Skip to main content

Modeling sequential responses of plant cells to freezing and thawing

  • Chapter
Cold-Adapted Organisms

Abstract

The geographic distribution of many perennial and biennial temperate plant species is determined largely by the minimum temperature encountered during the winter and the ability of the plants to survive winter temperatures at which the bulk of plant water will freeze.1 Although many temperate plants achieve winter survival by avoiding ice crystallization, most species that overwinter in a vegetative state are tolerant to the growth of ice crystals in their tissues.2 Plants respond to low temperature and ice formation through molecular interaction3 and thermodynamic and kinetic processes.4,5 Freezing injury is influenced by the rate of freezing, depth of freezing, solute composition, rate of thawing1 and degree and duration of dehydration.2 Plants are complex organisms with many internal microscopic structures and it is not yet known how the growth of ice in plant tissues results in injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levitt J. Responses of Plants to Environmental Stresses, vol I. Chilling, Freezing and High Temperature Stresses. New York: Academic Press, 1980.

    Google Scholar 

  2. Olefin CR, Smith MN. Protective systems that have evolved in plants. In: Olefin CR, Smith M, eds. Analysis and Improvement of Plant Cold Hardiness. Boca Raton: CRC Press, Inc, 1981: 61 - 87.

    Google Scholar 

  3. Crowe JH, Crowe LM, Mouradian R. Stabilization of biological membranes at low water activities. Cryobiology 1983; 20: 346 - 356.

    Article  CAS  Google Scholar 

  4. Wolfe J, Steponkus PL. Mechanical properties of the plasma membrane of isolated plant protoplasts. Plant Physiol 1983; 71: 276 - 285.

    Article  CAS  Google Scholar 

  5. Olefin CR, Smith MN. Analysis of midwinter freezing stress. In: Olein CR, Smith M, eds. Analysis and Improvement of Plant Cold Hardiness. Boca Raton: CRC Press, Inc, 1981: 3559.

    Google Scholar 

  6. Steponkus PL. Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 1984; 35: 543 - 584.

    Article  CAS  Google Scholar 

  7. Reaney MJT. The measurement of physiological parameters of cell suspension cultures: relative water content, cell osmotic potential, non-osmotic volume, turgor and cell wall modulus of elasticity. PhD Thesis. Saskatoon: University of Saskatchewan 1989: 135 - 162.

    Google Scholar 

  8. Tao D, Li PH, Carter JV. Role of cell wall in freezing tolerance of cultured potato cells and their protoplasts. Physiol Plant 1983; 58: 527 - 532.

    Article  Google Scholar 

  9. Murai M, Yoshida S. Evidence for the cell wall involvement in temporal changes in freezing tolerance of jerusalem artichoke (Helianthus tuberosus L.). Plant Cell Physiol 1998; 39: 97105.

    Google Scholar 

  10. Murai M, Yoshida S. Vacuolar membrane lesions induced by a freeze-thaw cycle in protoplasts isolated from deacclimated tubers of jerusalem artichoke (Helianthus tuberosus L.). Plant Cell Physiol 1998; 39: 87 - 96.

    Article  CAS  Google Scholar 

  11. Fletcher NH. The Chemical Physics of Ice. Cambridge: Cambridge University Press, 1970.

    Book  Google Scholar 

  12. Miller RD, Baker JH, Kolaian JH. Particle size, overburden pressure, pore water pressure and freezing temperature of ice lenses in soil. In: Transactions of the 7th Int Congress of Soil Science, vol. 1. Madison, Wisconsin, 1960: 122 - 129.

    Google Scholar 

  13. Meryman HT. Modified model for the mechanism of freezing injury in erythrocytes. Nature 1968; 218: 333 - 336.

    Article  CAS  Google Scholar 

  14. Asahina E. The freezing process of plant cells. Contributions from The Institute of Low Temperature Science, Hokkaido University, Series B 1956, 10: 83 - 126.

    Google Scholar 

  15. Siminovitch D, Scarth GW. A study of the mechanism of frost injury to plants. Can J Bot 1983, 16: 467 - 480.

    Google Scholar 

  16. Iljin WS. Über den Kältetod der Pflanzen and seine Ursachen. Protoplasma 1933, 20: 105124.

    Google Scholar 

  17. Livingston DP, Henson CA. Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening. Plant Physiol 1998; 116: 403 - 408.

    Article  CAS  Google Scholar 

  18. Steponkus PL, Uemura M, Webb MS. A contrast of the cryostability of the plasma membrane of winter rye and spring oat. In: Steponkus PL, ed. Advances in Low Temperature Biology, vol 2. London: JAI Press Ltd, 1993: 211 - 312.

    Google Scholar 

  19. Uemura M, Joseph RA, Steponkus PL. Cold acclimation of Arabidopsis thaliana. Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 1995, 109: 15 - 30.

    CAS  Google Scholar 

  20. Trunova TL. Light and temperature systems in the hardening of winter wheat and the significance of oligosaccharides for frost resistance. Fiziol Rast 1965, 12: 70 - 77.

    Google Scholar 

  21. Olefin CR. An adaptive response of rye to freezing. Crop Sci 1984; 24: 51 - 54.

    Article  Google Scholar 

  22. Livingston DP III. The second phase of freezing tolerance and fructan isomer change in winter cereal crowns. Crop Sci 1996; 36: 1568 - 1573.

    Article  Google Scholar 

  23. Siminovitch D. Common and disparate elements in the process of adaptation of herbaceous and woody plants to freezing - A perspective. Cryobiology 1981; 18: 166 - 185.

    Article  CAS  Google Scholar 

  24. Canny MJ. Apoplastic water and solute movement: new rules for an old space. Annu Rev Plant Physiol Plant Mol Biol 1995; 46: 215 - 36.

    Article  CAS  Google Scholar 

  25. Michael W, Schultz A, Meshcheryakov AB, Ehwald R. Apoplasmic and protoplasmic water transport through the parenchyma of the potato storage organ. Plant Physiol 1997; 115: 1089 - 1099.

    CAS  Google Scholar 

  26. Wisniewski IR, Lindow SE, Ashworth EN. Observations of ice nucleation and propagation in plants using infrared video thermography. Plant Physiol 1997; 113: 327 - 334.

    CAS  Google Scholar 

  27. Brush RA, Griffith M, Mlynarz A. Characterization and quantification of intrinsic ice nucleators in winter rye (Secale cereale L.) leaves. Plant Physiol 1994; 104: 725 - 735.

    CAS  Google Scholar 

  28. Antikainen M, Griffith M, Zhang J, Hon W-C, Yang DSC, Pihakaski-Maunsbach K. Immunolocalization of antifreeze proteins in winter rye leaves, crowns, and roots by tissue printing. Plant Physiol 1996; 110: 845 - 857.

    CAS  Google Scholar 

  29. Fisher RA. Resistance to water loss in the mesophyll of leek (Allium porrum L.). J Exper Bot 1968; 19: 135 - 145.

    Article  Google Scholar 

  30. Jarvis PG, Slayter RO. The role of the mesophyll cell wall in leaf transpiration. Planta 1970; 90: 303 - 322.

    Article  Google Scholar 

  31. Olefin CR, Chao S. Liquid water content of cell walls in frozen tissues evaluated by electrophoresis of indicators. Crop Sci 1973; 13: 674 - 676.

    Article  Google Scholar 

  32. Williams PJ, Burt TP. Measurement of hydraulic conductivity of frozen soils. Can Geotech J 1974; 11: 647 - 650.

    Article  Google Scholar 

  33. Anderson DM, Hoekstra P. Migration of interlamellar water during freezing and thawing of Wyoming bentonite. Soil Sci Soc Am Proc 1965; 29: 498 - 504.

    Article  Google Scholar 

  34. Stout DG. Plant plasma membrane water permeability and slow freezing injury. Plant Cell Environ 1979; 2: 273 - 275.

    Article  Google Scholar 

  35. Carpita N, Sabularse D, Montezinos D, Delmer DP. Determination of pore size of cell walls of living plant cells. Science 1979; 205: 1144 - 1147.

    Article  CAS  Google Scholar 

  36. Gusta LV, Rajashekar C, Chen PM, Burke M. Freeze induced membrane permeability changes in winter rye. Cryoletters 1982; 3: 27 - 34.

    Google Scholar 

  37. Tyree MT, Richter H. Alternate methods of analyzing water potential isotherms: some cautions and clarifications. II. Curvilinearity in water potential isotherms. Can J Bot 1982; 60: 911 - 916.

    Article  Google Scholar 

  38. Zimmerman U. Electric field mediated fusion and electrical phenomena. Biochim Biophys Acta 1982; 694: 227 - 277.

    Article  Google Scholar 

  39. Pearce RS. Extracellular ice and cell shape in frost-stressed cereal leaves: a low-temperature scanning-electron-microscopy study. Planta 1988; 175: 313 - 324.

    Article  Google Scholar 

  40. Mcgrath JJ. Thermodynamic modeling of membrane damage. In: Morris GJ, Clark A, eds. Effects of Low Temperature on Biological Membranes. London: Academic Press, 1981: 3577.

    Google Scholar 

  41. Hoekstra P. Conductance of frozen bentonite suspensions. Soil Sci Soc Am Proc 1966; 29: 519 - 522.

    Article  Google Scholar 

  42. Penner E. The mechanism of frost heaving in soils. Highway Research Bd Bull 225. National Research Council Washington Publ 685. Washington: Nat Acad Sci 1959: 1 - 22.

    Google Scholar 

  43. Gordon-Kamm WJ, Steponkus PL. The behavior of the plasma membrane following osmotic contraction of isolated protoplasts: implications in freezing injury. Protoplasma 1984; 123: 83 - 94.

    Article  Google Scholar 

  44. Tanchak MA, Griffing LR, Mersey BG, Fowke LC. Endocytosis of canonized ferritin by coated vesicles of soybean protoplasts. Planta 1984; 162: 481 - 486.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. J. T. Reaney or L. V. Gusta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reaney, M.J.T., Gusta, L.V. (1999). Modeling sequential responses of plant cells to freezing and thawing. In: Margesin, R., Schinner, F. (eds) Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06285-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06285-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08445-4

  • Online ISBN: 978-3-662-06285-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics