Skip to main content

Calcification in coccolithophores: A cellular perspective

  • Chapter
Book cover Coccolithophores

Summary

Knowledge of the mechanisms of calcification in different species of coccolithophores and the interactions between calcification and other cellular processes is required for further understanding the regulation of a key component of inorganic carbon flux in the oceans. In particular the functions of calcification in relation to photosynthesis and nutrient acquisition are still debated. Increased understanding of the cellular regulation of calcification is also required to accurately predict the responses to elevated atmospheric CO2 on a global scale. Moreover, transport processes in delivery of substrates for calcification will improve our ability to interpret isotopic fractionation in the fossil record that is increasingly being used as a proxy for past climatic conditions. Advances in single cell physiology and molecular biology are already contributing significantly to the study of calcification at the cellular level. The application of genomics approaches should, in the longer term, contribute further to the goal of understanding of how cellular functions contribute to processes at ecosystem and global levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anning T, Nimer NA, Merrett MJ, Brownlee C (1996) Costs and benefits of calcification in coccolithophorids. J Mar Syst 9: 45–56

    Article  Google Scholar 

  • Berry L, Taylor AR, Lucken U, Ryan KP, Brownlee C (2002) Calcification and inorganic carbon acquisition in coccolithophores. Funct Plant Bio 29: 289–299

    Article  Google Scholar 

  • Borowitzka MA (1982) Morphological and cytological aspects of algal calcification. Int Rev of Cytol 74: 127–162

    Article  Google Scholar 

  • Bourinet E, Zamponi GW, Stea A, Soong TW, Lewis BA, Jones LP, Yue DT, Snutch TP (1996) The alpha (IE) calcium channel exhibits permeation properties similar to low voltage-activated calcium channels. J Neurosci 16: 4983–4993

    Google Scholar 

  • Bratbak G, Wilson W, Heldal M (1996) Viral control of Emiliania huxleyi blooms? J Mar Syst 9: 75–81

    Article  Google Scholar 

  • Brownlee C, Nimer NA, Dong LF, Merrett MJ (1994) Cellular regulation during calcification in Emiliania huxleyi. In: Green JC, Leadbeater B (eds) The Haptophyte Algae. Clarendon Press, Oxford, pp 133–148

    Google Scholar 

  • Brownlee C, Davies M, Nimer N, Dong LF, Merrett MJ (1995) Calcification, photosynthesis and intracellular regulation in Emiliania huxleyi. Bulletin of the Institute of Oceanography, Monoco 14: 19–36

    Google Scholar 

  • Buitenhuis E, de Baar HJW, Veldhuis MJW (1999) Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon. J Phycol 35: 949–959

    Article  Google Scholar 

  • Buitenhuis ET, Van der Wal P, de Baar HJW (2001) Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide: A field and mesocosm study derived simulation. Global Biogeochem Cy 15: 577–587

    Article  Google Scholar 

  • Colman B, Huertas E, Bhatti S, Dason JS (2002) The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Func Plant Biol 29: 261–270

    Article  Google Scholar 

  • Corstjens PLAM, Van der Kooij A, Linschooten C, Brouwers G-J, Westbroek P, de Vrind-de Jong EW (1998) GPA, a calcium-binding protein in the coccolithophorid Emiliania huxleyi (Prymnesiophyceae). J Phycol 43: 622–630

    Article  Google Scholar 

  • Corstjens PLAM, Araki Y, Gonzalez E (2001) A coccolithophore calcifying vesicle with a vacuolar-type ATPase proton pump: cloning and immunolocalization of the V-O subunit. J Phycol 37: 71–78

    Article  Google Scholar 

  • Crawford DW, Purdie DA (1997) Increase of pC02 during blooms of Emiliania huxleyi: theoretical considerations on the asymmetry between acquisition of HCO3 and respiration of free CO2. Limnol Oceanogr 42: 365–372

    Article  Google Scholar 

  • Cros L, Kleijne A, Zeltner A, Billard C, Young JR (2000) New examples of holococcolith-heterococcolith combination coccospheres and their implications for coccolithophorid biology. Mar Micropaleontol 39: 1–34

    Article  Google Scholar 

  • De Jong EW, Bosch L, Westbroek P (1976) Isolation and characterisation of a Ca2+-binding polysaccharide associated with coccoliths of Emiliania huxleyi. (Lohmann) Kamptner. Eur J Biochem 70: 611–621

    Article  Google Scholar 

  • Elzenga JTM, Prins HBA, Stefels J (2000) The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): A comparison with other marine algae using the isotopic disequilibrium technique. Limnol Oceanogr 45: 372–380

    Article  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Maiden, Oxford

    Google Scholar 

  • Gattuso JP, Reynaud-Vaganay S, Furla P, Romaine-Lious S, Jaubert J, Bourge I, Frankignoulle M (2000) Calcification does not stimulate photosynthesis in the zooxanthellate cleractinian coral Stylophora pistillata. Limnol Oceanogr 45: 246–250

    Article  Google Scholar 

  • Grima EM, Sevilla JMF, Perez JAS, Camacho FG (1996) A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol 45: 59–69

    Article  Google Scholar 

  • Harris RP (1994) Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Marine Biol 119: 431–439

    Article  Google Scholar 

  • Harvey WR (1992) Physiology of V-ATPases. J Exp Biol 172: 1–17

    Google Scholar 

  • Herfort L, Thake B, Roberts J (2002) Acquisition and use of bicarbonate by Emiliania huxleyi. New Phytol 156: 427–436

    Article  Google Scholar 

  • Hori T, Green JC (1985) An ultrastructural study of mitosis in non-motile coccolith bearing cells of Emiliania huxleyi (Lohm) Hay and Mohler (Prymnesiophyceae). Protistologica 21: 107–120

    Google Scholar 

  • Huertas IE, Colman B, Espie GS (2002) Inorganic carbon acquisition and its energization in eustigmatophyte algae. Func Plant Biol 29: 271–277

    Article  Google Scholar 

  • Israel AA, Gonzalez EL (1996) Photosynthesis and inorganic carbon utilization in Pleurochrysis sp. (Haptophyta), a coccolithophorid alga. Mar Ecol Progr Ser 137: 243–250

    Article  Google Scholar 

  • Klavenesss D (1972) Coccolithus huxleyi (Lohmann) Kamptner. I. Morphological investigations on the vegetative cell and the process of coccolith formation. Protistologica 8: 335–346

    Google Scholar 

  • Laguna R, Romo J, Read BA, Wahlund TM (2001) Induction of phase variation events in the life cycle of the marine coccolithophorid Emiliania huxleyi. Appl Envir Microbiol 67: 3824–3831

    Article  Google Scholar 

  • Lecourt M, Muggli DL, Harrison PJ (1996) Comparison of growth and sinking rates of non-coccolith and coccolith-forming strains of Emiliania huxleyi (Prymnesiophyceae) grown under different irradiances and nitrogen sources. J Phycol 32: 17–21

    Article  Google Scholar 

  • Lin YCJ, Spencer AN (2001) Calcium currents from jellyfish striated muscle cells: preservation of phenotype, characterization of currents and channel localization. J Exp Biol 204: 3717–3726

    Google Scholar 

  • Manton I, Leedale GF (1969) Observations on the microanatomy of Coccolithus pelagicus and Cricosphaera carterae, with special reference to the origin and nature of coccoliths and scales. J Mar Biol Assoc UK 49: 1–16

    Article  Google Scholar 

  • Marsh ME (1994) Polyanion-mediated mineralization – assembly and reorganization of acidic polysaccharides in the Golgi system of a coccolithophorid alga during mineral deposition. Protoplasma 177: 108–122

    Article  Google Scholar 

  • Marsh ME (1996) Polyanion-mediated mineralisation – a kinetic analysis of the calcium -carrier hypothesis in the phytoflagellate Pleurochrysis carterae. Protoplasma 190: 181–188

    Article  Google Scholar 

  • Marsh ME, Dickinson DP (1997) Polyanion-mediated mineralization in coccolithophore (Pleurochrysis carterae) variants which do not express PS2, the most abundant and acidic mineral-associated polyanion in wild-type cells. Protoplasma 199: 9–17

    Article  Google Scholar 

  • Matsuda Y, Bozzo GG, Colman B (1998) Regulation of dissolved inorganic carbon transport in green algae. Can J Bot 76: 1072–1083

    Google Scholar 

  • Matsuda Y, Satoh K, Harada H, Satoh D, Hiraoka Y, Hara T (2002) Regulation of the expression of HCO3 uptake and intracellular carbonic anhydrase in response to CO2 concentration in the marine diatom Phaeodactylum sp. Func Plant Biol 29: 279–287

    Article  Google Scholar 

  • McConnaughy TA, Whelan JF (1996) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42: 95–117

    Article  Google Scholar 

  • Morel FMM, Cox EH, Kraepiel AML, Lane TW, Milligan AJ, Schaperdoth I, Reinfelder JR, Tortell P (2002) Acquisition of inorganic carbon by the marine diatom Thallasiosira weisflogii. Func Plant Biol 29: 301–308.

    Article  Google Scholar 

  • Nanninga HJ, Ringenaldus P, Westbroek P (1996) Immunological quantitation of a polysaccharide formed by Emiliania huxleyi. J Mar Syst 9: 67–74

    Article  Google Scholar 

  • Nanninga HJ, Tyrrell T (1996) Importance of light for the formation of algal blooms by Emiliania huxleyi. Mar Ecol Progr Ser 136: 195–203

    Article  Google Scholar 

  • Nejstgaard JC, Gismervik I, Solberg PT (1997) Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Mar Ecol Progr Ser 147: 197–217

    Article  Google Scholar 

  • Nielsen MV (1997) Growth, dark respiration and photosynthetic parameters of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) acclimated to different day length-irradiance combinations. J Phycol 33: 818–822

    Article  Google Scholar 

  • Nimer NA, Merrett MJ (1992) Calcification and utilisation of inorganic carbon by the coccolithophorid Emiliania huxleyi (Lohmann). New Phytol 121: 173–177

    Article  Google Scholar 

  • Nimer NA, Merrett MJ (1993) Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and availability of inorganic carbon. New Phytol 123: 673–677

    Article  Google Scholar 

  • Nimer NA, Guan Q, Merrett, MJ (1994) Extra-and intra-cellular carbonic anhydrase in relation to culture age in a high calcifying strain of Emiliania huxleyi. New Phytol 126: 601–607

    Article  Google Scholar 

  • Nimer NA, Merrett MJ, Brownlee C (1996) Inorganic carbon transport in relation to culture age and inorganic carbon concentration in a high calcifying strain of Emiliania huxleyi. J Phycol 32: 813–818

    Article  Google Scholar 

  • Nimer NA, Ling MX, Brownlee C, Merrett MJ (1999) Inorganic carbon limitation, exofacial carbonic anhydrase activity and plasma membrane redox activity in marine phyto-plankton species. J Phycol 35: 1200–1205

    Article  Google Scholar 

  • Paasche E (1964) A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi. Physiol Plant Suppl 3: 5–82

    Google Scholar 

  • Paasche E (1999) Reduced coccolith calcite production under light-limited growth: a Comparative study of three clones of Emiliania huxleyi (Prymnesiophyceae). Phycologia 38:508–516

    Article  Google Scholar 

  • Paasche E (2001) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 40: 503–529

    Article  Google Scholar 

  • Pond D, Harris RP, Brownlee C (1995) A microinjection technique using a pH-sensitive dye to determine the gut pH of Calanus helgolandicus. Mar Biol 123: 75–79

    Article  Google Scholar 

  • Quiroga O, Gonzalez EL (1993) Carbonic anhydrase in the chloroplast of a coccolithophorid (Prymnesiophyceae). J Phycol 29: 321–324

    Article  Google Scholar 

  • Raven JA (1997) Putting the C in phycology. Eur J Phycol 32: 319–333

    Article  Google Scholar 

  • Riebesell U, Wolf-Gladrow D, Smetacek V (1993) Carbon dioxide limitation of phyto-plankton growth rates. Nature 361: 249–251.

    Article  Google Scholar 

  • Rickaby REM, Schrag DP, Zondervan I, Riebesell U (2002) Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi. Global Biogeochem Cy 16: 1–8

    Article  Google Scholar 

  • Riegman R, Stolte W, Noordeloos AAM, Slezak D (2000) Nutrient uptake and alkaline phosphatase (EC 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. J Phycol 36: 87–96

    Article  Google Scholar 

  • Rost B, Zondervan I, Riebesell U (2002) Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi. Limnol Oceanogr 47: 120–128

    Article  Google Scholar 

  • Rowson JD, Leadbeater BSC, Green JC (1986) Calcium carbonate deposition in the motile (Crystallolithus) phase of Coccolithus pelagicus. Brit Phycol J 21: 359–370

    Article  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14: S401–S417

    Google Scholar 

  • Sekino K, Shirawa Y (1994) Accumulation and utilisation of dissolved inorganic carbon by a marine unicellular coccolithophorid, Emiliania huxleyi. Plant Cell Physiol 35: 353–361

    Google Scholar 

  • Stoll H, Rosenthal Y, Falkowski P (2002) Climate proxies from Sr/Ca of coccolith calcite: Calibrations from continuous culture of Emiliania huxleyi. Geochim Cosmochim Ac 66: 927–936

    Article  Google Scholar 

  • Taylor AR, Brownlee C (2003) A novel Cl- inward-rectifying current in the plasma membrane of the calcifying marine phytoplankton Coccolithus pelagicus. Plant Physiol 131: 1391–1400

    Article  Google Scholar 

  • Tortell PD (2000) Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnol Oceanogr 45: 744–750

    Article  Google Scholar 

  • Tyrrell T, Taylor AH (1996) A modeling study of Emiliania huxleyi in the NE Atlantic. J Mar Syst 9: 83–112

    Article  Google Scholar 

  • Van der Wal P, de Bruin WC, Westbroek P (1985) Cytochemical and X-ray microanalysis studies of intracellular calcium pools in scale-bearing cells of the coccolithophorid Emiliania huxleyi. Protoplasma 124: 1–9

    Article  Google Scholar 

  • Van Emburg PR, de Vrind-de Jong EW, Daems WT (1986) Immunochemical localization of a polysaccharide from biomineral structures (coccoliths) of Emiliania huxleyi. J Ultrastruct Mol Struct Res 94: 246–259

    Article  Google Scholar 

  • Very AE, Davies JM (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sc USA 97: 9801–9806

    Article  Google Scholar 

  • Westbroek P, Brown CW, Van Bleijswijk J, Brownlee C, Jan Brummer G, Conte M, Egge J, Fernandez E, Jordan R, Knappertsbusch M, Stefels J, Veldhuis M, Van der Wal P, Young J (1993) A model system approach to biological climate forcing. The example of Emiliania huxleyi. Global Planet Change 8: 27–46

    Article  Google Scholar 

  • Westbroek P, Van Hinte J, Brummer G-R, Veldhuis M, Brownlee C, Green JC, Harris R, Heimdal B (1994) Emiliania huxleyi as a key to biosphere-geosphere interaction. In: Green JC, Leadbeater B (eds) The Haptophyte Algae. Clarendon Press, Oxford, pp 321–334

    Google Scholar 

  • Wilson WH, Tarran G, Zubkov MV (2002) Virus dynamics in a coccolithophore-dominated bloom in the North Sea. Deep-Sea Res 49: 2951–2963

    Article  Google Scholar 

  • Xu-Friedman MA, Regehr WG (1999) Presynaptic strontium dynamics and synaptic transmission. Biophys J 76: 2029–2042

    Article  Google Scholar 

  • Young JR, Davis SA, Brown PR, Mann S (1999) Coccolith ultrastructure and biomineralization. J Struct Biol 126: 195–215

    Article  Google Scholar 

  • Zondervan I, Zeebe RE, Rost B, Riebeseil U (2001) Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO2. Global Biogeochem Cy 15: 507–516

    Article  Google Scholar 

  • Zondervan I, Rost B, Riebesell U (2002) Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. J Exp Mar Biol Ecol 272: 55–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brownlee, C., Taylor, A. (2004). Calcification in coccolithophores: A cellular perspective. In: Thierstein, H.R., Young, J.R. (eds) Coccolithophores. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06278-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06278-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06016-8

  • Online ISBN: 978-3-662-06278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics