Skip to main content

Coccolithophores and the biological pump: responses to environmental changes

  • Chapter
Coccolithophores

Summary

Coccolithophores, which are considered to be the most productive calcifying organisms on earth, play an important role in the marine carbon cycle. The formation of calcite skeletons in the surface layer and their subsequent sinking to depth modifies upper-ocean alkalinity and directly affects air/sea CO2 exchange. Recent work indicates that the productivity and distribution of coccolithophores are sensitive to CO2-related changes in environmental conditions, both directly through acidification of surface seawater and indirectly through increasing upper-ocean thermal stratification. To assess possible responses of this group we examine the physiology and ecology of coccolithophores with regard to expected environmental changes. Potential feedbacks to atmospheric CO2 increase, as could arise from changes in photosynthesis and calcification as well as from a shift in the dominance of coccolithophores, may be crucial when trying to forecast future climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anning T, Nimer N, Merret MJ, Brownlee C (1996) Costs and benefits of calcification in coccolithophorids. J Marine Sys 9: 45–56

    Article  Google Scholar 

  • Antia AN, Koeve W, Fischer G, Blanz T, Schulz-Bull D, Schölten J, Neuer S, Kremling K, Kuss J, Peinert R, Hebbeln D, Bathmann U, Conte M, Fehner U, Zeitzschel B (2001) Basin-wide particulate carbon flux in the Atlantic Ocean: regional export patterns and potential for atmospheric C02 sequestration. Global Biogeochem Cy 15 (4): 845–862

    Article  Google Scholar 

  • Archer D, Maier-Reimer E (1994) The effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentrations. Nature 367: 260–263

    Article  Google Scholar 

  • Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG (2002) A new, mechanistic model for organic carbon fluxes in the ocean: Based on the quantitative association of POC with ballast minerals. Deep-Sea Res 49 (2): 219–236

    Google Scholar 

  • Badger MR, Palmqvist K, Yu J-W (1994) Measurement of CO2 and HCO3 fluxes in cyanobacteria and microalgae during steady-state photosynthesis. Physiol Plantarum 90: 529–536

    Article  Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast- based CO2-concentrating mechanisms in algae. Can J Bot 76: 1052–1071

    Google Scholar 

  • Balch WM, Holligan PM, Ackleson SG, Voss KJ (1991) Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnol Oceanogr 36 (4): 629–643

    Article  Google Scholar 

  • Balch WM, Holligan PM, Kilpatrick KA (1992) Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi. Cont Shelf Res 12 (12): 1353–1374

    Article  Google Scholar 

  • Balch WM, Fritz J, Fernandez E (1996) Decoupling of calcification and photosynthesis in the coccolithophore Emiliania huxleyi under steady-state light-limited growth. Marine Ecol-Prog Ser 142: 87–97

    Article  Google Scholar 

  • Berner RA (1990) Atmospheric carbon dioxide levels over phanerozoic time. Science 249: 1382–1386

    Article  Google Scholar 

  • Berry L, Taylor AR, Lucken U, Ryan KP, Brownlee C (2002) Calcification and inorganic carbon acquisition in coccolithophores. Aust J Plant Physiol 29: 289–299

    Google Scholar 

  • Bopp L, Monfray P, Aumont O, Dufresne J-L, Le Treut H, Madec G, Terray L, Orr JC (2001) Potential impact of climate change on marine export production. Global Bio geochem Cy 15:81–99

    Article  Google Scholar 

  • Boyd PW, Doney SC (2002) Modelling regional responses by marine pelagic ecosystems to global change. Geophys Res Lett 29 (16): 10.1029/2001GL014130

    Article  Google Scholar 

  • Brand LE (1991) Minimum iron requirements of marine phytoplankton and the implica-tions for the biogeochemical control of reproduction. Limnol Oceanogr 36: 1756–1771

    Article  Google Scholar 

  • Brownlee C, Nimer N, Dong LF, Merrett M J (1994) Cellular regulation during calcification in Emiliania huxleyi. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 133–148

    Google Scholar 

  • Buitenhuis E, Van Bleijswijk J, Bakker D, Veldhuis M (1996) Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi (Prymnesiophyceae) in the North Sea. Marine Ecol-Prog Ser 143: 271–282

    Article  Google Scholar 

  • Buitenhuis ET, Baar HJW, Veldhuis MJW (1999) Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species. J Phycol 35 (5): 949–959

    Article  Google Scholar 

  • Burkhardt S, Amoroso G, Riebesell U, Sültemeyer D (2001) CO2 and HCO3 - uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr 46 (6): 1378–1391

    Article  Google Scholar 

  • Clark DR, Flynn KJ (2000) The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton. P Roy Soc Lond B 267: 953–959

    Article  Google Scholar 

  • Egge JK, Aksnes DL (1992) Silicate as regulating nutrient in phytoplankton competition. Marine Ecol-Prog Ser 83: 281–289

    Article  Google Scholar 

  • Fernandez E, Balch WM, Maranon E, Holligan PM (1994) High rates of lipid biosynthesis in cultured, mesocosm and coastal populations of the coccolithophore Emiliania huxleyi. Marine Ecol-Prog Ser 114: 13–22

    Article  Google Scholar 

  • Frankignoulle M, Canon C, Gattuso J-P (1994) Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO2. Limnol Oceanogr 39 (2): 458–462

    Article  Google Scholar 

  • Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet Change 18: 37–46.

    Article  Google Scholar 

  • Geider JG, MacIntyre HL (2001) Physiology and biochemistry of photosynthesis and algal carbon acquisition. In: Williams PJleB, Thomas DN, Reynolds CS (eds) Phytoplankton Productivity — Carbon Assimilation in Marine and Freshwater Ecosystems. Blackwell Science, pp 44–77

    Google Scholar 

  • Grime JP (1979) Plant Strategies and Vegetation Processes. John Wiley, New York

    Google Scholar 

  • Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection, Nature 421: 841–843

    Article  Google Scholar 

  • Haidar AT, Thierstein HR (2001) Coccolithophore dynamics off Bermuda (N. Atlantic). Deep-Sea Res II 40: 1925–1956

    Google Scholar 

  • Harris RP (1994) Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Mar Biol 119: 431–439

    Article  Google Scholar 

  • Harrison KG (2000) Role of increased marine silica input on paleo-pCO2 levels. Paleoeanography 15 (3): 292–298

    Article  Google Scholar 

  • Henrich R (1989) Diagenetic environments of authigenic carbonates and opal-ct crystallization in Lower Miocene to Upper Oligocene Deposits of the Norwegian Sea (ODP Site 643, Leg 104). In: Eldholm O, Thiede J, Taylor E (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 104: 233–248

    Google Scholar 

  • Holligan PM, Fernandez E, Aiken J, Balch WM, Boyd P, Burkill PH, Finch M, Groom SB, Malin G, Muller K, Purdie DA, Robinson C, Trees CC, Turner SM, Van der Wal P (1993) A biogeochemical study of the coccolithophore Emiliania huxleyi, in the North Atlantic. Global Biogeochem Cy 7: 879–900

    Article  Google Scholar 

  • Horita J, Zimmermann H, Holland HD (2002) Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates. Geochim Cosmochim Ac 66 (21): 3733–3756

    Article  Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (1995) Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel of Climate Change, Cambridge Univ. Press, Cambridge, UK and New York, USA

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel of Climate Change, Cambridge Univ. Press, Cambridge, UK and New York, USA

    Google Scholar 

  • Ietswaart T, Schneider PJ, Prins RA (1994) Utilisation of organic nitrogen sources by two phytoplankton species and a bacterial isolate in pure and mixed culture. Appl Environ Microb 60: 1554–1560

    Google Scholar 

  • Iglesias-Rodriguez MD, Brown CW, Scott CD, Kleypas J, Kolber D, Kolber Z, Hayes PK, Falkowski PG (2002) Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochem Cy 16 (4): 10.1029/2001GB001454

    Article  Google Scholar 

  • Klaas C, Archer DE (2002) Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochem Cy 16 (4) 1116,doi:10.1029/2001GB001765

    Article  Google Scholar 

  • Linschooten C, Van Bleijswijk JDL, Van Emburg PR, De Vrind JPM, Kempers ES, Westbroek P, de Vrind-de Jong EW (1991) Role of the light-dark cycle and medium composition on the production of coccoliths by Emiliania huxleyi (Haptophyceae). J Phycol 27: 82–86

    Article  Google Scholar 

  • Lovelock JE (1979) Gaia. A new look at life on earth. Oxford University Press, Oxford

    Google Scholar 

  • McIntyre A, Ruddiman WF, Jantzen R (1972) Southward penetration of the North Atlantic Polar Front: faunal and floral evidence of large-scale surface water mass movements over the last 225,000 years. Deep-Sea Res 19: 61–77

    Google Scholar 

  • Morel FMM, Reinfelder JR, Roberts SB, Chamberlain CP, Lee JG, Yee D (1994) Zinc and carbon co-limitation of marine phytoplankton. Nature 369: 740–742

    Article  Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of Sedimentary Carbonates. Elsevier, Amsterdam

    Google Scholar 

  • Muggli DL, Harrison PJ (1996) Effects of nitrogen source on the physiology and metal nutrition of Emiliania huxleyi grown under different iron and light conditions. Marine Ecol-Prog Ser 130: 255–267

    Article  Google Scholar 

  • Nanninga HJ, Tyrrell T (1996) Importance of light for the formation of algal blooms by Emiliania huxleyi. Marine Ecol-Prog Ser 136: 195–203

    Article  Google Scholar 

  • Nejstgaard JC, Gismervik I, Solberg PT (1997) Feeding and Reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Marine Ecol-Prog Ser 147: 197–217

    Article  Google Scholar 

  • Nielsen MV (1995) Photosynthetic characteristics of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) exposed to elevated concentrations of dissolved inorganic carbon. J Phycol 31: 715–719

    Article  Google Scholar 

  • Nielsen MV (1997) Growth, dark respiration and photosynthetic parameters of the cocco-lithophorid Emiliania huxleyi (Prymnesiophyceae) acclimated to different daylengths-irradiance combinations. J Phycol 33: 818–822

    Article  Google Scholar 

  • Nimer NA, Merret MJ (1993) Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon. New Phytol 123: 673–677

    Article  Google Scholar 

  • Nimer NA, Merret MJ (1996) The development of a CO2-concentrating mechanism in Emiliania huxleyi. New Phytol 133: 383–389

    Article  Google Scholar 

  • Paasche E (1962) Coccolith formation. Nature 193: 1094–1095

    Article  Google Scholar 

  • Paasche E (1964) A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi. Physiol Plantarum Supplement 3: 1–82

    Google Scholar 

  • Paasche E (1965) The effect of 3-(p-chlorophenyl)-1,1-dimethylurea (CMU) on photosynthesis and light-dependent coccolith formation in Coccolithus huxleyi. Physiol Plantarum 18:138–145

    Article  Google Scholar 

  • Paasche E (1966) Adjustment to light and dark rates of coccolith formation. Physiol Plantarum 19: 271–278

    Article  Google Scholar 

  • Paasche E (1967) Marine plankton algae grown with light-dark cycles. I. Coccolithus huxleyi. Physiol Plantarum 20: 946–956

    Article  Google Scholar 

  • Paasche E (1969) Light-dependent coccolith formation in the two forms of Coccolithus pelagicus. Arch Mikrobiol 67: 199–208

    Article  Google Scholar 

  • Paasche E (1998) Roles of nitrogen and phosphorus in coccolith formation in Emiliania huxleyi (Prymnesiophyceae). Eur J Phycol 33: 33–42

    Google Scholar 

  • Paasche E (1999) Reduced coccolith calcite production under light-limited growth: a comparative study of three clones of Emiliania huxleyi (Prymnesiophyceae). Phycologia 38: 508–516

    Article  Google Scholar 

  • Paasche E (2002) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40 (6): 503–529

    Article  Google Scholar 

  • Paasche E, Brubak S (1994) Enhanced calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation. Phycologia 33: 324–330

    Article  Google Scholar 

  • Paasche E, Brubak S, Skattebøl S, Young JR, Green JC (1996) Growth and calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) at low salinities. Phycologia 35: 394–403

    Article  Google Scholar 

  • Page S, Hipkin CR, Flynn KJ (1999) Interactions between nitrate and ammonium in Emiliania huxleyi. J Exp Mar Biol Ecol 236: 307–319

    Article  Google Scholar 

  • Palenik B, Henson SE (1997) The use of amides and other organic nitrogen sources by the phytoplankton Emiliania huxleyi. Limnol Oceanogr 42: 1544–1551

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436

    Article  Google Scholar 

  • Purdie DA, Finch MS (1994) Impact of coccolithophorids on dissolved carbon dioxide in sea water enclosures in a Norwegian Fjord. Sarsia 79: 379–387

    Google Scholar 

  • Raven JA (1997) The vacuole: A cost-benefit analysis. Adv Bot Res 25: 59–86

    Article  Google Scholar 

  • Raven JA, Johnston AM (1991) Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources. Limnol Oceanogr 36(8): 1701–1714

    Article  Google Scholar 

  • Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93: 157–191

    Article  Google Scholar 

  • Ridgwell AJ, Watson AJ, Archer DE (2002) Modelling the response of the oceanic Si inventory to perturbation, and consequences for atmospheric CO2. Global Biogeochem Cy 16(4) 1071,doi:10.1029/2002GB001877

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000a) Reduced calcification in marine plankton in response to increased atmospheric CO2. Nature 407: 634–637

    Google Scholar 

  • Riebesell U, Revill AT, Holdsworth DG, Volkman JK (2000b) The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochim Cosmochim Ac 64 (24): 4179–4192

    Article  Google Scholar 

  • Riegman R, Noordeloos AAM, Cadée GC (1992) Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Mar Biol 112: 479–484

    Article  Google Scholar 

  • Riegman R, Stolte W, Noordeloos AAM, Slezak D (2000) Nutrient uptake and alkaline phosphatase (EC3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. J Phycol 36: 87–96

    Article  Google Scholar 

  • Robertson JE, Robinson C, Turner DR, Holligan P, Watson AJ, Boyd P, Fernandez E, Finch M (1994) The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. Deep-Sea Res 41 (2): 297–314

    Article  Google Scholar 

  • Rost B, Zondervan I, Riebesell U (2002) Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi. Limnol Oceanogr 47 (1): 120–128

    Article  Google Scholar 

  • Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48 (1): 55–67

    Article  Google Scholar 

  • Sikes CS, Roer RD, Wilbur KM (1980) Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition. Limnol Oceanogr 25 (2): 248–261

    Article  Google Scholar 

  • Sikes CS, Wilbur KM (1982) Function of coccolith formation. Limnol Oceanogr 27 (1): 18–26

    Article  Google Scholar 

  • Sikes CS, Wheeler AP (1982) Carbonic anhydrase and carbon fixation in coccolitho-phorids. J Phycol 18: 423–426

    Article  Google Scholar 

  • Sunda WG, Huntsmann SA (1995) Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnol Oceanogr 40: 1404–1417

    Article  Google Scholar 

  • Thierstein HR, Geitzenauer KR, Molfino B, Shackleton NJ (1977) Global synchroneity of late Quaternary coccolith datum levels: validation by oxygen isotopes. Geology 5: 400–404

    Article  Google Scholar 

  • Tortell PD, Giocoma RD, Sigman DM, Morel FMM (2002) CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Marine Ecol-Prog Ser 236: 37–43

    Article  Google Scholar 

  • Tyrrell T, Taylor AH (1996) A modelling study of Emiliania huxleyi in the NE Atlantic. J Marine Sys 9: 83–112

    Article  Google Scholar 

  • Van Bleijswijk JDL, Kempers RS, Veldhuis MJ, Westbroek P (1994). Cell and growth characteristics of types A and B of Emiliania huxleyi (Prymnesiophyceae) as determined by flow cytometry and chemical analyses. J Phycol 30: 230–241

    Article  Google Scholar 

  • Van der Wal P, Kempers RS, Veldhuis MJW (1995) Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi. Marine Ecol-Prog Ser 126: 247–265

    Article  Google Scholar 

  • Veldhuis MJW, Stoll M, Bakker D, Brummer G-J, Kraak M, Kop A, Van Weerlee E, Van Koutrik A, Riddervold Heimdal B (1994) Calcifying phytoplankton in Bjornafjorden, Norway. The prebloom situation. Sarsia 79: 389–399

    Google Scholar 

  • Volk T (1989) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallowocean carbonate burial. Nature 337: 637–640

    Article  Google Scholar 

  • Wolf-Gladrow DA, Riebesell U, Burkhardt S, Bijma J (1999) Direct effects of CO2 concentration on growth and isotopic composition of marine plankton, Tellus 51 (2): 461–476

    Article  Google Scholar 

  • Young JR (1994) Function of coccoliths. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, Cambridge, pp 63–82

    Google Scholar 

  • Zeebe RE, Wolf-Gladrow DA (2001) CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier Oceanography Book Series 65, Amsterdam

    Google Scholar 

  • Ziveri P, Broerse ATC, Hinte JE, Van Westbroek P, Honjo S (2000) The fate of coccoliths at 48°N21°W, northeastern Atlantic. Deep-Sea Res II 47: 1853–1875

    Google Scholar 

  • Zondervan I, Zeebe RE, Rost B, Riebesell U (2001) Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2. Global Biogeochem Cy 15 (2): 507–516

    Article  Google Scholar 

  • Zondervan I, Rost B, Riebesell U (2002) Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. J Exp Mar Biol Ecol 272: 55–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rost, B., Riebesell, U. (2004). Coccolithophores and the biological pump: responses to environmental changes. In: Thierstein, H.R., Young, J.R. (eds) Coccolithophores. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06278-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06278-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06016-8

  • Online ISBN: 978-3-662-06278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics