as a text in which each of the four letters at each position has a unique meaning. Some information and variety is lost en route from the DNA via RNA to the proteins and the complex morphological and physiological characters because only part of the DNA is transcribed into RNA, and not all RNA codes for proteins; furthermore, the genetic code is degenerate and the 64 possible triplet codons define only 20 amino acids. Sequence differences between proteins may also have no consequences for complex phenotypic characters. On the other hand, new (epigenetic) variability can arise during the information transfer process as a result of environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abad P. et al.: A long interspersed element — the I factor of Drosophila teissieri — is able to transpose in different Drosophila species. Proc. Nat. Acad. Sci. USA 86: 8887–91 (1989)

    PubMed  CAS  Google Scholar 

  2. Acampora D. et al.: The human HOX gene family. Nucleic Acids Res. 17: 10385–402 (1989)

    PubMed  CAS  Google Scholar 

  3. Achwal C. W., Iyer C. A. and Chandra H S: Immunochemical evidence for the presence of 5mC, 6mA and 7mG in human, Drosophila and mealybug DNA. FEBS Letters 158: 353–358 (1983)

    PubMed  CAS  Google Scholar 

  4. Adams D. S. et al.: Isolation and partial characterization of Ul-U6 small RNAs from Bombyx mori. Biochemistry 24: 117–125 (1985)

    PubMed  CAS  Google Scholar 

  5. Adams R L P. and Burdon R. H.: Molecular biology of DNA methylation. Springer, Berlin 1985

    Google Scholar 

  6. Adams R. L. P., Leader D. P. and Knowler J. T.: The biochemistry of nucleic acids, 11th ed. Chapman & Hall, New York 1992

    Google Scholar 

  7. Adams R. L. P.: DNA methylation. The effect of minor bases on DNA-protein intereactions. Biochem. J. 265: 309–320 (1990)

    PubMed  CAS  Google Scholar 

  8. Adelman J. P. et al.: Two mammalian genes transcribed from opposite strands of the same DNA locus. Science 235: 1514–17 (1987)

    PubMed  CAS  Google Scholar 

  9. Aeby P. et al.: Structure and genomic organization of proretrovirus-like elements partially eliminated from the somatic genome of Ascaris lumbricoides. Embo J. 5: 3353–60 (1986)

    PubMed  CAS  Google Scholar 

  10. Agabian, N.: Trans splicing of nuclear pre-mRNAs. Cell 61: 1157–60 (1990)

    PubMed  CAS  Google Scholar 

  11. Alberts B. et al.: Molekularbiologie der Zelle. VHC Verlagsgesellschaft, Weinheim 1986

    Google Scholar 

  12. Amin J, Ananthan J. and Voellmy R.: Key features of heat shock regulatory elements. Mol. Cell Biol. 8: 3761–69 (1988)

    PubMed  CAS  Google Scholar 

  13. Ashley C. T. et al.: Isolation and sequencing of cDNA clones encoding Drosophila protein Dl. A repeating motif in proteins which recognize AT DNA. J. biol. Chem. 264: 8394 /8401 (1989)

    Google Scholar 

  14. Ausio J. and McParland, R.: Sequence and characterization of the sperm-specific protein phi-3 from Mytilus californianus. Eur. J. Biochem. 182: 569–576 (1989)

    PubMed  CAS  Google Scholar 

  15. Austerberry C. F, Yao M. C.: Sequence structures of two developmentally regulated, alternative DNA deletion junctions in Tetrahymena thermophila. Mol. Cell Biol. 8: 3947–50 (1988)

    PubMed  CAS  Google Scholar 

  16. Avise J. C., Bowen B. W. and Lamb T.: DNA fingerprints from hypervariable mitochondrial genotypes. Mol. Biol. Evol. 6: 258–269 (1989)

    PubMed  CAS  Google Scholar 

  17. Ayala F. J. (ed.): Molecular evolution. Sinauer Associates, Sunderland 1976

    Google Scholar 

  18. Babity J. M., Starr T. V. B. and Rose A. M.: Tcl transposition and mutator activity in a Bristol strain of Caenorhabditis elegans. Mol. Gen. Genetics 222: 65–70 (1990)

    CAS  Google Scholar 

  19. Bagni C. et al.: Structure of Xenopus laevis ribosomal protein L32 and its expression during development. Nucleic Acids Res. 18: 4423–26 (1990)

    PubMed  CAS  Google Scholar 

  20. Bambara R. A. and Jessee C. B.: Properties of DNA polymerases delta and epsilon, and their roles in eukaryotic DNA replication (Review). Biochim. Biophys. Acta 1088: 1–9 (1991)

    Google Scholar 

  21. Bannon G. A. et al.: Tetrahymena H4 genes: structure, evolution and organization in macro-and micronuclei. Nucleic Acids Res. 12: 1961–75 (1984)

    PubMed  CAS  Google Scholar 

  22. Barad M. et al.: A novel, tissue-specific Drosophila homeobox gene. Embo J. 7: 2151–61 (1988)

    PubMed  CAS  Google Scholar 

  23. Basi G. S. and Storti G. V.: Structure and DNA sequence of the tropomyosin I gene from Drosophila melanogaster. J. biol. Chem. 261: 817–827 (1986)

    PubMed  CAS  Google Scholar 

  24. Batuecas B. et al.: Genome organization of Artemia mitochondrial DNA. Nucleic Acids Res. 16: 6515–29 (1988)

    PubMed  CAS  Google Scholar 

  25. Beccari E. et al.: Sequences coding for the ribosomal protein L14 in Xenopus tropicalis; homologies in the 5’ untranslated region are shared with other r-protein mRNAs. Nucleic Acids Res. 14: 7633–46 (1986)

    PubMed  CAS  Google Scholar 

  26. Bell J. R. et al.: A new copia-like transposable element found in a Drosophila rDNA gene unit. Nucleic Acids Res. 13: 3861–71 (1985)

    PubMed  CAS  Google Scholar 

  27. van Beneden R. J., Watson D. K. and Chen T. T.: Cellular myc (c.myc) in fish (rainbow trout): Its relationship to other vertebrate myc genes and to the transforming genes of the MC29 family of viruses. Proc. Nat. Acad. Sci. USA 83: 3698–3702 (1986)

    PubMed  CAS  Google Scholar 

  28. Benne R.: RNA-editing in trypanosome mitochondria (Review). Biochim. biophys. Acta 1007: 131–139 (1989)

    CAS  Google Scholar 

  29. Bentzen P., Leggett W. C. and Brown G. G.: Length and restriction site heteroplasmy in the mitochondrial DNA of American shad (Alosa sapidissima). Genetics 118: 509–518 (1988)

    PubMed  CAS  Google Scholar 

  30. Berger S. L. and Kimmel A. R.: Guide to molecular cloning techniques. Acad. Press, New York 1987

    Google Scholar 

  31. Beridze T.: Satellite DNA. Springer, Berlin 1986

    Google Scholar 

  32. Berlot-Picard F., Vodjani G. and Doly J.: Isolation and characterization of a cDNA clone encoding testis protamine Zl from the dogfish Scylliorhinus caniculus. Eur. J. Biochem. 165: 553–557 (1987)

    PubMed  CAS  Google Scholar 

  33. Besansky N. J.: A retrotransposable element from the mosquito Anopheles gambiae. Mol. Cell Biol. 10: 863–871 (1990)

    PubMed  CAS  Google Scholar 

  34. Biamonti G. et al.: Isolation of an active gene encoding human hnRNP protein Al. Evidence for alternative splicing. J. mol. Biol. 207: 491–503 (1989)

    PubMed  CAS  Google Scholar 

  35. Blackburn E. H., Pan W. and Johnson C. C.: Methylation of ribosomal RNA genes in the macronucleus of Tetrahymena. Nucleic Acids Res. 11: 5131–45 (1983)

    PubMed  CAS  Google Scholar 

  36. Blackburn E. H.: Structure and function of telomeres (Review article). Nature 350: 569–573 (1991)

    PubMed  CAS  Google Scholar 

  37. Blackhart B. D. et al.: Structure of the human lipoprotein B gene. J. biol. Chem. 261: 15364–67 (1986)

    PubMed  CAS  Google Scholar 

  38. Blair D. G. R.: Eukaryotic RNA polymerases. Comp. Biochem. Physiol. Pt. B 89: 647–670 (1988)

    CAS  Google Scholar 

  39. Bloch W.: A biochemical perspective of the polymerase chain reaction. Biochemistry 30: 2735–47 (1991)

    PubMed  CAS  Google Scholar 

  40. Boothroyd J. C. et al.: An unusually compact ribosomal DNA repeat in the protozoan Giardia lamblia. Nucleic Acids Res. 15: 4065–84 (1987)

    PubMed  CAS  Google Scholar 

  41. Bosch T. C. G. et al.: Thermotolerance and synthesis of heat shock proteins. These responses are present in Hydra oligactis. Proc. Nat. Acad. Sci. USA 85: 7927–31 (1988)

    PubMed  CAS  Google Scholar 

  42. Bosselman R. A. and Kaulenas M. S.: Ribosomal proteins of the cricket, Acheta domesticus L. Insect Biochem. 10: 129–138 (1980)

    CAS  Google Scholar 

  43. Boyce T. M., Zwick M. E. and Aquadro C. F.: Mitochondrial DNA in pine weevils: size, structure and heteroplasmy. Genetics 123: 825–836 (1989)

    PubMed  CAS  Google Scholar 

  44. Bozzoni I and Beccari E.: Clustered and interspersed repetitive DNA sequences in four amphibian species with different genome size. Biochim. biophys. Acta 520: 245–252 (1978)

    CAS  Google Scholar 

  45. Braun T. et al.: Myf-6, a new member of the human gene family of myogenetic determination factors: evidence for a gene cluster on chromosome 12. Embo J. 9: 821–831 (1990)

    PubMed  CAS  Google Scholar 

  46. Breathnach R. and Chambon P.: Organization and expression of eukaryotic split genes coding for proteins. Annual Rev. Biochem. 50: 349–383 (1981)

    CAS  Google Scholar 

  47. Breitbart R. E., Andreadis A. and Nadal-Ginard B.: Alternative splicing: A ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annual Rev. Biochem. 56: 467–495 (1987)

    CAS  Google Scholar 

  48. Brezinsky L. et al.: The transposable element Uhu from Hawaiian Drosophila–member of the widely dispersed class of Tcl-like transposons. Nucleic Acids Res. 18: 2053–59 (1990)

    PubMed  CAS  Google Scholar 

  49. Brierley H. L. and Potter S. S.: Distinct characteristics of loop sequences of two Drosophila foldback transposable elements. Nucleic Acids Res. 13: 485–500 (1985)

    PubMed  CAS  Google Scholar 

  50. Brimacombe R. and Stiege W.: Structure and function of ribosomal RNA. Biochem. J. 229: 1–17 (1985)

    PubMed  CAS  Google Scholar 

  51. Brodsky V. Y. and Uryvaeva I. V.: Genome multiplication in growth and development. Cambridge Univ. Press, Cambridge 1985

    Google Scholar 

  52. Brown E. and Goodwin G. H.: Comparison of the high-mobility-group chromosomal proteins of the rainbow-trout (Salmo gairdneri) liver and testis. Biochem. J. 215: 531–538 (1983)

    PubMed  CAS  Google Scholar 

  53. Brunk C. F. and Sadler L. A.: Characterization of the promoter region of Tetrahymena genes. Nucleic Acids Res. 18: 323–329 (1990)

    PubMed  CAS  Google Scholar 

  54. Bryan G., Garza D. and Hartl D.: Insertion and excision of the transposable element mariner in Drosophila. Genetics 125: 103–114 (1990)

    PubMed  CAS  Google Scholar 

  55. Bucher P. and Trifonov E. N.: Compilation and analysis of eukaryotic POL II promoter sequences. Nucleic Acids Res. 14: 10009–26 (1986)

    PubMed  CAS  Google Scholar 

  56. Buerglin T. R. et al.: Caenorhabditis elegans has scores of homoeobox-containing genes. Nature 341: 239–243 (1989)

    Google Scholar 

  57. Burton F. H. et al.: Transposition of a long member of the Ll major interspersed DNA family into the mouse beta globin gene locus. Nucleic Acids Res. 13: 5071–84 (1985)

    PubMed  CAS  Google Scholar 

  58. Bustin M., Lehn D. A. and Landsman D.: Structural features of the HMG chromosomal proteins and their genes. Biochim. biophys. Acta 1049: 231–243 (1990)

    CAS  Google Scholar 

  59. Campbell D. A.: Tandemly linked tRNA-Gln, tRNAVal and tRNA-Lys genes in Trypanosoma brucei. Nucleic Acids Res. 17: 9479 (1989)

    PubMed  CAS  Google Scholar 

  60. Campbell J. L.: Eukaryotic DNA replication. Annual Rev. Biochem. 55: 733–771 (1986)

    CAS  Google Scholar 

  61. Cantatore P. et al.: Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 329: 853–855 (1987)

    PubMed  CAS  Google Scholar 

  62. Cantatore P. et al.: The complete nucleotide sequence, gene organization, and genetic code of the mitochondrial genome of Paracentrotus lividus. J. biol. Chem. 264: 10965–75 (1989)

    PubMed  CAS  Google Scholar 

  63. Cavalier-Smith T. (ed.): The evolution of genome size. Wiley & Sons, Chichester 1985

    Google Scholar 

  64. 62a.Caverner D. R.: Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 15: 1353–61 (1987)

    Google Scholar 

  65. Cech T. R.: Self-splicing of group I introns. Annual Rev. Biochem. 59: 543–568 (1990)

    CAS  Google Scholar 

  66. Chan Y. L. et al.: The primary structure of rat ribosomal protein L 19. J. biol. Chem. 262: 1111–15 (1987)

    PubMed  CAS  Google Scholar 

  67. Chan Y. L. and Wool I. G.: The primary structure of rat ribosomal protein S 20. Biochim. biophys. Acta 1049: 93–95 (1990)

    CAS  Google Scholar 

  68. Chang L. M. S. et al.: DNA polymerases in parasitic protozoans differ from host enzymes. Science 208: 510–511 (1980)

    PubMed  CAS  Google Scholar 

  69. Chang L. M. S., Plevani P. and Bollum F. J.: Evolutionary conservation of DNA polymerase beta-structure. Proc. Nat. Acad. Sci. USA 79: 758–761 (1982)

    PubMed  CAS  Google Scholar 

  70. Charlesworth B. and Langley C. H.: The population genetics of Drosophila transposable elements. Annual Rev. Genet. 23: 251–287 (1989)

    CAS  Google Scholar 

  71. Chen C. et al.: At least two genes reside within a large intron of the dunce gene of Drosophila. Nature 329: 721–724 (1987)

    PubMed  CAS  Google Scholar 

  72. Chevaillier P. et al.: Amino-acid sequence of scylliorhinine Z1 and comparison of the primary structure of the protamines of the dogfish Scylliorhinus caniculus. Biochim. biophys. Acta 914: 19–27 (1987)

    CAS  Google Scholar 

  73. Chia W. et al.: Spontaneous excision of a large composite transposable element of Drosophila melanogaster. Nature 316: 81–83 (1985)

    PubMed  CAS  Google Scholar 

  74. Chomyn A. et al.: URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 234: 614–618 (1986)

    PubMed  CAS  Google Scholar 

  75. Choo K. H. et al.: A survey of the genomic distribution of alpha-satellite DNA in all the human chromosomes and derivation of a new consensus sequence. Nucleic Acids Res. 19: 1179–82 (1991)

    PubMed  CAS  Google Scholar 

  76. Chooi W. Y.: Purification of Drosophila ribosomal proteins. Isolation of proteins chemistry 19: 3469–76 (1980)

    CAS  Google Scholar 

  77. Chowdhury K., Rohdewohld H. and Gruss P.: Specific and ubiquitous expression of different Zn finger protein genes in the mouse. Nucleic Acids Res. 16: 9995–10011 (1988)

    PubMed  CAS  Google Scholar 

  78. Churchill M. E. A., Tullius T. D. and Klug A.: Mode of interaction of the zinc finger protein TFIIIA with a 5S RNA gene of Xenopus. Proc. Nat. Acad. Sci. USA 87: 5528–32 (1990)

    PubMed  CAS  Google Scholar 

  79. Citri Y. et al.: A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature 326: 42–47 (1987)

    PubMed  CAS  Google Scholar 

  80. Clary D. O. and Wolstenholme D. R.: The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. J. mol. Evol. 22: 252–271 (1985)

    PubMed  CAS  Google Scholar 

  81. Clawson E. A. et al. (eds.): Nucleic acid methylation. Wiley-Liss, New York 1990

    Google Scholar 

  82. Clayton D. A.: Transcription of the mammalian mitochondrial genome. Annual Rev. Biochem. 53: 573–594 (1984)

    CAS  Google Scholar 

  83. Cockburn A. F and Mitchell S. E.: Repetitive DNA interspersion patterns in Diptera. Arch. Insect Biochem. Physiol. 10: 105–113 (1989)

    CAS  Google Scholar 

  84. Cockburn A. F., Mitchell S. E. and Seawright J. A.: Cloning of the mitochondrial genome of Anopheles quadrimaculatus. Arch. Insect Biochem. Physiol. 14: 31–36 (1990)

    CAS  Google Scholar 

  85. Colbert R. A. and Young D. A.: Electrophoretic separation of in vitro translation products on giant two-dimensional gels allows detailed analysis of cellular mRNAs. J. biol. Chem. 261: 14733–39 (1986)

    PubMed  CAS  Google Scholar 

  86. Coles L. S. et al.: Characterization of the chicken histone H1 gene complement. Generation of a complete set of vertebrate Hl protein sequences. J. biol. Chem. 262: 9656–63 (1987)

    PubMed  CAS  Google Scholar 

  87. Collier J. R.: The molecular weight of ribosomal ribonucleic acids among the protostomia. Biol. Bull. 164: 428–432 (1983)

    CAS  Google Scholar 

  88. Connor W. et al.: Organization of the histone genes in the rainbow trout (Salmo gairdneri). J. mol. Evol. 20: 227–235 (1984)

    PubMed  CAS  Google Scholar 

  89. Connor W. et al.: Organization and nucleotide sequence of the rainbow trout histone H2A and H3 genes. J. mol. Evol. 20: 236–250 (1984)

    PubMed  CAS  Google Scholar 

  90. Cool D. et al.: Histone genes in three sea star species: Cluster arrangement, transcriptional polarity, and analyses of the flanking regions of H3 and 114 genes. J. mol. Evol. 27: 36–44 (1988)

    PubMed  CAS  Google Scholar 

  91. Cooper G.: Oncogenes. Jones and Bartlett, Boston 1990

    Google Scholar 

  92. Cooper T. A. and Ordahl C. P.: A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternative splicing. J. biol. Chem. 260: 11140–48 (1985)

    PubMed  CAS  Google Scholar 

  93. Corral M. et al.: DNA-sequences homologous to mitochondrial genes in nuclei from normal rat tissues and from rat hepatoma cells. Biochem. biophys. Res. Commun. 162: 258–264 (1989)

    CAS  Google Scholar 

  94. Cotterill S., Chui G. and Lehman I. R.: DNA polymerase-primase from embryos of Drosophila melanogaster. The DNA polymerase subunit. J. biol. Chem. 262: 16100–104 (1987)

    PubMed  CAS  Google Scholar 

  95. Cotterill S., Chui G. and Lehman I R.: DNA polymerase-primase from embryos of Drosophila melanogaster. DNA primase subunits. J. biol. Chem. 262: 16105–108 (1987)

    PubMed  CAS  Google Scholar 

  96. Coulson A. et al.: Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc.Nat. Acad. Sci. USA 83: 7821–25 (1986)

    PubMed  CAS  Google Scholar 

  97. Craig N. L.: P element transposition. Cell 62: 399–402 (1990)

    PubMed  CAS  Google Scholar 

  98. Cruces J. et al.: Purification and subunit structure of RNA polymerase II from different stages of Artemia development. Eur. J. Biochem. 141: 279–282 (1984)

    PubMed  CAS  Google Scholar 

  99. de la Cruz V. E et al.: A minimal ribosomal RNA: Sequence and secondary structure of the 9 S kinetoplast ribosomal RNA from Leishmania tarentolae. Proc. Nat. Acad. Sci. USA 82: 1401–05 (1985)

    PubMed  CAS  Google Scholar 

  100. van Daal A. et al.: Drosophila has a single copy of the gene encoding a highly conserved histone H2A variant of the H2A.F/Z type. Nucleic Acids Res. 16: 7487–97 (1988)

    PubMed  CAS  Google Scholar 

  101. Dame J. B. and McCutchan T. E: The four ribosomal DNA units of the malaria parasite, Plasmodium berghei. Identification, restriction map, and copy number analysis. J. biol. Chem. 258: 6984–90 (1983)

    PubMed  CAS  Google Scholar 

  102. Dame J. B., Sullivan M. and McCutchan T. F.: Two major sequence classes of ribosomal RNA genes in Plasmodium berghei. Nucleic Acids Res. 12: 5943–52 (1984)

    PubMed  CAS  Google Scholar 

  103. Dandekar T. and Sibbald P. R.: Trans-splicing of premRNA is predicted to occur in a wide range of organisms including vertebrates. Nucleic Acids Res. 18: 4719–25 (1990)

    PubMed  CAS  Google Scholar 

  104. Daniels G. R. and Deininger P. L.: A second major class of alu family repeated DNA sequences in a primate genome. Nucleic Acids Res. 11: 7595–7610 (1983)

    PubMed  CAS  Google Scholar 

  105. Daniels S. B. et al.: Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124: 339–355 (1990)

    PubMed  CAS  Google Scholar 

  106. Deka N. et al.: Human transposon-like elements insert at a preferred target site: evidence for a retro-virally mediated process. Nucleic Acids Res. 16: 1143–51 (1988)

    PubMed  CAS  Google Scholar 

  107. Delabar J. M.: Nonrandom location of Hl-H10 histones on chromatin of mouse liver and brain. J. biol. Chem. 260: 12622–28 (1985)

    PubMed  CAS  Google Scholar 

  108. Desjardins P. and Morais R.: Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J. mol. Biol. 212: 599–634 (1990)

    PubMed  CAS  Google Scholar 

  109. Dibb N. J. and Newman A J • Evidence that introns arose at proto-splice sites. Embo J. 8: 2015–21 (1989)

    PubMed  CAS  Google Scholar 

  110. Dillon L. S.: The gene. Its structure, function and evolution. Plenum Press, New York 1987

    Google Scholar 

  111. Dix D. B. and Thompson R. C.: Codon choice and gene expression. Synonymous codons differ in translational accuracy. Proc. Nat. Acad. Sci. USA 86: 6888–92 (1989)

    PubMed  CAS  Google Scholar 

  112. Djondjurov L. P., Yancheva N. Y. and Ivanova E. C.: Histones of terminally differentiated cells undergo continous turnover. Biochemistry 22: 4095–4102 (1983)

    PubMed  CAS  Google Scholar 

  113. Dod B. et al.: Concerted evolution of light satellite DNA in genus Mus implies amplification and homogenization of large blocks of repeats. Mol. Biol. Evol. 6: 478–491 (1989)

    PubMed  CAS  Google Scholar 

  114. Dodgson J. B., Browne D. L. and Black A. J.: Chicken chromosomal protein HMG-14 and HMG-17 cDNA clones: isolation, characterization and sequence comparison. Gene 63: 287–295 (1988)

    PubMed  CAS  Google Scholar 

  115. Doerfler W. et al.: Eukaryotic DNA methylation–facts and problems. FEBS Letters 268: 329–333 (1990)

    PubMed  CAS  Google Scholar 

  116. Dolecki G. J., Wang G. and Humphreys T.: Stage-and tissue-specific expression of two homeo box genes in sea urchin embryos and adults. Nucleic Acids Res. 16: 11543–58 (1988)

    PubMed  CAS  Google Scholar 

  117. Domier L. L. et al.: Drosophila viridis histone gene clusters lacking Hl coding segments. J. mol. Evol. 23: 149–158 (1986)

    PubMed  CAS  Google Scholar 

  118. Doolittle W. F.: Selfish DNA after fourteen months. In: Dover G. A. and Flavell R. B. (eds.): Genome evolution, pp. 3–28. Acad. Press, New York 1982

    Google Scholar 

  119. van Doren K. and Hirsh D.: Trans-spliced leader RNA exists as small nuclear ribonucleoprotein particles in Caenorhabditis elegans. Nature 335: 556–558 (1988)

    PubMed  CAS  Google Scholar 

  120. Dorfman D. M. et al.: The 5.8 S ribosomal RNA gene of Trypanosoma brucei: structural and transcriptional studies. Nucleic Acids Res. 13: 3533–49 (1985)

    PubMed  CAS  Google Scholar 

  121. Dreyfuss G., Swanson M. S. and Piflol-Roma S.: Heterogenous nuclear ribonucleoprotein particles and the pathway of mRNA formation. Trends biochem. Sci. 13: 86–91 (1988)

    CAS  Google Scholar 

  122. den Dunnen J. T. and Schoenmakers J. G. G.: Consensus sequences of the Rattus norwegicus B1- and B2 repeats. Nucleic Acids Res. 15: 2772 (1987)

    PubMed  CAS  Google Scholar 

  123. Eide D. and Anderson P.: Transposition of Tcl in the nematode Caenorhabditis elegans. Proc. Nat. Acad. Sci. USA 82: 1756–60 (1985)

    PubMed  CAS  Google Scholar 

  124. Endoh H., Nagahashi S. and Okada N.: Tetrahymena pyriformis DNA fragment with a gene cluster for 3 putative serine tRNAs and an asparagine tRNA. Nucleic Acids Res. 17: 10122 (1989)

    PubMed  CAS  Google Scholar 

  125. Endoh H., Nagahashi S. and Okada N.: A highly repetitive and transcribable seqeunce in the tortoise genome is probably a retroposon. Eur. J. Biochem. 189: 25–31 (1990)

    PubMed  CAS  Google Scholar 

  126. Englund P. T., Hajduk S. L. and Marini J. C.: The molecular biology of trypanosomes. Annual Rev. Biochem. 51: 695–726 (1982)

    CAS  Google Scholar 

  127. Epstein, D. A., Witney F. R. and Furano A. V.: The spread of sequence variants in Rattus satellite DNAs. Nucleic Acids Res. 12: 973–988 (1984)

    PubMed  CAS  Google Scholar 

  128. Erbil C. and Niessing J.: The primary structure of the duck aD-globin gene: an unusual 5’-splice junction sequence. Embo J. 2: 1339–43 (1983)

    PubMed  CAS  Google Scholar 

  129. Estepa I. and Pestana A.: Isolation and partial characterization of three histone-specific acetyltransferases from Artemia. Eur. J. Biochem. 132: 249–254 (1983)

    PubMed  CAS  Google Scholar 

  130. Etter A. et al.: Eleminished chromatin of Ascaris contains a gene that endodes a putative ribosomal protein. Proc. Nat. Acad. Sci. USA 88: 5593–96 (1991)

    Google Scholar 

  131. Fan J. B. et al.: Giardia lamblia -Haploid genome size determined by pulsed field gel electrophoresis is less than 12-Mb. Nucleic Acids Res. 19: 1905–08 (1991)

    PubMed  CAS  Google Scholar 

  132. Fanning T. G. and Singer M. E.: The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. Nucleic Acids Res. 15: 2251–60 (1987)

    PubMed  CAS  Google Scholar 

  133. Fanning T. G. and Singer M. E.: LINE-1, a mammalian transposable element (Review). Biochim. biophys. Acta 910: 203–212 (1987)

    CAS  Google Scholar 

  134. Feagin J. E.: RNA editing in kinetoplastid mitochondria (Minireview). J. Biol. Chem. 265: 19373–76 (1990)

    PubMed  CAS  Google Scholar 

  135. de Ferra F. et al.: Alternative splicing accounts for the four forms of myelin basic protein. Cell 43: 721–727 (1985)

    PubMed  CAS  Google Scholar 

  136. Fifis T., Cooper D. W. and Hill R. J.: Characterisation of the protamines of the tammar wallaby (Macro-pus eugenii). Comp. Biochem. Physiol. Pt. B 95: 571–575 (1990)

    Google Scholar 

  137. Files J. G. and Hirsh D.: Ribosomal DNA of Caenorhabditis elegans. J. mol. Biol. 149: 223–240 (1981)

    PubMed  CAS  Google Scholar 

  138. Finnegan D. J. et al.: Transposable DNA sequences. In: Dover G. A. and Flavell R. B. (eds.): Genome evolution, pp. 29–40. Acad. Press, New York 1982

    Google Scholar 

  139. Fischer J. A. and Maniatis T.: Regulatory elements involved in Drosophila Adh gene expression are conserved in divergent species and separate elements mediate expression in different tissues. Embo J. 5: 1275–89 (1986)

    PubMed  CAS  Google Scholar 

  140. Fleming J. E. et al.: Aging results in an unusal expression of Drosophila heat shock proteins. Proc. Nat. Acad. Sci. USA 85: 4099–4103 (1988)

    PubMed  CAS  Google Scholar 

  141. Fox T. D.: Natural variation in the genetic code. Annual Rev. Genet. 21: 67–91 (1987)

    CAS  Google Scholar 

  142. French C. K., Fouts D. L. and Manning J. E.: Sequence arrangement of the rRNA genes of the dipteran Sarcophaga bullata. Nucleic Acids Res. 9: 2563–76 (1981)

    PubMed  CAS  Google Scholar 

  143. Fujiwara H, Kawata Y. and Ishikawa H.: Primary and secondary structure of 5.8 S rRNA from the silkgland of Bombyx mori. Nucleic Acids Res. 10: 2415–18 (1982)

    PubMed  CAS  Google Scholar 

  144. Fujiwara H. and Ishikawa H.: Structure of the Bombyx mori rDNA: initiation site for its transcription. Nucleic Acids Res. 15: 1245–58 (1987)

    PubMed  CAS  Google Scholar 

  145. Furia M. et al.: A new gene nested within the dunce genetic unit of Drosophila melanogaster. Nucleic Acids Res. 18: 5837–41 (1990)

    PubMed  CAS  Google Scholar 

  146. Gabriel A et al.: A rapidly rearranging retrotransposon within the miniexon gene locus of Crithidia fasciculata. Mol. Cell Biol. 10: 615–624 (1990)

    PubMed  CAS  Google Scholar 

  147. Gadaletta G. et al.: The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: Cryptic signals revealed by comparative analysis between vertebrates. J. mol. Evol. 28: 497–516 (1989)

    Google Scholar 

  148. Ganz P. R. and Pearlman R. E.: Purification from Tetrahymena thermophila of DNA polymerase and a protein which modifies its activity. Eur. J. Biochem. 113: 159–173 (1980)

    PubMed  CAS  Google Scholar 

  149. Gardiner-Garden M and Frommer M.: CpG islands in vertebrate genomes. J. mol. Biol. 196: 261–282 (1987)

    PubMed  CAS  Google Scholar 

  150. Garey J. A. and Wolstenholme D. R.: Platyhelminth mitochondrial DNA: Evidence for early evolutionary origin of a tRNA-Ser(AGN) that contains a dihydrouridine arm replacement loop and of serine-specifying AGA and AGG codons. J. mol. Evol. 28: 374–387 (1989)

    PubMed  CAS  Google Scholar 

  151. Species variation in transcription factor IIIA. Nucleic Acids Res. 17: 781–794 (1989)

    Google Scholar 

  152. Gehring W. J. and Hiromi Y.: Homeotic genes and the homeobox. Annual Rev. Genet. 20: 147–173 (1986)

    CAS  Google Scholar 

  153. Gehring W. J.: Homeotic genes, the homeobox, and the spatial organization of the embryo. The Harvey Lectures Series 81, pp. 153–172. Alan R. Liss, New York 1987

    Google Scholar 

  154. Gehring W. J.: Homeoboxes in the study of development. Science 236: 1245–52 (1987)

    PubMed  CAS  Google Scholar 

  155. Georgiev G. P.: Mobile genetic elements in animal cells and their biological significance. Eur. J. Biochem. 145: 203–220 (1984)

    PubMed  CAS  Google Scholar 

  156. Gibb G. M. and Ragan C. I.: Identification of the subunits of bovine NADH dehydrogenase which are encoded by the mitochondrial genome. Biochem. J. 265: 903–906 (1990)

    PubMed  CAS  Google Scholar 

  157. Gilbert W., Marchionni M. and McKnight G.: On the antiquity of introns. Cell 46: 151–153 (1986)

    PubMed  CAS  Google Scholar 

  158. Glover D. M.: The rDNA of Drosophila melanogaster. Cell 26: 297–298 (1981)

    PubMed  CAS  Google Scholar 

  159. Goddard J. M., Weiland J. J. and Capecchi M. R.: Isolation and characterization of Caenorhabditis elegans DNA sequences homologous to the v-abl oncogene. Proc. Nat. Acad. Sci. USA 83: 2172–76 (1986)

    PubMed  CAS  Google Scholar 

  160. Gonzalez I., Petersen R. and Sylvester J. E.: Independent insertion of alu elements in the human ribosomal spacer and their concerted evolution. Mol. Biol. Evol. 6: 413–423 (1989)

    PubMed  CAS  Google Scholar 

  161. Gorovsky M. A.: Genome organization and reorganization in Tetrahymena. Annual Rev. Genet. 14: 203–239 (1980)

    CAS  Google Scholar 

  162. Goulian M and Heard C. J.: Intact DNA polymerase alpha/primase from mouse cells. J. Biol. Chem. 264: 19407–15 (1989)

    PubMed  CAS  Google Scholar 

  163. Graham R. W. et al.: Maturation of the major ubiqui-tin gene transcript in Caenorhabditis elegans involves the acquisition of a trans-spliced leader. J. Biol. Chem. 263: 10415–19 (1988)

    PubMed  CAS  Google Scholar 

  164. Gray M. W.: The evolutionary origin of organelles. Trends Genet. 5: 294–299 (1989)

    PubMed  CAS  Google Scholar 

  165. Green C. J., Sohel I. and Vold B. S.: The discovery of new intron-containing human tRNA genes using the polymerase chain reaction. J. Biol. Chem. 265: 12139–42 (1990)

    PubMed  CAS  Google Scholar 

  166. Grimaldi G. and Nocera P. P. D.: Multiple repeated units in Drosophila melanogaster ribosomal DNA spacer stimulate rRNA precursor transcription. Proc. Nat. Acad. Sci. USA 85: 5502–06 (1988)

    PubMed  CAS  Google Scholar 

  167. Grimes S. R. jr.: Nuclear proteins in spermatogenesis (Minireview). Comp. Biochem. Physiol. Pt. B 83: 495–500 (1986)

    Google Scholar 

  168. Gross D. S. and Garrard W. T.: Nuclease hypersensitive sites in chromatin. Annual Rev. Biochem. 57: 159–197 (1988)

    CAS  Google Scholar 

  169. Gruskin K. D., Smith T. E and Goodman M.: Possible origin of a calmodulin gene that lacks intervening sequences. Proc. Nat. Acad. Sci. USA 84: 1605–08 (1987)

    PubMed  CAS  Google Scholar 

  170. Guntaka R. V. et al.: Organization of Plasmodium falciparum genome: 1. Evidence for a highly repeated DNA sequence. Nucleic Acids Res. 13: 1965–75 (1985)

    PubMed  CAS  Google Scholar 

  171. Gupta R. S., Picketts D. J. and Ahmad S.: A novel ubiquitous protein „chaperonin“ supports the endosymbiotic origin of mitochondrion and plant chloroplasts. Biochem. biophys. Res. Commun. 163: 780–787 (1989)

    CAS  Google Scholar 

  172. Gut S. H. et al.: Z-DNA-binding proteins from bull testis. Nucleic Acids Res. 15: 9691–9705 (1987)

    PubMed  CAS  Google Scholar 

  173. Guthrie C. and Patterson B.: Spliceosomal snRNAs. Annual Rev. Genet. 22: 387–419 (1988)

    CAS  Google Scholar 

  174. Hagemann S, Miller W. J. and Pinsker W.: P-related sequences in Drosophila bifasciata–A molecular clue to understanding of P-element evolution in the genus Drosophila. J. mol. Evol. 31: 478–484 (1990)

    PubMed  CAS  Google Scholar 

  175. Hajduk S. L. and Cosgrove W. B.: Kinetoplast DNA from normal and dyskinetoplastic strains of Trypanosoma equiperdum. Biochim. biophys. Acta 561: 1–9 (1979)

    CAS  Google Scholar 

  176. Hancock K. and Hajduk S. L.: The mitochondrial transfer RNAs of Trypanosoma brucei are nuclear encoded. J. Biol. Chem. 265: 19208–15 (1990)

    PubMed  CAS  Google Scholar 

  177. Hanyu N. et al.: Dramatic events in ciliate evolution: alteration of UAA and UAG termination codons to glutamine codons due to anticodon mutations in two Tetrahymena tRNAs-Gln. Embo J. 5: 1307–11 (1986)

    PubMed  CAS  Google Scholar 

  178. Harada K., Yukuhiro K. and Mukai T.: Transposition rates of movable genetic elements in Drosophila melanogaster. Proc. Nat. Acad. Sci. USA 87: 3248–52 (1990)

    PubMed  CAS  Google Scholar 

  179. Harborne N. and Allan J • The resolution of five linker histone subtypes from chicken erythrocytes. FEBS Letters 194: 267–272 (1986)

    CAS  Google Scholar 

  180. Hardesty B. and Kramer G. (eds.): Structure, function and genetics of ribosomes. Springer, Berlin 1986

    Google Scholar 

  181. Hardman N.: Structure and function of repetitive DNA in eukaryotes. Biochem. J. 234: 1–11 (1986)

    PubMed  CAS  Google Scholar 

  182. Harper D. S. and Jahn C. L.: Differential use of termination codons in ciliated protozoa. Proc. Nat. Acad. Sci. USA 86: 3252–56 (1989)

    PubMed  CAS  Google Scholar 

  183. Harris L. J., Prasad S. and Rose A. M.: Isolation and sequence analysis of Caenorhabditis briggsae repetitive elements related to the Chaenorhabditis elegans transposon Tcl. J. mol. Evol. 30: 359–369 (1990)

    PubMed  CAS  Google Scholar 

  184. Hatfield D.: Suppression of termination codons in higher eukaryotes. Trends biochem. Sci. 10: 201–204 (1985)

    CAS  Google Scholar 

  185. Hawkins J. D.: A survey on intron and exon lengths. Nucleic Acids Res. 16: 9893–9908 (1988)

    PubMed  CAS  Google Scholar 

  186. Hawkins N. C. and McGhee J. D.: Homeoboxcontaining genes in the nematode Caenorhabditis elegans. Nucleic Acids Res. 18: 6101–06 (1990)

    PubMed  CAS  Google Scholar 

  187. Hayashi S. and Scott M. P.: What determines the specificity of action of Drosophila homeodomain proteins. Cell 63: 883–894 (1990)

    PubMed  CAS  Google Scholar 

  188. Hayes T. E. and Dixon J. E.: Z-DNA in the rat somatostatin gene. J. biol. Chem. 260: 8145–56 (1985)

    PubMed  CAS  Google Scholar 

  189. Heinze H. et al.: The primary structure of the human ribosomal protein S6 derived from a cloned cDNA. J. biol. Chem 263: 4139–44 (1988)

    PubMed  CAS  Google Scholar 

  190. Hendricks L. et al.: Primary structures of the 5 S ribosomal RNAs of 11 arthropods and applicability of 5 S RNA to the study of metazoan evolution. J. mol. Evol. 24: 103–109 (1986)

    Google Scholar 

  191. Henikoff S. et al.: Gene within a gene: nested Drosophila genes encode unrelated proteins on opposite DNA strands. Cell 44: 33–42 (1986)

    PubMed  CAS  Google Scholar 

  192. Heschl M. F. P. and Baillie D. L.: The hsp 70 multi-gene family of Caenorhabditis elegans (Minireview). Comp. Biochem. Physiol. Pt. B 96: 633–637 (1990)

    CAS  Google Scholar 

  193. Hey J.: The transposable portion of the genome of Drosophila algonquin is very different from that in D. melanogaster. Mol. Biol. Evol. 6: 66–79 (1989)

    PubMed  CAS  Google Scholar 

  194. Hicke B. J. et al.:Two versions of the gene encoding the 41-kilodalton subunit of the telomere bindings protein of Oxytricha nova. Proc. Nat. Acad. Sci. USA 87: 1481–85 (1990)

    PubMed  CAS  Google Scholar 

  195. Hightower et al.: Extrachromosomal elements in the lower eukaryote Leishmania. J. Biol. Chem. 263: 16970–76 (1988)

    PubMed  CAS  Google Scholar 

  196. Hilder V. A. et al.: Histone gene number in relation to C-value in amphibians. Nucleic Acids Res. 9: 5737–46 (1981)

    PubMed  CAS  Google Scholar 

  197. Hilder V. A., Dawson G. A. and Vlad M. T.: Ribosomal 5 S genes in relation to C-value in amphibians. Nucleic Acids Res. 11: 2381–90 (1983)

    PubMed  CAS  Google Scholar 

  198. Hoffmann J and Porchet M. (eds.): Biosynthesis, metabolism and mode of action of invertebrate hormones. Springer, Berlin 1984

    Google Scholar 

  199. van Holde H.: Chromatin. Springer, Berlin 1988

    Google Scholar 

  200. Holland P. W. H. and Hogan B. L. M.: Phylogenetic distribution of antennapedia-like homoeo boxes. Nature 321: 251–153 (1986)

    CAS  Google Scholar 

  201. Hori H. and Osawa S.: Origin and evolution of organisms as deduced from 5 S ribosomal RNA sequences. Mol. Biol. Evol. 4: 445–472 (1987)

    PubMed  CAS  Google Scholar 

  202. Horowitz S. and Gorovsky M. A.: An unusual genetic code in Tetrahymena. Proc. Nat. Acad. Sci. USA 82: 2452–55 (1985)

    PubMed  CAS  Google Scholar 

  203. Horowitz S. et al.: Unusual features of transcribed and translated regions of the histone H4 gene family of Tetrahymena thermophila. Nucleic Acids Res. 15: 141–160 (1987)

    PubMed  CAS  Google Scholar 

  204. Hough-Evans B. R. et al.: Complexity of RNA in eggs of Drosophila melanogaster and Musca domestica. Genetics 95: 81–94 (1980)

    PubMed  CAS  Google Scholar 

  205. Hough-Evans B. R. and Howard J.: Genome size and DNA complexity of Plasmodium falciparum. Biochim. biophys. Acta 698: 56–61 (1982)

    CAS  Google Scholar 

  206. Howe C. J. and Ward E. S. (eds.): Nucleic acid sequencing. A practical approach. Oxford University Press, New York 1990

    Google Scholar 

  207. Huang X. Y. and Hirsh D.: A second trans-spliced RNA leader sequence in the nematode Caenorhabditis elegans. Proc. Nat. Acad. Sci. USA 86: 8640–44 (1989)

    PubMed  CAS  Google Scholar 

  208. Insdorf N. E. and Bogenhagen D. F.: DNA polymerase gamma from Xenopus laevis. J. Biol. Chem. 264: 21491–503 (1989)

    PubMed  CAS  Google Scholar 

  209. Itoh N. et al.: The nucleotide sequence of cDNA for a Drosophila ribosomal protein with homology to rat ribosomal protein S26. Nucleic Acids Res. 17: 441 (1989)

    PubMed  CAS  Google Scholar 

  210. Jacob M. and Gallinaro H.: The 5’ splice site: phylogenetic evolution and variable geometry of association with U1RNA. Nucleic Acids Res. 17: 2159–80 (1989)

    PubMed  CAS  Google Scholar 

  211. Jacobs H. T. et al.: Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J. mol. Biol. 202: 185–217 (1988)

    PubMed  CAS  Google Scholar 

  212. Jahn C. L., Krikau M. F. and Shyman S.: Developmentally coordinated en masse excision of a highly repetitive element in E. crassus. Cell 59: 1009–1018 (1989)

    CAS  Google Scholar 

  213. Jakubczak J. L., Burke W. D. and Eickbush T. H.: Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc. Nat. Acad. Sci. USA 88: 3295–99 (1991)

    PubMed  CAS  Google Scholar 

  214. Jankowski J. M. et al.: In vitro expression of two proteins from overlapping reading frames in a eukaryotic DNA sequence. J. mol. Evol. 24: 61–71 (1986)

    PubMed  CAS  Google Scholar 

  215. Jantzen K., Fritton, H. P. and Igo-Kemenes T.: The DNAse I sensitive domain of the chicken lysozyme gene spans 24 kb. Nucleic Acids Res. 14: 6085–99 (1986)

    PubMed  CAS  Google Scholar 

  216. Johansen S., Guddal P. H. and Johansen T.: Organization of the mitochondrial genome of Atlantic cod, Gadus morrhua. Nucleic Acids Res. 18: 411–419 (1990)

    PubMed  CAS  Google Scholar 

  217. Johnson P.F. and McKnight S. L.: Eukaryotic transcriptional regulatory proteins. Annual Rev. Biochem. 58: 799–839 (1989)

    CAS  Google Scholar 

  218. Jones D. et al.: Structure, organization, and expression of the 16-kDa heat shock gene family of Caenorhabditis elegans. Genome 31: 690–697 (1989)

    PubMed  Google Scholar 

  219. Jones S. W. et al.: A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are similar to distinct protein kinases. Proc. Nat. Acad. Sci. USA 85: 3377–81 (1988)

    PubMed  CAS  Google Scholar 

  220. Joplin K. H., Yokum G. D. and Denlinger D. L.: Cold shock elicits expression of heat shock proteins in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 36: 825–834 (1990)

    CAS  Google Scholar 

  221. Jordan B. R., Latil-Damotte M. and Jourdan R.: Coding and spacer sequence in the 5.8 S–2 S region of Sciara ribosomal DNA. Nucleic Acids Res. 8: 3565–73 (1980)

    PubMed  CAS  Google Scholar 

  222. Junakovic N. and Angelucci V.: Polymorphisms in the genome distribution of copia-like elements in related laboratory stocks of Drosophila melanogaster. J. mol. Evol. 24: 83–88 (1986)

    CAS  Google Scholar 

  223. Junakovic N. et Qf: Transposition of copia-like nomadic elements pan be induced by heat shock. J. mol. Evol. 24: 89–93 (1986)

    CAS  Google Scholar 

  224. Jurka J. and Milosavljevic: Reconstruction and analysis of human alu genes. J. mol. Evol. 32: 105–121 (1991)

    PubMed  CAS  Google Scholar 

  225. Kadura S. N. and Krapunov S. N.: Displacement of histones by sperm-specific proteins at different stages of spermatogenesis. Eur. J. Biochem. 175: 603–607 (1988)

    PubMed  CAS  Google Scholar 

  226. Kaguni L. S. and Lehman 1 R • Eukaryotic DNA polymerase-primase: structure, mechanism and function. Biochim. biophys. Acta 950: 87–101 (1988)

    CAS  Google Scholar 

  227. Kalthoff H. et al.: Ribosomal protein S6 from Xeno-pus laevis ovaries. Isolation, phosphorylation in vivo and cross-reaction with heterologous anti-S6 antibodies. Eur. J. Biochem. 122: 439–443 (1982)

    PubMed  CAS  Google Scholar 

  228. Katinka M. D.: RNA-dependent DNA polymerase activity in Paramecium tetraurelia: what for ? Eur. J. Biochem. 163: 569–575 (1987)

    PubMed  CAS  Google Scholar 

  229. Kerppola T. K. and Kane C. M.: Analysis of the signals for transcription termination by purified RNA polymerase II. Biochemistry 29: 269–278 (1990)

    PubMed  CAS  Google Scholar 

  230. Kido Y. et al.: Shaping and reshaping of salmonid genomes by amplification of transfer RNA-derived retroposons during evolution. Proc. Nat. Acad. Sci. USA 88: 2326–30 (1991)

    PubMed  CAS  Google Scholar 

  231. King C. and Piatigorsky J.: Alternative splicing of aA-crystallin RNA. Structural and quantitative analyses of the mRNAs for the aA-2 and aA-inscrystallin polypeptides. J. biol. Chem. 259: 1822–26 (1984)

    PubMed  CAS  Google Scholar 

  232. Kjems J. and Garrett R. A.: An intron in the 23 S ribosomal RNA gene of the archaebacterium Desulfurococcus mobilis. Nature 318: 675–677 (1985)

    Google Scholar 

  233. Klein H. and Suh M.: Nucleotide sequence of a hamster cDNA highly homologous to the Xenopus laevis S19 ribosomal protein. Nucleic Acids Res. 18: 3997 (1990)

    PubMed  CAS  Google Scholar 

  234. Kleinow W: Structure of the mitochondrial protein synthesizing apparatus in invertebrates. Comp. Biochem. Physiol. Pt. B 91: 247–255 (1988)

    Google Scholar 

  235. Kmiecik D. et al.: Primary structure of the histone H2A from nucleated erythrocyte of the marine worm Sipunculus nudus. Presence of two forms of H2A in the sipunculid chromatin. Eur. J. Biochem. 135: 113–121 (1983)

    PubMed  CAS  Google Scholar 

  236. Kmiecik D. et al.: Primary structure of the two variants of a sperm-specific histone H1 from the annelid Platynereis dumerilii. Eur. J. Biochem. 150: 359–370 (1985)

    PubMed  CAS  Google Scholar 

  237. Knoechel W. et al.: Evolutionary conserved modules associated with zinc fingers in Xenopus laevis. Proc. Nat. Acad. Sci. USA 86: 6097–6100 (1989)

    CAS  Google Scholar 

  238. Kondo K. et al.: Tissue-specific and periodic changes in the nuclease sensitivity of the fibroin gene chromatin in the silkworm Bombyx mori. J. biol. Chem. 262: 5271–79 (1987)

    PubMed  CAS  Google Scholar 

  239. Kondo K., Hodgkin J. and Waterston R. H.: Differential expression of five tRNA-Trp(UAG) amber suppressors in Caenorhabditis elegans. Mol. cell. Biol. 8: 3627–35 (1988)

    CAS  Google Scholar 

  240. Konopka R. J.: Genetics of biological rhythms in Drosophila. Annual Rev. Genet. 21: 227–236 (1987)

    CAS  Google Scholar 

  241. Kozak M.: An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15: 8125–48 (1987)

    PubMed  CAS  Google Scholar 

  242. Kremer H. and Hennig W.: Isolation and characterization of a Drosophila hydei histone DNA repeat unit. Nucleic Acids Res. 18: 1573–80 (1990)

    PubMed  CAS  Google Scholar 

  243. Krishna P. et al.: Yolk proteins from nematodes, chickens, and frogs bind strongly and preferentially to left-handed Z-DNA. J. Biol. Chem. 263: 19066–70 (1988)

    PubMed  CAS  Google Scholar 

  244. Kubli E.: The structure and function of transfer RNA genes of higher eukaryotes. Experientia 37: 1–9 (1981)

    PubMed  CAS  Google Scholar 

  245. Kumazaki T., Hon H. and Osawa S.: The nucleotide sequences of 5 S rRNAs from ribbon worms: Emplectonema gracile contains two 5 S rRNA species differing considerably in their sequences. Nucleic Acids Res. 11: 7141–44 (1983)

    PubMed  CAS  Google Scholar 

  246. Kun J. and Mueller-Hill B.: The sequence of a third member of the heat shock protein family in Plasmodium falciparum. Nucleic Acids Res. 17: 5384 (1989)

    PubMed  CAS  Google Scholar 

  247. Kunkel T. A. and Bebenek K.: Recent studies of the fidelity of DNA synthesis. Biochim. biophys. Acta 951: 1–15 (1988)

    CAS  Google Scholar 

  248. Lai Z. C. and Childs G.: Isolation and characterization of the gene encoding the testis specific histone protein H2B-2 from the sea urchin Lytechinus pictus. Nucleic Acids Res. 14: 6845–56 (1986)

    PubMed  CAS  Google Scholar 

  249. Lake J. A.: Evolving ribosome structure: Domains in Archaebacteria, Eubacteria, Eocytes and Eukaryotes. Annual Rev. Biochem. 54: 507–530 (1985)

    CAS  Google Scholar 

  250. Lambert M. W. and Laval J. (ed.): DNA repair mechanisms and their biological implications in mammalian cells. Plenum Press, New York 1989

    Google Scholar 

  251. Lancillotti F. et al.: Z-DNA in transcriptionally active chromosomes. Proc. Nat. Acad. Sci. USA 84: 1560–64 (1987)

    PubMed  CAS  Google Scholar 

  252. Landsman D. et al.: Chromosomal protein HMG-17. Complete human cDNA sequence and evidence for a multigene family. J. biol. Chem. 261: 7479–84 (1986)

    PubMed  CAS  Google Scholar 

  253. Lapeyre B., Bourbon H. and Amalric F.: Nucleolin, the major nucleolar protein of growing eukaryotic cells: An unusual protein structure revealed by the nucleotide sequence. Proc. Nat. Acad. Sci. USA 84: 1472–76 (1987)

    PubMed  CAS  Google Scholar 

  254. LaRoche J. et al.: Molecular characterization of a repeat element causing large-scale size variation in the mitochondrial DNA of the sea scallop Placopecten magellanicus. Mol. Biol. Evol. 7: 45–64 (1990)

    CAS  Google Scholar 

  255. Latchman D. S.: Eukaryotic transcription factors. Biochem. J. 270: 281–289 (1990)

    PubMed  CAS  Google Scholar 

  256. Lawton J. R., Martinez E A. and Burks C.: Overview of the LiMB database. Nucleic Acids Res. 17: 5885–99 (1989)

    PubMed  CAS  Google Scholar 

  257. Lebeau M. C. et al.: Ribosomal protein L27 is identical in chick and rat. Nucleic Acids Res. 19: 1337 (1991)

    PubMed  CAS  Google Scholar 

  258. Lee J. S. et al.: Triplex DNA in plasmids and chromosomes. Gene 82: 191–199 (1989)

    PubMed  CAS  Google Scholar 

  259. Lee M. G. S. et al.: Structure and expression of the hsp 70 gene family of Leishmania major. Nucleic Acids Res. 16: 9567–85 (1988)

    PubMed  CAS  Google Scholar 

  260. Leff S. E., Rosenfeld M. G. and Evans R. M.: Complex transcriptional units: diversity in gene expression by alternative RNA processing. Annual Rev. Biochem. 55: 1091–1117 (1986)

    CAS  Google Scholar 

  261. Leipoldt M., Kellner H. G. and Stark S.: Comparative analysis of ribosomal RNA in various fish and other vertebrate species: hidden breaks and ribosomal function in phylogenetically tetraploid species of Cyprinidae. Comp. Biochem. Physiol. Pt. B 77: 769–777 (1984)

    Google Scholar 

  262. Leipoldt M. and Kellner M.: Ribosomal RNA structure in the diploid and the phylogenetically polyploid amphibian species Hyla and Odontophrynus. Comp. Biochem. Physiol. Pt. B 79: 181–185 (1984)

    CAS  Google Scholar 

  263. Leith I. R., Hay R. T. and Russell W. C.: Detection of Z DNA-binding proteins in tissue culture cells. Nucleic Acids Res. 16: 8277–89 (1988)

    PubMed  CAS  Google Scholar 

  264. Leng T. K. C. et al.: The human heat-shock protein family. Expression of a novel heat-inducible HSP70 (HSP70B’) and isolation of its cDNA and genomic DNA. Biochem. J. 267: 125–132 (1990)

    Google Scholar 

  265. Levine M. and Hoey T.: Homeobox proteins as sequence-specific transcription factors. Cell 55: 537–540 (1988)

    PubMed  CAS  Google Scholar 

  266. Lieber T. et al.: A histone Hl protein in sea urchins is endoded by a poly(A)+ mRNA. Proc. Nat. Acad. Sci. USA 85: 4123–27 (1988)

    PubMed  CAS  Google Scholar 

  267. Lindquist S. and Craig E. A.: The heat-shock proteins. Annual Rev. Genet. 22: 631–677 (1988)

    CAS  Google Scholar 

  268. Link C D, Graf-Whitsel J. and Wood W. B.: Isolation and characterization of a nematode transposable element from Panagrellus redivivus. Proc. Nat. Acad. Sci. USA 84: 5325–29 (1987)

    PubMed  CAS  Google Scholar 

  269. Linz U and Degenhardt H.: The polymerase chain reaction (in German). Naturwissenschaften 77: 515–530 (1990)

    PubMed  CAS  Google Scholar 

  270. Lönn U.: DNA replication in polytene chromosomes. Trends biochem. Sci. 7: 24–26 (1982)

    Google Scholar 

  271. Lohe A. R. and Brutlag D. R.: Identical satellite DNA sequences in sibling species of Drosophila. J. mol. Biol. 194: 161–170

    Google Scholar 

  272. Lohmann K and Kraus K.: Are there insertions in the ribosomal DNA of vertebrates? Nucleic Acids Res. 13: 5145–55 (1985)

    PubMed  CAS  Google Scholar 

  273. Lonai P. and Orr-Utreger A.: Homeogenes in mammalian development and the evolution of the cranium and central nervous system. Faseb J. 4: 1436–43 (1990)

    PubMed  CAS  Google Scholar 

  274. Long E. O. and Dawid I. B.: Repeated genes in eukaryotes. Annual Rev. Biochem. 49: 727–764 (1980)

    CAS  Google Scholar 

  275. Luhrmann R., Kastner B. and Bach M.: Structure of spliceosomal snRNPs and their role in pre-messenger RNA splicing. Biochim. biophys. Acta 1087: 265–292 (1990)

    CAS  Google Scholar 

  276. Lund E.: Heterogeneity of human Ul snRNAs. Nucleic Acids Res. 16: 5813–26 (1988)

    PubMed  CAS  Google Scholar 

  277. Maassen J. A. et al.: Molecular cloning and analysis of cDNA sequences for two ribosomal proteins from Artemia. The coordinate expression of genes for ribosomal proteins and elongation factor 1 during embryogenesis of Artemia. Eur. J. Biochem. 149: 609–616 (1985)

    PubMed  CAS  Google Scholar 

  278. Macgillivray A. J. and Birnie G. D. (eds.): Nuclear structures. Isolation and characterization. Butter-worths, London 1986

    Google Scholar 

  279. Macgregor H. C.: Big chromosomes and speciation among amphibia. In: Dover G. A. and Flavell R. B. (eds.): Genome evolution, pp. 325–341. Acad. Press, New York 1982

    Google Scholar 

  280. Madjar J. J. and Fournier A.: Bombyx mori L. ribosomal proteins–Resolution, nomenclature, molecular weights and invivo phosphorylation. Mol. gen. Genetics 182: 273–278 (1981)

    CAS  Google Scholar 

  281. Maier W. M. et al.: The lack of protamine 2 (P2) in boar and bull spermatozoa is due to mutations within the P2 gene. Nucleic Acids Res. 18: 1249–54 (1990)

    PubMed  CAS  Google Scholar 

  282. Majewska K. et al.: A new family of dispersed, highly repetitive sequences in bovine genome. Biochim. biophys. Acta 949: 119–124 (1988)

    CAS  Google Scholar 

  283. Manley J. N.: Polyadenylation of mRNA precursors. Biochim. biophys. Acta 950: 1–12 (1988)

    CAS  Google Scholar 

  284. Markova N. G. and Markov G. G.: Complex organization of a cryptic satellite DNA in the genome of the marine invertebrate Rapana thomasiana Grosse (Gastropoda). Biochim. biophys. Acta 741: 7–14 (1983)

    CAS  Google Scholar 

  285. Martin S. L. et al.: Tempo and mode of concerted evolution in the Ll repeat family of mice. Mol. Biol. Evol. 2: 127–140 (1985)

    PubMed  CAS  Google Scholar 

  286. Martin W. J.: New technologies for large-genome sequencing. Genome 31: 1073–80 (1989)

    PubMed  CAS  Google Scholar 

  287. Martinage A. et al: Amino acid sequence of a cysteine-rich, arginine-rich sperm protamine of the dog-fish Scylliorhinus caniculus. Biochim. biophys. Acta 831: 172–178 (1985)

    CAS  Google Scholar 

  288. Martinage A. et al.: Primary structure of histone H2B from gonads of the starfish Asterias rubens. Identification of an N-dimethylproline residue at the aminoterminal. Eur. J. Biochem. 147: 351–359 (1985)

    PubMed  CAS  Google Scholar 

  289. Martindale D. W. and Taylor E M.: Multiple introns in a conjugation-specific gene from Tetrahymena thermophila. Nucleic Acids Res. 16: 2189–2201 (1988)

    PubMed  CAS  Google Scholar 

  290. Martinponthieu A. et al.: Cullefish sperm protamines 1. Amino acid sequences of two distinct variants. Eur. J. Biochem. 195: 611–619 (1991)

    CAS  Google Scholar 

  291. Mashkova T. D. et al.: The primary structure of oocyte and somatic 5 S rRNAs from the loach Misgurnus fossilis. Nucleic Acids Res. 9: 2141–51 (1981)

    PubMed  CAS  Google Scholar 

  292. Matera A. G. et al.: Recently transposed alu repeats result from multiple source genes. Nucleic Acids Res. 18: 6019–23 (1990)

    PubMed  CAS  Google Scholar 

  293. Maxson R. et al.: Distinct organizations and patterns of expression of early and late histone gene sets in the sea urchin. Nature 301: 120–125 (1983)

    PubMed  CAS  Google Scholar 

  294. Mazrimas J. A. et al.: A corrected primary sequence for bull protamine. Biochim. biophys. Acta 872: 11–15 (1986)

    CAS  Google Scholar 

  295. McCammon J. A. and Harvey S. C.: Dynamics of proteins and nucleic acid. Cambridge Univ. Press, Cambridge 1987

    Google Scholar 

  296. McConkey E. H. et al.: Proposed uniform nomenclature for mammalian ribosomal proteins. Mol. gen. Genetics 169: 1–6 (1979)

    CAS  Google Scholar 

  297. McKay D. J., Renaux B. S. and Dixon G. H.: Rainbow trout protamines–Amino-acid sequences of six distinct proteins from a single testis. Eur. J. Biochem. 158: 361–366 (1986)

    PubMed  CAS  Google Scholar 

  298. McKay D. J., Renaux B. S. and Dixon G. H.: Human sperm protamines–Amino-acid sequences of two forms of protamine P2. Eur. J. Biochem. 156: 5–8 (1986)

    PubMed  CAS  Google Scholar 

  299. Meera G., Ramesh N. and Brahmachari S. K.: Zintrons in rat alpha-lactalbumin gene. FEBS Letters 251: 245–249 (1989)

    PubMed  CAS  Google Scholar 

  300. Meyer E. et al.: UGA is translated as cysteine in pheromone-3 of Euplotes octocarinatus. Proc. Nat. Acad. Sci. USA 88: 3758–61 (1991)

    PubMed  CAS  Google Scholar 

  301. Miles C. and Meuth M.: G-repeats: a novel hamster sine family. Nucleic Acids Res. 17: 7221–28 (1989)

    PubMed  CAS  Google Scholar 

  302. Miloshev G. et al.: Presence of a H1 °-type histone in an invertebrate: the bivalve mollusc Anodonta cygnea. Comp. Biochem. Physiol. Pt. B 82: 759–761 (1985)

    CAS  Google Scholar 

  303. Mizrokhi L. J. and Mazo A. M.: Evidence for horizontal transmission of the mobile element jockey between distant Drosophila species. Proc. Nat. Acad. Sci. USA 87: 9216–20 (1990)

    PubMed  CAS  Google Scholar 

  304. Mlodzik M. et al.: The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 60: 211–224 (1990)

    PubMed  CAS  Google Scholar 

  305. Mohr E., Trieschmann L. and Grossbach U.: Histone H1 in two subspecies in Chironomus thummi with different genome sizes: Homologous chromosome sites differ largely in their content of a specific H1 variant. Proc. Nat. Acad. Sci. USA 86: 9308–12 (1989)

    PubMed  CAS  Google Scholar 

  306. Monk R. J., Meyuhas O. and Perry R. P.: Mammals have multiple genes for individual ribosomal proteins. Cell 24: 301–306 (1981)

    PubMed  CAS  Google Scholar 

  307. Morin G. B. and Cech T. R.: Phylogenetic relationships and altered genome structures among Tetrahy-mena mitochondrial DNAs. Nucleic Acids Res. 16: 327–346 (1988)

    PubMed  CAS  Google Scholar 

  308. Moritz C. and Brown W. M.: Tandem duplications in animal mitochondrial DNAs: Variation in incidence and gene content among lizards. Proc. Nat. Acad. Sci. USA 84: 7183–87 (1987)

    PubMed  CAS  Google Scholar 

  309. Moriyama E. N. and Gojobori T.: Evolution of nested genes with special reference to cuticle proteins in Drosophila melanogaster. J. mol. Evol. 28: 391–397 (1989)

    PubMed  CAS  Google Scholar 

  310. Morris J., Kushner S. R. and Ivarie R.: The simple repeat poly(dT-dG) poly(dC-dA) common to eukaryotes is absent from Eubacteria and Archaebacteria and rare in protozoans. Mol. Biol. Evol. 3: 343–355 (1986)

    PubMed  CAS  Google Scholar 

  311. Moses K., Ellis M. C. and Rubin G. M.: The glass gene encodes a zinc-finger protein required by Drosophila photoreceptor cells. Nature 340: 531–536 (1989)

    PubMed  CAS  Google Scholar 

  312. Mouches C. et al.: Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233: 778–780 (1986)

    PubMed  CAS  Google Scholar 

  313. Mouchiroud D., Gautier C. and Bernardi G.: The compositional distribution of coding sequences and DNA molecules in humans and murids. J. mol. Evol. 27: 311–320 (1988)

    PubMed  CAS  Google Scholar 

  314. Mueller E, Clarkson S. G. and Galas D. J.: Sequence of a 3.18 kb tandem repeat of Xenopus laevis DNA containing 8 tRNA genes. Nucleic Acids Res. 15: 7191 (1987)

    CAS  Google Scholar 

  315. Mueller M. M., Gerster T. and Schaffner W: Enhancer sequences and the regulation of gene transcription. Eur. J. Biochem. 176: 485–495 (1988)

    CAS  Google Scholar 

  316. Murphy T. J. and Blumenfeld M.: Nucleotide sequence of a Drosophila melanogaster H1 histone gene. Nucleic Acids Res. 14: 5563 (1986)

    PubMed  CAS  Google Scholar 

  317. Musich P. R. and Dykes R. J.: A long interspersed (LINE) DNA exhibiting polymorphic patterns in human genomes. Proc. Nat. Acad. Sci. USA 83: 4854–58 (1986)

    PubMed  CAS  Google Scholar 

  318. Nagl W.: DNA endoreduplication and polyteny understood as evolutionary strategies. Nature 261: 614–615 (1976)

    PubMed  CAS  Google Scholar 

  319. Naora H. and Deacon N. J.: Relationship between the total size of exons and introns in protein-coding genes of higher eukaryotes. Proc. Nat. Acad. Sci. USA 79: 6196–6200 (1982)

    PubMed  CAS  Google Scholar 

  320. Naora H., Miyahara K. and Curnow R. N.: Origin of noncoding DNA sequences: Molecular fossils of genome evolution. Proc. Nat. Acad. Sci. USA 84: 6195–99 (1987)

    PubMed  CAS  Google Scholar 

  321. Nauber U. et al.: Abdominal segmentation of the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps. Nature 336: 489–492 (1988)

    PubMed  CAS  Google Scholar 

  322. Nickel B. E. and Davie J. R.: Structure of polyubiquinated histone H2A. Biochemistry 28: 964–968 (1989)

    PubMed  CAS  Google Scholar 

  323. Nielsen H. and Engberg J.: Sequence comparison of the rDNA introns from six different species of Tetrahymena. Nucleic Acids Res. 13: 7445–55 (1985)

    PubMed  CAS  Google Scholar 

  324. Nielsen H. and Engberg J.: Functional intron(+) and intron(-) rDNA in the same macronucleus of the ciliate Tetrahymena pigmentosa. Biochim. biophys. Acta 825: 30–38 (1985)

    CAS  Google Scholar 

  325. Nietfeld W. et al.: Oocyte and somatic 5S ribosomal RNA and 5S RNA encoding genes in Xenopus tropicalis. Nucleic Acids Res. 16: 8803–15 (1988)

    PubMed  CAS  Google Scholar 

  326. di Nocera P. P.: Close relationship between non-viral retroposons in Drosophila melanogaster. Nucleic Acids Res. 16: 4041–52 (1988)

    PubMed  CAS  Google Scholar 

  327. di Nocera P. P. and Sakaki Y.: Lines: a superfamily of retrotransposable ubiquitous DNA elements. Trends Genet. 6: 29–30 (1990)

    PubMed  CAS  Google Scholar 

  328. Noller H. E.: Structure of ribosomal RNA. Annual Rev. Biochem. 53: 119–162 (1984)

    CAS  Google Scholar 

  329. Nomoto M. et al.: Characterization of two types of histone H2B genes from macronuclei of Tetrahymena thermophila. Nucleic Acids Res. 15: 5681–97 (1987)

    PubMed  CAS  Google Scholar 

  330. Nover L.: Molecular cell biology of the heat stress response. Part I (in German). Naturwissenschaften 77: 310–316 (1990)

    PubMed  CAS  Google Scholar 

  331. Ogino K. et al.: What causes the aphid 28S rRNA to lack the hidden break ? J. mol. Evol. 30: 509–513 (1990)

    PubMed  CAS  Google Scholar 

  332. Ohama T. et al.: Evolution of multicellular animals as deduced from 5 S rRNA sequences: a possible early emergence of the Mesozoa. Nucleic Acids Res. 12: 5101–08 (1984)

    PubMed  CAS  Google Scholar 

  333. Ohama T. et al.: Evolution of the mitochondrial genetic code IV. AAA as an asparagine code in some animal mitochondria. J. mol. Evol. 30: 329–332 (1990)

    PubMed  CAS  Google Scholar 

  334. Oliva R. and Dixon G. H.: Vertebrate protamine evolution I. Sequence alignments and gene structure. J. mol. Evol. 30: 333–346 (1990)

    PubMed  CAS  Google Scholar 

  335. Orkin S. H. and Kazanian H. H. jr.: The mutation and polymorphism of the human ß-globin gene and its surrounding DNA. Annual Rev. Genet. 18: 131–171 (1984)

    CAS  Google Scholar 

  336. Osawa S. and Jukes T. H.: Codon reassignment (codon capture) in evolution. J. mol. Evol. 28: 271–278 (1989)

    PubMed  CAS  Google Scholar 

  337. Pace N. R., Olsen G. J. and Woese C. R.: Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 45: 325–326 (1986)

    PubMed  CAS  Google Scholar 

  338. Padgett R. A. et al.: Splicing of messenger RNA precursors. Annual Rev. Biochem. 55: 1119–50 (1986)

    CAS  Google Scholar 

  339. Paskewitz S. M. and Collins F. H.: Site-specific ribosomal DNA insertion elements in Anopheles gambiae and A. arabiensis: nucleotide sequence of gene-element boundaries. Nucleic Acids Res. 17: 8125–33 (1989)

    PubMed  CAS  Google Scholar 

  340. Pauli D., Spierer A. and Tissieres A.: Several hundred base pairs upstream of Drosophila hsp23 and 26 genes are required for their heat induction in transformed flies. Embo J. 5: 755–761 (1986)

    PubMed  CAS  Google Scholar 

  341. Paz V. et al.: The primary structure of rat ribosomal protein L26. FEBS Letters 251: 89–93 (1989)

    PubMed  CAS  Google Scholar 

  342. Pederson D. S. et al.: Sequence organization within and flanking clusters of 5 S ribosomal RNA genes in Tetrahymena. Nucleic Acids Res. 12: 3003–21 (1984)

    PubMed  CAS  Google Scholar 

  343. Perry K. L., Watkins K. P. and Agabian N.: Trypanosome mRNAs have unusual „cap4“ structures acquired by addition of a spliced leader. Proc. Nat. Acad. Sci. USA 84: 8190–94 (1987)

    PubMed  CAS  Google Scholar 

  344. Peterson M. G. et al.: Functional domains and upstream activation properties of cloned human TATA binding protein. Science 248: 1625–30 (1990)

    PubMed  CAS  Google Scholar 

  345. Petitpierre E., Gatewood J. M. and Schmid C. W.: Satellite DNA from the beetle Tenebrio molitor. Experientia 44: 498–499 (1988)

    CAS  Google Scholar 

  346. Pietromonaco S. E, Hessler R. A. and O’Brien T. W.: Evolution of proteins in mammalian cytoplasmic and mitochondrial ribosomes. J. mol. Evol. 24: 110–117 (1986)

    PubMed  CAS  Google Scholar 

  347. Pizon V., Cuny G. and Bernardi G.: Nucleotide sequence organization in the very small genome of a tetraodontid fish. Eur. J. Biochem. 140: 25–30 (1984)

    PubMed  CAS  Google Scholar 

  348. Platt T.: Transcription termination and the regulation of gene expression. Annual Rev. Biochem. 55: 339–372 (1986)

    CAS  Google Scholar 

  349. Pont G., Degroote F. and Picard G.: Illegitimate recombination in the histone multigenic family generates circular DNAs in Drosophila embryos. Nucleic Acids Res. 16: 8817–33 (1988)

    PubMed  CAS  Google Scholar 

  350. Porter D. C., Moy G. W. and Vacquier V. D.: The amino terminal sequence of sea urchin sperm histone Hl and its phosphorylation by egg cytosol. Comp. Biochem. Physiol. Pt. B 92: 381–384 (1989)

    CAS  Google Scholar 

  351. Prats E., Cornudella L. and Ruiz-Carillo A.: Nucleotide sequence of cDNA for Phio, a histone to protamine transition protein from sea cucumber spermatozoa. Nucleic Acids Res. 17: 10097 (1989)

    PubMed  CAS  Google Scholar 

  352. Preugschat E. and Wold B.: Isolation and characterization of Xenopus laevis C protein cDNA: Structure and expression of a heterogeneous nuclear ribonucleoprotein core protein. Proc. Nat. Acad. Sci. USA 85: 9669–73 (1988)

    PubMed  CAS  Google Scholar 

  353. Pritchard A. E. et al.: Nucleotide sequence of the mitochondrial genome of Paramecium. Nucleic Acids Res. 18: 173–180 (1990)

    PubMed  CAS  Google Scholar 

  354. Ptashne M.: Gene regulation by proteins acting nearby and at a distance. Nature 322: 697–701 (1986)

    PubMed  CAS  Google Scholar 

  355. Quentin Y.: Successive waves of fixation of Bl variants in rodent lineage history. J. mol. Evol. 28: 299–305 (1989)

    PubMed  CAS  Google Scholar 

  356. Rabin B. A., Hawley R. S. and Chase J. W: DNA ligase from Drosophila melanogaster embryos–Purification and physical characterization. J. biol. Chem. 261: 10637–45 (1986)

    PubMed  CAS  Google Scholar 

  357. Rabin B. A. and Chase J. W: DNA ligase from Drosophila melanogaster embryos–Substrate specificity and mechanism of action. J. biol. Chem. 262: 14105–111 (1987)

    PubMed  CAS  Google Scholar 

  358. Rasy S. D. et al.: ATP-independent type II topoisomerase from trypanosomes. Proc. Nat. Acad. Sci. USA 83: 7152–56 (1986)

    Google Scholar 

  359. Reed R.: Protein composition of mammalian spliceosomes assembled in vitro. Proc. Nat. Acad. Sci. USA 87: 8031–35 (1990)

    PubMed  CAS  Google Scholar 

  360. Rich A., Nordheim A. and Wang A. H.: The chemistry and biology of lefthanded Z-DNA. Annual Rev. Biochem. 53: 791–846 (1984)

    CAS  Google Scholar 

  361. Richard R. E. and Bogenhagen D.F.: A high molecular weight topoisomerase I from Xenopus laevis ovaries. J. Biol. Chem. 264: 4704–09 (1989)

    PubMed  CAS  Google Scholar 

  362. Riddihough G. and Pelham H R B.: Activation of the Drosophila hsp27 gene promoter by heat shock and by ecdysone involves independent and remote regulatory sequences. Embo J. 5: 1653–58 (1986)

    PubMed  CAS  Google Scholar 

  363. Rio D. C.: Molecular mechanisms regulating Drosophila P-element transposition Annual Rev. Genet. 24: 543–578 (1990)

    CAS  Google Scholar 

  364. Riou G. E et al.: A type I DNA topoisomerase from Trypanosoma cruzi. Europ. J. Biochem. 134: 479–484 (1983)

    PubMed  CAS  Google Scholar 

  365. Roberson A. E. et al.: The 5S RNA gene mini-chromosome of Euplotes. Nucleic Acids Res. 17: 4699–4712 (1989)

    PubMed  CAS  Google Scholar 

  366. Roberts S. B., Emmons S. W. and Childs G.: Nucleotide sequences of Caenorhabditis elegans core histone genes. Genes for diifferent histone classes share common flanking sequence elements. J. mol. Biol. 206: 567–577 (1989)

    PubMed  CAS  Google Scholar 

  367. Roe B. A. et al.: The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J. biol. Chem. 260: 9759–74 (1985)

    PubMed  CAS  Google Scholar 

  368. Rogers J. H.: The roles of introns in evolution. FEBS Letters 268: 339–343 (1990)

    PubMed  CAS  Google Scholar 

  369. Rohner K. J., Hobi R. and Kuenzle C. C.: Z-DNAbinding proteins–Identification critically depends on the proper choice of ligands. J. Biol. Chem. 265: 19112–15

    Google Scholar 

  370. Rooney R. J. and Harding J. D.: Processing of mammalian tRNA transcripts in vitro: different pretRNAs are processed along alternative pathways that contain a common rate-limiting step. Nucleic Acids Res. 14: 4849–64 (1986)

    PubMed  CAS  Google Scholar 

  371. Rose A. M. et al.: Tc1(Hin): a form of the transposable element Tc1 in Caenorhabditis elegans. Can. J. Biochem. Cell Biol. 63: 752–756 (1985)

    PubMed  CAS  Google Scholar 

  372. Ruan K. S. and Emmons S. W: Precise and imprecise somatic excision of the transposon Tcl in the nematode C. elegans. Nucleic Acids Res. 15: 6875–81 (1987)

    PubMed  CAS  Google Scholar 

  373. Rutledge R. G., Neelin J. M. and Seligy V. L.: Isolation and expression of cDNA clones coding for two sequence variants of Xenopus laevis histone H5. Gene 70: 117–126 (1988)

    PubMed  CAS  Google Scholar 

  374. Ryan K. A. and Englund P. T.: Replication of kinetoplast DNA in Trypanosoma equiperdum. Minicircle H strand fragments which map at specific locations. J. Biol. Chem. 264: 823–830 (1989)

    PubMed  CAS  Google Scholar 

  375. Ryan S. C. and Dugaiczyk A.: Newly arisen DNA repeats in primate phylogeny. Proc. Nat. Acad. Sci. USA 86: 9360–64 (1989)

    PubMed  CAS  Google Scholar 

  376. Saiga H. et al.: Determination of the transcription initiation site of Tetrahymena pyriformis rRNA using in vitro capping of 35 S pre-rRNA. Nucleic Acids Res. 10: 4223–36 (1982)

    PubMed  CAS  Google Scholar 

  377. Sakaguchi K. and Boyd J. B.: Purification and characterization of a DNA polymerase 13 from Drosophila. J. biol. Chem. 260: 10406–11 (1985)

    PubMed  CAS  Google Scholar 

  378. Sancar A. and Sancar G. B.: DNA repair enzymes. Annual Rev. Biochem. 57: 29–67 (1988)

    CAS  Google Scholar 

  379. Sanford, T., Prenger J. P. and Golomb M.: Purification and immunological analysis of RNA polymerase II from Caenorhabditis elegans. J. biol. Chem 260: 8064–69 (1985)

    PubMed  CAS  Google Scholar 

  380. Santiago C. and Marzluff W. F.: Expression of the U1 RNA gene repeat during early sea urchin development: Evidence for a switch in Ul RNA genes during development. Proc. Nat. Acad. Sci. USA 86: 2572–76 (1989)

    PubMed  CAS  Google Scholar 

  381. Sautiere P. et al.: Comparison of the amino acid sequences of human protamines HP2 and HP3 and of intermediate basic nuclear proteins HPS1 and HPS2. Structural evidence that HPS1 and HPS2 are proprotamines J Biol. Chem. 263: 11059–62 (1988)

    PubMed  CAS  Google Scholar 

  382. Sawada I., et al.: Evolution of Alu family repeats since the divergence of human and chimpanzee. J. mol. Evol. 22: 316–322 (1985)

    PubMed  CAS  Google Scholar 

  383. Schena M.: The evolutionary conservation of eukaryotic gene transcription (Review). Experientia 45: 972–983 (1989)

    PubMed  CAS  Google Scholar 

  384. Schlesinger M. J., Santoro M. G. and Garaci E. (eds.): Stress proteins. Induction and function. Springer, Berlin 1991

    Google Scholar 

  385. Schmid C. W, Wong E. F. K. and Deka N.: Single copy sequences in Galago DNA resemble a repetitive human retrotransposon-like family. J. mol. Evol. 31: 92–100 (1990)

    PubMed  CAS  Google Scholar 

  386. Schmidt M. et al.: Evidence that a major class of mouse endogenous long terminal repeats (LTRs) resulted from recombination between exogenous retroviral LTRs and LTR-like elements (LTR-IS). Proc. Nat. Acad. Sci. USA 81: 6696–7000 (1984)

    PubMed  CAS  Google Scholar 

  387. Schmidtke J., Epplen J. T. and Engel W.: Genome analysis of Amphioxus and speculation as to the origin of contrasting vertebrate genome organization patterns. Comp. Biochem. Physiol. Pt. B 63: 455–458 (1979)

    CAS  Google Scholar 

  388. Schnare M. N. and Gray M. W.: Nucleotide sequence of an exceptionally long 5.8 S ribosomal RNA from Crithidia fasciculata. Nucleic Acids Res. 10: 2085–92 (1982)

    PubMed  CAS  Google Scholar 

  389. Schughart K., Kappen C. and Ruddle F. H.: Duplication of large genomic regions during the evolution of vertebrate homeobox genes. Proc. Nat. Acad. Sci. USA 86: 7067–71 (1989)

    PubMed  CAS  Google Scholar 

  390. Schukink R F. and Plasterk R. H. A.: TcA, the putative transposase of the C. elegans Tcl transposon, has an N-terminal DNA binding domain. Nucleic Acids Res. 18: 895–900 (1990)

    Google Scholar 

  391. Schuler L. A., Weber J. L. and Gorski J.: Polymorphism near the rat prolactin gene caused by insertion of an Alu-like element. Nature 305: 159–160 (1983)

    PubMed  CAS  Google Scholar 

  392. Scott M. P.: Complex loci of Drosophila. Annual Rev. Biochem. 56: 195–227 (1987)

    CAS  Google Scholar 

  393. Sellos D., Krawetz S. A. and Dixon G. H.: Organization and complete nucleotide sequence of the corehistone-gene cluster of the annelid Platynereis dumerilii. Eur. J. Biochem. 190: 21–29 (1990)

    PubMed  CAS  Google Scholar 

  394. Senapathy P.: Origin of eukaryotic introns: A hypothesis, based on codon distribution statistics in genes, and its implications. Proc. Nat. Acad. Sci. USA 83: 2133–37 (1986)

    PubMed  CAS  Google Scholar 

  395. Shannon M. F. and Duke E. J.: Comparison of mitochondrial and cytoplasmic ribosomal proteins in Drosophila. Comp. Biochem. Physiol. Pt. B 81: 683–686 (1985)

    Google Scholar 

  396. Sharp P. A.: On the origin of RNA splicing and introns. Cell 42: 397–400 (1985)

    PubMed  CAS  Google Scholar 

  397. Shirakawa H., Tsuda K. I. and Yoshida M.: Primary structure of non-histone chromosomal protein HMG2 revealed by the nucleotide sequence. Biochemistry 29: 4419–23 (1990)

    PubMed  CAS  Google Scholar 

  398. Shlomai J. and Zadok A.: Kinetoplast DNA minicircles of trypanosomatids encode for a protein product. Nucleic Acids Res. 12: 8017–28 (1984)

    PubMed  CAS  Google Scholar 

  399. Silber J. et al.: Distribution and conservation of the foldback transposable element in Drosophila. J. mol. Evol. 28: 220–224 (1989)

    PubMed  CAS  Google Scholar 

  400. Simpson A. J. G. et al.: The arrangement of ribosomal RNA genes in Schistosoma mansoni. Identification of polymorphic structural variants. Eur. J. Biochem. 139: 41–49 (1984)

    PubMed  CAS  Google Scholar 

  401. Singer M. F. and Skowronsky J.: Making sense out of LINES: long interspersed repeat sequences in mammalian genomes. Trends biochem. Sci. 10: 119–122 (1985)

    CAS  Google Scholar 

  402. Sloof P. et al.: Characterization of satellite DNA in Trypanosoma brucei and Trypanosoma cruzi. J. mol. Biol. 167: 1–21 (1983)

    PubMed  CAS  Google Scholar 

  403. Sloof P. et al.: Further characterization of the extremely small mitochondrial ribosomal RNAs from trypanosomes: a detailed comparison of the 9 S and

    Google Scholar 

  404. S RNAs from Crithidia fasciculata and Trypanosoma brucei with rRNAs from other organisms. Nucleic Acids Res. 13: 4171–90 (1985)

    Google Scholar 

  405. Sloof P. et al.: The nucleotide sequence of a 3.2 kb segment of mitochondrial maxicircle DNA from Crithidia fasciculata containing the gene for cytochrom oxidase subunit III, the N-terminal part of the apocytochrome b gene and a possible frameshift gene; further evidence for the use of unusual initiator triplets in trypanosome mitochondria. Nucleic Acids Res. 15: 51–65 (1987)

    PubMed  CAS  Google Scholar 

  406. Smith C. W. J., Patton J. G. and Nadal-Ginard B.: Alternative splicing in the control of gene expression. Annual Rev. Genet. 23: 527–77 (1989)

    CAS  Google Scholar 

  407. Smith J. L. et al.: In trypanosomes the homolog of the largest subunit of RNA polymerase II is encoded by two genes and has a highly unusual C-terminal domain structure. Cell 56: 815–827 (1989)

    PubMed  CAS  Google Scholar 

  408. Smith M. J. et al.: Nucleotide sequence of the nine protein-coding genes and 22 tRNAs in the mitochondrial DNA of the sea star Pisaster. J. mol. Evol. 31: 195–204 (1990)

    PubMed  CAS  Google Scholar 

  409. Smith M. W.: Structure of vertebrate genes: A statistical analysis implicating selection. J. mol. Evol. 27: 45–55 (1988)

    PubMed  CAS  Google Scholar 

  410. So A. G. and Downey K. M.: Mammalian DNA polymerases alpha and delta: Current status in DNA replication. Biochemistry 27: 4591–95 (1988)

    PubMed  CAS  Google Scholar 

  411. Soares M. B., Schon E. and Efstratiadis A.: Rat Line 1: The origin and evolution of a family of long interspersed middle repetitive DNA elements. J. mol. Evol. 22: 117–133 (1985)

    PubMed  CAS  Google Scholar 

  412. Sogin M. L., Elwood H. J. and Gunderson J. H.: Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc. Nat. Acad. Sci. USA 83: 1383–87 (1986)

    PubMed  CAS  Google Scholar 

  413. Solignac M., Monnerot M. and Mounolou J. C.: Concerted evolution of sequence repeats in Drosophila mitochondrial DNA. J. mol. Evol. 24: 53–60 (1986)

    CAS  Google Scholar 

  414. Sollner-Webb B. and Tower J.: Transcription of cloned eukaryotic ribosomal RNA genes. Annual Rev. Biochem. 55: 801–830 (1986)

    CAS  Google Scholar 

  415. Specht T., Ulbrich N. and Erdmann V A Nucleotide sequence of the 5 S rRNA from the Annelida species Enchytraeus albidus. Nucleic Acids Res. 14: 4372 (1986)

    CAS  Google Scholar 

  416. Speckert W. et al.: Primary structure of protamine from the northern pike Esox lucius. Eur. J. Biochem. 136: 283–289 (1983)

    PubMed  CAS  Google Scholar 

  417. van der SPEK H. et al.: RNA editing in transcripts of the mitochondrial genes of the insect trypanosome Crithidia fasciculata. Embo J. 9: 257–262 (1990)

    Google Scholar 

  418. Spencer C. A., Gietz R. D. and Hodgetts R. B.: Overlapping transcription units in the dopa decarboxylase region of Drosophila. Nature 322: 279–281 (1986)

    PubMed  CAS  Google Scholar 

  419. Spirin A. S. and Ajtkhozhin M. A.: Informosomes and polyribosome-associated proteins in eukaryotes. Trends biochem. Sci. 10: 162–165 (1985)

    CAS  Google Scholar 

  420. Spradling A. C. and Rubin G. M.: Drosophila genome organization–Conserved and dynamic aspects. Annual Rev. Genet. 15: 219–264 (1981)

    CAS  Google Scholar 

  421. Spradling A. C.: The organization and amplification of two chromosomal domains containing Drosophila chorion genes. Cell 27: 193–201 (1981)

    PubMed  CAS  Google Scholar 

  422. Stacey S. N. et al.: Distribution and conservation of mobile elements in the genus Drosophila. Mol. Biol. Evol. 3: 522–534 (1986)

    PubMed  CAS  Google Scholar 

  423. Stark G. R. and Wahl G. M.: Gene amplification. Annual Rev. Biochem. 53: 447–491 (1984)

    CAS  Google Scholar 

  424. Stone E. M. and Schwartz R. D. (eds.): Intervening sequences in evolution and development. Oxford University Press, New York 1990

    Google Scholar 

  425. Strayer D. et al.: Three organizations of human DNA. Proc. Nat. Acad. Sci. USA 80: 4770–74 (1983)

    PubMed  CAS  Google Scholar 

  426. Struhl K.: Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eukaryotic transcriptional regulatory proteins (Review). Trends biochem. Sci. 14: 137–140 (1989)

    CAS  Google Scholar 

  427. Stumph W. E. et al.: Genomic structure and possible retroviral origin of the chicken CRI repetitive DNA sequence family. Proc. Nat. Acad. Sci. USA 81: 6667–71 (1984)

    PubMed  CAS  Google Scholar 

  428. Sturm N. R. and Simpson L.: Kinetoplast DNA mini-circles encode RNAs for editing of cytochrome oxidase subunit III mRNA. Cell 61: 879–884 (1990)

    PubMed  CAS  Google Scholar 

  429. Suzuki K. and Wool I. G.: The primary structure of rat ribosomal protein-L17. Biochem. biophys. Res. Commun. 178: 322–328 (1991)

    CAS  Google Scholar 

  430. Syvaeoja J. et al.: DNA polymerase alpha, delta and epsilon: Three distinct enzymes from HeLa cells. Proc. Nat. Acad. Sci. USA 87: 6664–68 (1990)

    Google Scholar 

  431. Syvanen M.: The evolutionary implications of mobile genetic elements. Annual Rev. Genet. 18: 271–293 (1984)

    CAS  Google Scholar 

  432. Tanabe K. et al.: Structural homology of DNA polymerase ß from various mammalian cells. J. biol. Chem. 256: 3098–3102 (1981)

    PubMed  CAS  Google Scholar 

  433. Taparowsky E. J. and Gerbi S. A.: Structure of 1.711 bovine satellite DNA: evolutionary relationship to satellite I. Nucleic Acids Res. 10: 5503–15 (1982)

    PubMed  CAS  Google Scholar 

  434. Tausta S. L. and Klobutcher L. A.: Internal eliminated sequences are removed prior to chromosome fragmentation during development in Euplotes crassus. Nucleic Acids Res. 18: 845–853 (1990)

    PubMed  CAS  Google Scholar 

  435. Tautz D. and Renz M.: Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12: 4127–38 (1984)

    PubMed  CAS  Google Scholar 

  436. Tautz D. et al.: Complete sequences of the rRNA genes of Drosophila melanogaster. Mol. Biol. Evol. 5: 366–376 (1988)

    PubMed  CAS  Google Scholar 

  437. Taylor J. D., Wellman S E. and Marzluff W. F.: Sequences of four mouse histone H3 genes: Implications for evolution of mouse histone genes. J. mol. Evol. 23: 242–249 (1986)

    PubMed  CAS  Google Scholar 

  438. Tebabi P., Halleux S. and Pays E.: Nucleotide sequence of a full-length cDNA coding for the ribosomal L44 protein of Trypanosoma brucei. Nucleic Acids Res. 18: 2809 (1990)

    PubMed  CAS  Google Scholar 

  439. Thackeray J. R. and Kyriacou C. P.: Molecular evolution in the Drosophila yakuba period locus. J. mol. Evol. 31: 389–401 (1990)

    PubMed  CAS  Google Scholar 

  440. Thomann H. U. et al.: Genes, variant genes and pseudogenes of the human tRNA-Val gene family. Expression and pre-tRNA maturation in vitro. J. mol. Biol. 209: 505–523 (1989)

    PubMed  CAS  Google Scholar 

  441. Thomas J. et al.: The spliceosomal snRNAs of Caenorhabditis elegans. Nucleic Acids Res. 18: 2633–42 (1990)

    PubMed  CAS  Google Scholar 

  442. Tönjes R. and Doenecke D.: A highly conserved sequence in H1 histone genes as an oligonucleotide hybridization probe: Isolation and sequence of a duck H1 gene. J. mol. Evol. 25: 361–370 (1987)

    PubMed  Google Scholar 

  443. Trabuchet G. et al.: Recent insertion of an alu sequence in the beta-globin gene cluster of the gorilla. J. mol. Evol. 25: 288–291 (1987)

    PubMed  CAS  Google Scholar 

  444. Tschudi C., Krainer A. R. and Ullu E.: The U6 small nuclear RNA from Trypanosoma brucei. Nucleic Acids Res. 16: 11375 (1988)

    PubMed  CAS  Google Scholar 

  445. Tsuzuki T. et al.: Structure of the human prealbumin gene. J. biol. Chem. 260: 12224–27 (1985)

    PubMed  CAS  Google Scholar 

  446. Turner P. C. et al.: The organization and expression of histone genes from Xenopus borealis. Nucleic Acids Res. 16: 3471–85 (1988)

    PubMed  CAS  Google Scholar 

  447. Udvardy A. and Schedl P.: Structural polymorphism in DNA. J. mol. Biol. 166: 159–181 (1983)

    PubMed  CAS  Google Scholar 

  448. Ullu E. and Tschudi C.: Alu sequences are processed 7SL genes. Nature 312: 171–172 (1984)

    PubMed  CAS  Google Scholar 

  449. Upholt W. B. and Sandell L. J.: Exon/intron organization of the chicken type II collagen gene: Intron size distribution suggests a minimal intron size. Proc. Nat. Acad. Sci. USA 83: 2325–29 (1986)

    PubMed  CAS  Google Scholar 

  450. Ursi D., Vandenberghe A. and de Wachter R.: The sequence of the 5.8 S ribosomal RNA of the crustacean Artemia sauna. With a proposal for a general secondary structure model for 5.8 S ribosomal RNA. Nucleic Acids Res. 10: 3517–30 (1982)

    PubMed  CAS  Google Scholar 

  451. Vahidi H. et al.: Unusual sequences, homologous to 5S RNA, in ribosomal DNA repeats of the nematode Meloidogyne arenaria. J. mol. Evol. 27: 222–227 (1988)

    PubMed  CAS  Google Scholar 

  452. Vanderspek H. et al.: Conserved genes encode guide RNAs in mitochondria of Crithidia fasciculata. Embo J. 10: 1217–24 (1991)

    CAS  Google Scholar 

  453. Vanfleteren J. R. and Meheus L. A.: Analysis of the chromosomal proteins of Caenorhabditis elegans by two-dimensional electrophoresis, silver staining and immunodetection. Comp. Biochem. Physiol. Pt. B 91: 103–110 (1988)

    Google Scholar 

  454. Vanfleteren J. R., Vanbun S. M. and Vanbeeumen J. J.: The histones of Caenorhabditis elegans–No evidence of stage-specific isoforms- An overview. FEBS Letters 257: 233–237 (1989)

    PubMed  CAS  Google Scholar 

  455. Vanin E F: Processed pseudogenes. Characteristics and evolution. Annual Rev. Genet. 19: 253–272 (1985)

    CAS  Google Scholar 

  456. Vashakidze R. P. et al.: Nuclear proteins from Drosophila melanogaster embryos which specifically bind to simple homopolymeric sequences poly(dT-dG) (dC-dA). Nucleic Acids Res. 16: 4989–94 (1988)

    PubMed  CAS  Google Scholar 

  457. Vaury C. et al.: Molecular characteristics of the heterochromatic I elements from a reactive strain of Drosophila melanogaster. J. mol. Evol. 31: 424–431 (1990)

    PubMed  CAS  Google Scholar 

  458. Venturini G., D’Ambrogi R. and Capanna E: Size and structure of the bird genome–I. DNA content of species of Neognathae. Comp. Biochem. Physiol. Pt. B 85: 61–65 (1986)

    CAS  Google Scholar 

  459. Venturini G., Capanna E and Fontana B.: Size and structure of the bird genome–II. Repetitive DNA and sequence organization. Comp. Biochem. Physiol. Pt. B 87: 975–979 (1987)

    CAS  Google Scholar 

  460. Viel A. et al.: Structural and functional properties of thesaurin a (42Sp50), the major protein of the 42-S particles present in Xenopus laevis previtellogenic oocytes. J. Biol. Chem. 266: 10392–399 (1991)

    PubMed  CAS  Google Scholar 

  461. Volloch V., Schweitzer B. and Rits S.: Uncoupling of the synthesis of edited and unedited COIII RNA in Trypanosoma brucei. Nature 343: 482–484 (1990)

    PubMed  CAS  Google Scholar 

  462. Vonheijne G.: Computer analysis of DNA and protein sequences (Review). Eur. J. Biochem. 199: 253–256 (1991)

    CAS  Google Scholar 

  463. Vossbrinck C. R. et al.: Ribosomal RNA sequence suggests Microsporidia are extremely ancient eukaryotes. Nature 326: 411–414 (1987)

    PubMed  CAS  Google Scholar 

  464. Voytas D. F and Ausubel F. M.: A copia-like transposable element family in Arabidopsis thaliana. Nature 336: 242–244 (1988)

    PubMed  CAS  Google Scholar 

  465. Wada K. et al.: Codon usage tabulated from the Gen-Bank genetic sequence data. Nucleic Acids Res. 19 (Suppl.): 1981–86 (1991)

    PubMed  CAS  Google Scholar 

  466. Walldorf U., Fleig R. and Gehring W. J.; Comparison of homeobox-containing genes of the honeybee and Drosophila. Proc. Nat. Acad. Sci. USA 86: 9971–75 (1989)

    PubMed  CAS  Google Scholar 

  467. Walsh J. B.: How many processed pseudogenes are accumulated in a gene family? Genetics 110: 345–364 (1985)

    PubMed  CAS  Google Scholar 

  468. Wang B. et al.: Overlapping transcriptional units of the same strand within the murine ß-glucuronidase gene complex. J. Biol. Chem. 263: 15841–44 (1988)

    PubMed  CAS  Google Scholar 

  469. Wang J. C.: DNA topoisomerases–Why so many? (Minireview). J. Biol. Chem. 266: 6659–62 (1991)

    PubMed  CAS  Google Scholar 

  470. Wang S. W. et al.: Inverted duplication of histone genes in chicken and disposition of regulatory sequences. Nucleic Acids Res. 13: 1369–87 (1985)

    PubMed  CAS  Google Scholar 

  471. Watson J. D.: The human genome project: Past, present, and future. Science 248: 44–49 (1990)

    PubMed  CAS  Google Scholar 

  472. Wedeen C. J. et al.: Evidence for a new family of evolutionary conserved homeobox genes. Nucleic Acids Res. 18: 1908 (1990)

    PubMed  CAS  Google Scholar 

  473. Weiner A. M., Deininger P. L. and Efstradiadis A.: Nonviral retroposons. Annual Rev. Biochem. 55: 631–661 (1986)

    CAS  Google Scholar 

  474. Wells D., Bains W. and Kedes L.: Codon usage in histone gene families of higher eukaryotes reflects functional rather than phylogenetic relationships. J. mol. Evol. 23: 224–241 (1986)

    PubMed  CAS  Google Scholar 

  475. Wemette C. M., Conway M. C. and Kaguni L. S.: Mitochondrial DNA polymerase from Drosophila melanogaster embryo: Kinetics, processivity, and fidelity of DNA polymerization. Biochemistry 27: 6046–54 (1988)

    Google Scholar 

  476. Wettenhall R. E. H., Nick H. P. and Lithgow T.: Primary structure of mammalian ribosomal protein S6. Biochemistry 27: 170–177 (1988)

    PubMed  CAS  Google Scholar 

  477. White E. M. and Gorovsky M. A.: Localization and expression of mRNA for a macro-nuclear-specific histone H2A variant (hvl) during the cell cycle and conjugation in Tetrahymena thermophila. Mol. cell. Biol. 8: 4780–86 (1988)

    CAS  Google Scholar 

  478. Wichman H. A., Potter S. S. and Pine D. S.: Mys, a family of mammalian transposable elements isolated by phylogenetic screening. Nature 317: 77–81 (1985)

    PubMed  CAS  Google Scholar 

  479. Willard C., Nguyen H. T. and Schmid C. W: Existence of at least three distinct alu subfamilies. J. mol. Evol. 26: 180–186 (1987)

    PubMed  CAS  Google Scholar 

  480. Williams T. and Fried M.: A mouse locus at which transcription from both DNA strands produces mRNAs complementary at their 3’ ends. Nature 322: 275–279 (1986)

    PubMed  CAS  Google Scholar 

  481. Wilson S., Abbots J. and Widen S.: Progress toward molecular biology of DNA polymerase ß. Biochim. biophys. Acta 949: 149–157 (1988)

    CAS  Google Scholar 

  482. Winkfein R. J. et al.: Histone H4 and H2B genes in rainbow trout (Salmo gairdneri). J. mol. Evol. 22: 1–19 (1985)

    PubMed  CAS  Google Scholar 

  483. Witney F. R. and Furano A. V.: Highly repeated DNA families in the rat. J. biol. Chem. 259: 10481–92 (1984)

    PubMed  CAS  Google Scholar 

  484. Wolstenholme D. R. and Clary D. O.: Sequence evolution of Drosophila mitochondrial DNA. Genetics 109: 725–744 (1985)

    PubMed  CAS  Google Scholar 

  485. Wolstenholme D. R. et al.: Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc. Nat. Acad. Sci. USA 84: 1324–28 (1987)

    PubMed  CAS  Google Scholar 

  486. Wright J. A. et al.: DNA amplification is rare in normal human cells. Proc. Nat. Acad. Sci. USA 87: 1791–95 (1990)

    PubMed  CAS  Google Scholar 

  487. Wu M. et al.: An intervening sequence in an unusual histone H1 gene of Tetrahymena thermophila. Proc. Nat. Acad. Sci. USA 83: 8674–78 (1986)

    PubMed  CAS  Google Scholar 

  488. Wu R. S. et al.: Histones and their modifications. CRC Crit. Rev. Biochem. 20: 201–264 (1986)

    CAS  Google Scholar 

  489. Wuilmart C. and Wyns L.: An evolutionary scheme for the histones as derived from a study of internal repetitions and homologies among the different classes. J. theor. Biol. 65: 231–252 (1977)

    PubMed  CAS  Google Scholar 

  490. Wyckoff E. et al.: Structure of the Drosophila DNA topoisomerase II gene. Nucleotide sequence and homology among topoisomerases II. J. mol. Biol. 205: 1–13 (1989)

    PubMed  CAS  Google Scholar 

  491. Xiong Y. and Eickbush T. H.: Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol. Biol. Evol. 5: 675–690 (1988)

    PubMed  CAS  Google Scholar 

  492. Yager L. N., Kaumeyer J. F. and Weinberg E. S.: Evolving sea urchin histone genes — Nucleotide polymorphisms in the H4 gene and spacers of Strongylocentrotus purpuratus. J. mol. Evol. 20: 215–226 (1984)

    PubMed  CAS  Google Scholar 

  493. Yioshioka K. et al.: Virus-like particle formation of Drosophila copia through autocatalytic processing. Embo J. 9: 535–541 (1990)

    Google Scholar 

  494. Zakian V. A.: Structure and function of telomeres. Annual Rev. Genet. 23: 579–604 (1989)

    CAS  Google Scholar 

  495. Zalenskaya I. A., Zalenskaya E. O. and Zalensky A. O.: Basic chromosomal proteins of marine invertebrates — II. Starfish and Holothuria. Comp. Biochem. Physiol. Pt. B 65: 375–378 (1980)

    Google Scholar 

  496. Zwierzynski T. A., Widmer G. and Buck G. A.: In vitro 3’ end processing and poly (A) tailing of RNA in Trypanosoma cruzi. Nucleic Acids Res. 17: 4647–60 (1989)

    PubMed  CAS  Google Scholar 

  497. Sequences Supplement. Nucleic Acids Res. 18: 2215–87 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Urich, K. (1994). Nucleic Acids and Nuclear Proteins. In: Comparative Animal Biochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06303-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06303-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08181-1

  • Online ISBN: 978-3-662-06303-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics