Skip to main content

Gene expression and cold hardiness in animals

  • Chapter

Abstract

The earth is a cold place. Many polar and alpine environments are perpetually cold and the deep ocean is consistently only 2–4°C. Huge parts of the planet are also seasonally cold and frequently present terrestrial organisms with the challenge of sustaining life at subzero temperatures that are well below the freezing point of body fluids. Nonetheless, life abounds in all of these environments, and organisms have evolved marvelous adaptations to allow them to deal with cold and/or freezing. For poikilothermic organisms seeking to survive when ambient air temperature drops below 0°C, the choices are basically three:

  1. 1.

    use behavioral means to leave the cold environment (e.g. migration) or position themselves in insulated microenvironments where temperature remains above 0°C (e.g. hibernation underwater or deep underground),

  2. 2.

    endure subzero exposures by invoking metabolic adaptations that maintain body fluids in a liquid state (called freeze avoidance), or

  3. 3.

    endure the freezing of extracellular body fluids (called freeze tolerance).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Storey KB, Storey JM. Freeze tolerance in animals. Physiol Rev 1988; 68: 27–84.

    CAS  Google Scholar 

  2. Storey KB, Storey JM. Natural freeze tolerance in ectothermic vertebrates. Ann Rev Physiol 1992; 54: 619–637.

    Article  CAS  Google Scholar 

  3. Storey KB, Storey JM. Natural freezing survival in animals. Ann Rev Ecol Syst 1996; 27: 365–386.

    Article  Google Scholar 

  4. Zachariassen KE. Physiology of cold tolerance in insects. Physiol Rev 1985; 65: 799–832.

    CAS  Google Scholar 

  5. Duman JG, Wu DW, Xu L, Tursman D, Olsen TM. Adaptations of insects to subzero ternperatures. Quart Rev Biol 66: 387–410.

    Google Scholar 

  6. Layne JR, Lee RE. Adaptations of frogs to survive freezing. Climate Res 1995; 5: 53–59.

    Article  Google Scholar 

  7. Lee RE, Costanzo JP, Mugnano JA. Regulation of supercooling and ice nucleation in insects. Eur J Entomol 1996; 93: 405–418.

    Google Scholar 

  8. Cheng CC, deVries AL. The role of antifreeze glycopeptides and peptides in the freezing avoidance of cold-water fish. In: di Prisco G, ed. Life Under Extreme Conditions. Berlin: Springer, 1991: 1–14.

    Chapter  Google Scholar 

  9. Davies PL, Hew CL, Fletcher GL. Fish antifreeze proteins: physiology and evolutionary biology. Can J Zool 1988; 66: 2611–2617.

    Article  CAS  Google Scholar 

  10. Davies PL, Hew CL. Biochemistry of fish antifreeze proteins. FASEB J 1990; 4: 2460–2468.

    CAS  Google Scholar 

  11. Storey KB, Storey JM. Freeze tolerance and freeze avoidance in ectotherms. In: Wang LCH, ed. Advances in Comparative and Environmental Physiology, vol 4. Berlin: Springer, 1989: 52–82.

    Google Scholar 

  12. Aarset AV. Freezing tolerance in intertidal invertebrates (a review). Comp Biochem Physiol A 1982; 73: 571–580.

    Article  Google Scholar 

  13. Wharton DA. Cold tolerance strategies of nematodes. Biol Rev 1995; 70: 161–185.

    Article  CAS  Google Scholar 

  14. Horwath KL, Duman JG. Photoperiodic and thermal regulation of antifreeze protein levels in the beetle Dendroides canadensis. J Insect Physiol 1983; 29: 907–917.

    Article  CAS  Google Scholar 

  15. Joanisse DR, Storey KB. Enzyme activity profiles in an overwintering population of freeze-tolerant larvae of the gall fly, Eurosta solidaginis. J Comp Physiol 1994; 164: 247–255.

    CAS  Google Scholar 

  16. Joanisse DR, Storey KB. Enzyme activity profiles in an overwintering population of freeze-avoiding gall moth larvae, Epiblema scudderiana. Can J Zool 1994; 72: 1079–1086.

    Article  CAS  Google Scholar 

  17. Storey KB, Storey JM. Biochemical adaptations for winter survival in insects. In: Steponkus PL. Advances in Low Temperature Biology, vol 1. Greenwich CT: JAI Press, 1992: 101–140.

    Google Scholar 

  18. Neven LG, Duman JG, Beals JM, Castellino FJ. Overwintering adaptations of the stag beetle, Ceruchus piceus: removal of ice nucleators in the winter to promote supercooling. J Comp Physiol B 1986; 156: 707–716.

    Article  CAS  Google Scholar 

  19. Yaginuma T, Kobayashi M, Yamashita O. Distinct effects of different low temperatures on the induction of NAD-sorbitol dehydrogenase activity in diapause eggs of the silkworm, Bornbyx mori. J Comp Physiol B1990; 160: 277–285.

    Google Scholar 

  20. Gong Z, Ewart KV, Hu Z, Fletcher GL, Hew CL. Skin antifreeze protein genes of the winter flounder, Pleuronectes americanus, encode distinct and active polypeptides without the secretory signal and prosequences. J Biol Chem 1996; 271: 4106–4112.

    Article  CAS  Google Scholar 

  21. Ewart KV, Rubinsky B, Fletcher GL. Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Biochem Biophys Res Commun 1992; 185; 335–340.

    Article  CAS  Google Scholar 

  22. Ng NFL, Hew CL. Structure of an antifreeze polypeptide from the sea raven. Disulfide bonds and similarity to lectin-binding proteins. J Biol Chem 1992; 267: 16069–16075.

    CAS  Google Scholar 

  23. Ewart KV, Yang DSC, Ananthanarayanan VS, Fletcher GL, Hew CL. Cat+-dependent antifreeze proteins: modulation of conformation and activity by divalent metal ions. J Biol Chem 1996; 271: 16627–16632.

    Article  CAS  Google Scholar 

  24. Chen L, deVries AL, Cheng CHC. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci 1997; 94: 3811–3816.

    Article  CAS  Google Scholar 

  25. Chen L, deVries AL, Cheng CHC. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci 1997; 94: 3817–3822.

    Article  CAS  Google Scholar 

  26. Somero GN. Proteins and temperature. Annu Rev Physiol 1995; 57: 43–68.

    Article  CAS  Google Scholar 

  27. Crawford DL, Powers DA. Evolutionary adaptation to different thermal environments via transcriptional regulation. Mol Biol Evol 1992; 9: 806–813.

    CAS  Google Scholar 

  28. Powers DA, Smith M, Gonzalez-Villasenor I, DiMichelle L, Crawford D, et al. A multidisciplinary approach to the selection/neutralist controversy using the model teleost, Fundulus heteroclitus. In: Futuyma D, Antonovics J, eds. Oxford Surveys in Evolutionary Biology, vol 9. Oxford: Oxford Univ Press, 1993: 43–107.

    Google Scholar 

  29. Goldspink G, Turay L, Hansen E, Ennion S, Gerlach S. Switches in fish myosin genes induced by environmental temperature in muscle of the carp. Symp Soc Exp Biol 1992; 46: 139–149.

    CAS  Google Scholar 

  30. Hwang GC, Watabe S, Hashimoto K. Changes in carp myosin ATPase induced by temperature acclimation. J Comp Physiol B 1990; 160: 233–239.

    Article  CAS  Google Scholar 

  31. Baldwin J, Hochachka PW. Functional significance of isoenzymes in thermal acclimatization: acetylcholinesterases from trout brain. Biochem J 1970; 116: 883–887.

    CAS  Google Scholar 

  32. Tiku PE, Gracey AY, Macartney AI, Beynon RJ, Cossins AR. Cold-induced expression of delta 9-desaturase in carp by transcriptional and posttranslational mechanisms. Science 1996; 271: 815–818.

    Article  CAS  Google Scholar 

  33. Danyluk J, Rassart E, Sarhan F. Gene expression during cold and heat shock in wheat. Biochem Cell Biol 1991; 69: 383–391.

    Article  CAS  Google Scholar 

  34. Schlesinger MJ, Ashburner M, Tissieres A. Heat Shock from Bacteria to Man. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1982.

    Google Scholar 

  35. Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 1994; 27: 437–496.

    Article  Google Scholar 

  36. Jones PG, Inouye M. The cold-shock response–a hot topic. Mol Microbiol 1994; 11: 811–818

    Article  CAS  Google Scholar 

  37. Ellis RJ, van der Vies SM. Molecular chaperones. Annu Rev Biochem 1991; 60: 321–347.

    Article  CAS  Google Scholar 

  38. Hochachka PW, Somero GN. Biochemical Adaptation. Princeton: Princeton Univ Press, 1984.

    Google Scholar 

  39. Franks F, Hatley RHM. Stability of proteins at subzero temperatures: thermodynamics and some ecological consequences. Pure Appl Chem 1991; 63: 1367–1380.

    Article  CAS  Google Scholar 

  40. Komatsu Y, Kaul SC, Iwahashi H, Obuchi K. Do heat shock proteins provide protection against freezing? FEMS Microbiol Lett 1990; 72: 159–162.

    Article  CAS  Google Scholar 

  41. Ray MK, Sitaramamma T, Ghandhi S, Shivaji S. Occurrence and expression of cspA, a cold shock gene, in Antarctic psychrotrophic bacteria. FEMS Microbiol Lett 1994; 116: 55–60.

    Article  CAS  Google Scholar 

  42. Munoz-Dorado J, Kondo K, Inouye M, Sone H. Identification of cis-and trans-acting elements involved in the expression of cold shock-inducible TIPI gene of yeast Saccharomyces cerevisiae. Nucleic Acids Res 1994; 22: 560–568.

    Article  CAS  Google Scholar 

  43. Yocum GD, Joplin KH, Denlinger DL. Expression of heat shock proteins in response to high and low temperature extremes in diapausing pharate larvae of the gypsy moth, Lymantria dispar. Arch Insect Biochem Physiol 1992; 18: 239–249.

    Article  Google Scholar 

  44. Nunamaker RA, Dean VC, Murphy KE, Lockwood JA. Stress proteins elicited by cold shock in the biting midge, Culicoides variipennis sonorensis Wirth and Jones. Comp Biochem Physiol 1996; 113B: 73–77.

    Article  Google Scholar 

  45. Joplin KH, Yocum GD, Denlinger DL. Cold shock elicits expression of heat shock proteins in the flesh fly, Sarcophaga crassipalpis. J Insect Physiol 1990; 36: 825–834.

    Article  CAS  Google Scholar 

  46. Petersen NS, Young P, Burton V. Heat shock mRNA accumulation during recovery from cold shock in Drosophila melanogaster. Insect Biochem 1990; 20: 679–684.

    Article  CAS  Google Scholar 

  47. Ketola-Pirie, CA, Atkinson BG. Cold-and heat-shock induction of new gene expression in cultured amphibian cells. Can J Biochem Cell Biol 1983; 61: 462–471.

    Article  CAS  Google Scholar 

  48. Liu, AYC, Bian H, Huang LE, Lee YK. Transient cold shock induces the heat shock response upon recovery at 37°C in human cells. J Biol Chem 1994; 269: 14768–14775.

    CAS  Google Scholar 

  49. Matz JM, Blake MJ, Tatelman HM, Lavoi KP, Holbrook NJ. Characterization and regulation of cold-induced heat shock protein expression in mouse brown adipose tissue. Am J Physiol 1995; 269: R38 - R47.

    CAS  Google Scholar 

  50. Trent JD, Osipiuk J, Pinkau T. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. Strain B12. J Bact 1990; 172: 1478–1484.

    CAS  Google Scholar 

  51. Maresca B, Patriarca E, Goldenberg C, Sacco M. Heat shock and cold adaptation in Antarctic fishes: a molecular approach. Comp Biochem Physiol B 1988; 90: 623–629.

    Google Scholar 

  52. Dietz TJ. Acclimation of the threshold induction temperatures for 70-kDa and 90-kDa heat shock proteins in the fish Gillichthys mirabilis. J Exp Biol 1994; 188: 333–338.

    CAS  Google Scholar 

  53. Graumann P, Marahiel MA. Some like it cold: response of microorganisms to cold shock. Arch Microbiol 1996; 166: 293–300.

    Article  CAS  Google Scholar 

  54. Kandror O, Goldberg AL. Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci USA 1997; 94: 4978–4981.

    Article  CAS  Google Scholar 

  55. Lee RE, Dommel RA, Joplin KH, Denlinger DL. Cryobiology of the freeze-tolerant gall fly Eurosta solidaginis: overwintering energetics and heat shock proteins. Climate Res 1995; 5: 61–67.

    Article  Google Scholar 

  56. Storey KB, Mosser DD, Douglas DN, Grundy JE, Storey JM. Biochemistry below 0°C: nature’s frozen vertebrates. Brazilian J Med Biol Res 1996; 29: 283–307.

    CAS  Google Scholar 

  57. King PA, Rosholt MN, Storey KB. Adaptations of plasma membrane glucose transport facilitate cryoprotectant distribution in freeze tolerant frogs. Am J Physiol 1993; 265: R1036 - R1042.

    CAS  Google Scholar 

  58. King PA, Rosholt MN, Storey KB. Seasonal changes in plasma membrane glucose transport in freeze tolerant wood frogs. Can J Zool 1995; 73: 1–9.

    Article  CAS  Google Scholar 

  59. Mommsen TP, Storey KB. Hormonal effects on glycogen metabolism in isolated hepatocytes of a freeze-tolerant frog. Gen Comp Endocrinol 1992; 87: 44–53.

    Article  CAS  Google Scholar 

  60. Wolanczyk JP, Baust JG, Storey KB. Seasonal ice nucleating activity in the freeze tolerant frog, Rana sylvatica. Cryo Lett 1990; 11: 143–150.

    Google Scholar 

  61. Wolanczyk JP, Storey KB, Baust JG. Nucleating activity in the blood of the freeze tolerant frog, Rana sylvatica. Cryobiology 1990; 27: 328–335.

    Article  CAS  Google Scholar 

  62. Storey KB, Storey JM, Churchill TA. De novo protein biosynthesis responses to water stresses in wood frogs: freeze-thaw and dehydration-rehydration. Cryobiology 1997; 34: 200–213.

    Article  CAS  Google Scholar 

  63. Cherry JH (ed.) Biochemical and Cellular Mechanisms of Stress Tolerance in Plants. Berlin: Springer, 1994.

    Google Scholar 

  64. Baker J, Steel C, Dure L. Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 1988; 11: 277–291.

    Article  CAS  Google Scholar 

  65. Close TJ, Kortt AA, Chandler PM. A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 1989; 13: 95–108.

    Article  CAS  Google Scholar 

  66. Neven LG, Haskell DW, Hofig A, Li QB, Guy CL. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol 1993; 21: 291–305.

    Article  CAS  Google Scholar 

  67. Griffith M, Ala P, Yang DSC, Hon WC, Moffatt BA. Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 1992; 100: 593–596.

    Article  CAS  Google Scholar 

  68. Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow ME Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 1996; 93: 13404–13409.

    Article  CAS  Google Scholar 

  69. Houde M, Daniel C, Lachapelle M, Allard F, Laliberte S, Sarhan F. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 1995; 8: 583–593.

    Article  CAS  Google Scholar 

  70. Cai Q, Storey KB. Freezing-induced genes in wood frog (Rana sylvatica): fibrinogen upregulation by freezing and dehydration. Am J Physiol 1997: 272; R1480 - R1492.

    CAS  Google Scholar 

  71. Cai Q, Greenway SC, Storey KB. Differential regulation of the mitochondrial ADP/ATP translocase gene in wood frogs under freezing stress. Biochim Biophys Acta 1997; 1343: 6978.

    Google Scholar 

  72. Cai Q, Storey KB. Upregulation of a novel gene by freezing exposure in the freeze-tolerant wood frog (Rana sylvatica). Gene 1997; 198: 305–312.

    Article  Google Scholar 

  73. Weissbach L, Grieninger G. Bipartite mRNA for chicken a-fibrinogen potentially encodes an amino acid sequence homologous to 13- and y-fibrinogens. Proc Nati Acad Sci USA 1990; 87: 5198–5202.

    Article  CAS  Google Scholar 

  74. Roberts LR, Holland LJ. Coordinate transcriptional regulation of the three fibrinogen subunit genes by glucocorticoids in cultured primary liver cells from Xenopus laevis. Endocrinology 1993; 132: 2563–2570.

    Article  CAS  Google Scholar 

  75. Huber P, Laurent M, Daimon J. Human (3-fibrinogen gene expression: Upstream sequences involved in its tissue specific expression and its dexamethasone and interleukin 6 stimulation. J Biol Chem 1990; 265: 5695–5701.

    CAS  Google Scholar 

  76. Roberts LR, Nichols LA, Holland LJ. cDNA and amino-acid sequences and organization of the gene encoding the BP subunit of fibrinogen from Xenopus laevis. Gene 1995; 160: 223–228.

    Article  CAS  Google Scholar 

  77. Rubinsky B, Lee CY, Bastacky J, Onik G. The process of freezing and the mechanism of damage during hepatic cryosurgery. Cryobiology 1987; 27: 85–97.

    Article  Google Scholar 

  78. Costanzo JP, Lee RE, Wright MR. Cooling rate influences cryoprotectant distribution and organ dehydration in freezing wood frogs. J Exp Zool 1992; 261: 373–378.

    Article  CAS  Google Scholar 

  79. Brandolin G, Le Saux A, Trezeguet V, Lauquin GJM, Vignais PV. Chemical, immunological, enzymatic, and genetic approaches to studying the arrangement of the peptide chain of the ADP/ATP carrier in the mitochondrial membrane. J Bioenerg Biomemb 1993; 25: 459–472.

    Article  CAS  Google Scholar 

  80. Storey KB, Storey JM. Freeze tolerant frogs: cryoprotectants and tissue metabolism during freeze/thaw cycles. Can J Zool 1986; 64: 49–56.

    Article  CAS  Google Scholar 

  81. Dransfield DT, Aprille JR. The influence of hypoxia and anoxia on distribution of adenine nucleotides in isolated hepatocytes. Arch Biochem Biophys 1994; 313: 156–165.

    Article  CAS  Google Scholar 

  82. Aprille JR. Regulation of the mitochondrial adenine nucleotide pool size in liver: mechanism and metabolic role. FASEB J 1988; 2: 2547–2556.

    CAS  Google Scholar 

  83. Cai Q, Storey KB. Anoxia-induced gene expression in turtle heart: up-regulation of mitochondrial genes for NADH-ubiquinone oxidoreductase subunit 5 and cytochrome C oxidase subunit 1. Eur J Biochem 1996; 241: 83–92.

    Article  CAS  Google Scholar 

  84. Cai Q, Storey KB. A novel RNA species from the turtle mitochondrial genome–induction and regulation of transcription and processing under anoxic and freezing stresses. Genome 1997; 40: 534–543.

    Article  CAS  Google Scholar 

  85. Churchill TA, Storey KB. Dehydration tolerance in wood frogs: a new perspective on the development of amphibian freeze tolerance. Am J Physiol 1993; 265: R1324 - R1332.

    CAS  Google Scholar 

  86. Holden CP, Storey KB. Second messenger and cAMP-dependent protein kinase responses to dehydration and anoxia stresses in frogs. J Comp Physiol B 1997; 167: 305–312.

    Article  CAS  Google Scholar 

  87. Holden CP, Storey KB. Signal transduction, second messenger, and protein kinase responses during freezing exposures in the wood frog. Am J Physiol 1996; 271: R1205 - R1211.

    CAS  Google Scholar 

  88. Rubinsky B, Arav B, Fletcher GL. Hypothermic protection–a fundamental property of “antifreeze” proteins. Biochem Biophys Res Commun 1991; 180: 566–571.

    Article  CAS  Google Scholar 

  89. Lee CY, Rubinsky B, Fletcher GL. Hypothermic preservation of whole mammalian organs with “antifreeze” proteins. Cryo-Lett 1992; 13: 59–66.

    CAS  Google Scholar 

  90. Rubinsky B, Arav A, Hong J-S, Lee CY. Freezing of mammalian livers with glycerol and antifreeze proteins. Biochem Biophys Res Commun 1994; 200: 732–741.

    Article  CAS  Google Scholar 

  91. Rubinsky B, Mattioli M, Arav A, Barboni B, Fletcher GL. Inhibition of Cat+ and K’ currents by “antifreeze” proteins. Am J Physiol 1992; 262: R542 - R545.

    CAS  Google Scholar 

  92. Negulescu PA, Rubinsky B, Fletcher GL, Machen TE. Fish antifreeze proteins block Ca entry into rabbit parietal cells. Am J Physiol 1992; 263: C1310–1313.

    CAS  Google Scholar 

  93. Hochachka PW. Defense strategies against hypoxia and hypothermia. Science 1986; 231: 234241.

    Google Scholar 

  94. Hew CL, Davies PL, Fletcher G. Antifreeze protein gene transfer in Atlantic salmon. Mol Mar Biol Biotechnol 1992; 1: 309–317.

    CAS  Google Scholar 

  95. Wang R, Zhang P, Gong Z, Hew CL. Expression of the antifreeze protein gene in transgenic goldfish (Carassius auratus) and its implication in cold adaptation. Mol Mar Biol Biotechnol 1995; 4: 20–26.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Storey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Storey, K.B., Storey, J.M. (1999). Gene expression and cold hardiness in animals. In: Margesin, R., Schinner, F. (eds) Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06285-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06285-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08445-4

  • Online ISBN: 978-3-662-06285-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics