Skip to main content

Why is the Land Green and the Ocean Red?

  • Chapter

Summary

Fossil evidence suggests that during the Paleozoic Era, green algae dominated eukaryotic phytoplankton taxa. One branch of this originally aquatic clade colonized terrestrial ecosystems to form what would become a green hegemony on land -with few exceptions, terrestrial plants are green. In contrast to land plants, contemporary oceanic phytoplankton are represented by relatively few species that are phylogenetically deeply branching. Since the Triassic Period, the major taxa of eukaryotic phytoplankton preserved in the fossil record have been dominated by organisms containing plastids derived from the “red”, chlorophyll c containing algal clade. The ocean became “red” sometime during the Triassic or early Jurassic periods. The evolutionary success of the red line in Mesozoic and younger oceans appears related to changing oceanic conditions. In this chapter, we briefly explore the evolutionary processes and ecological traits that potentially led to the success of the red line in the oceans.

Keywords

  • Black Shale
  • Plastid Genome
  • Early Jurassic
  • Calcareous Nannofossil
  • Secondary Endosymbiosis

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-06278-4_16
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-06278-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.00
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anbar A, Knoll AH (2002) Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297: 1137–1142

    CrossRef  Google Scholar 

  • Arthur M, Sageman B (1994) Marine black shales: depositional mechanisms and environments of ancient deposits. Annu Rev Earth PI Sc 22: 499–551

    CrossRef  Google Scholar 

  • Barrett PJ (1996) Antarctic palaeoenvironment through Cenozoic times, a review. Terra Antarctica 3 (2): 103–119

    Google Scholar 

  • Barron E, Fawcett P, Peterson W, Pollard D, Thompson S (1995) A Simulation of Mid-Cretaceous Climate. Paleoceanography 10: 953–962

    CrossRef  Google Scholar 

  • Berggren WA, Kent DV, Swisher CC, Aubry M-P (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA, Kent DV, Hardenbol J (eds) Geochronology, Time-scales and Global Stratigraphic Correlations: A Unified Temporal Framework for an Historical Geology. Spec Vol-Soc Econ Paleontol Mineral 54: 129–212

    Google Scholar 

  • Bhattacharya D, Medlin L (1995) The phylogeny of plasties: a review based on comparisons of small-subunit ribosomal RNA coding regions. J Phycol 31: 489–498

    CrossRef  Google Scholar 

  • Bhattacharya D, Medlin L (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116: 9–15

    CrossRef  Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.; implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26: 386–404

    CrossRef  Google Scholar 

  • Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396: 450–453

    CrossRef  Google Scholar 

  • Cavalier-Smith T, Beaton MJ (1999) The skeletal function of non-genic nuclear DNA: New evidence from ancient cell chimaeras. Genetica 106 (1–2): 3–13

    CrossRef  Google Scholar 

  • Chacon-Baca E, Beraldi-Campesi H, Cevallos-Ferriz S, Knoll A, Golubic S (2002) 70 Ma nonmarine diatoms from northern Mexico. Geology 30: 279–281

    Google Scholar 

  • Chandler M, Rind D, Ruedy R (1992) Pangean climate during the Early Jurassic: GMC simulations and the sedimentary record of paleoclimate. Geol Soc Am Bull 104: 543–559

    CrossRef  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334: 340–343

    CrossRef  Google Scholar 

  • Crowley T, North G (1991) Paleoclimatology. Oxford University Press, New York

    Google Scholar 

  • DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421: 245–249

    CrossRef  Google Scholar 

  • Delwiche CF (1999) Tracing the web of plastid diversity through the tapestry of life. Am Nat 154: S164–S177

    CrossRef  Google Scholar 

  • Droop MR (1974) Heterotrophy of carbon. In: Stewart WDP (ed) Algal Physiology and Biochemistry. Blackwell Scientific Publications, Oxford, pp 530–599

    Google Scholar 

  • Falkowski PG (2002) The Ocean’s Invisible Forest. Sci Am 287: 38–45

    CrossRef  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic Photosynthesis. Blackwell Science, Oxford, pp 375

    Google Scholar 

  • Feist Burkhardt S (1992) Palynological investigations in the Lower and Middle Jurassic of Switzerland, France and Germany: Palynofacies and type of organic matter, Dino-flagellate cyst morphology and stratigraphy. Unpublished Thesis, Universite de Geneve, Geneve, 330

    Google Scholar 

  • Gradstein FM, Agterberg FP, Ogg JG, Hardenbol H, Van Veen P, Thierry J, Huang Z (1995) A Triassic, Jurassic, and Cretaceous time-scale. In: Berggren WA, Kent DV, Hardenbol J (eds) Geochronology, Time-scales and Global Stratigraphic Correlations: A Unified Temporal Framework for an Historical Geology. Spec Vol-Soc Econ. Paleontol Mineral 54: 95–126

    Google Scholar 

  • German TN (1990) Organic world one billion year ago. Leningrad, Nauka, pp 1–50

    Google Scholar 

  • Glover HE (1985) The physiology and ecology of the marine cyanobacterial genus Synechococcus. In: Janasch HW, Williams PJ LeB (eds) Advances in aquatic microbiology. Academic Press, London, pp 49–107

    Google Scholar 

  • Grzebyk D, Schofield O, Vetriani C, Falkowski PG (2003) The Mesozoic Radiation of Eu-karyotic Algae: The Portable Plastid Hypothesis. J Phycol 39: 259–267

    CrossRef  Google Scholar 

  • Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeocl 167: 23–37

    CrossRef  Google Scholar 

  • Hamm C, Merkel R, Springer O, Jurkoic P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421: 841–843

    CrossRef  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science 235: 1156–1167

    CrossRef  Google Scholar 

  • Harwood DM, Nikolaev VA (1995) Cretaceous Diatoms: morphology, taxonomy, biostratigraphy. In: Blome et al., (convenors) Siliceous Microfossils. Paleontological Society Short Courses in Paleontology 8: 81–106

    Google Scholar 

  • Holland HD (1984) The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press Princeton, N.J., 582 pp

    Google Scholar 

  • Huber B, Hodell D, Hamilton C (1995) Middle-Late Cretaceous Climate of the Southern High-Latitudes – Stable Isotopic Evidence for Minimal Equator-to-Pole Thermal-Gradients. Geol Soc Am Bull 107: 1164–1191

    CrossRef  Google Scholar 

  • Huh Y, Edmond JM (1999) The fluvial geochemistry of the rivers of eastern Siberia; III, Tributaries of the Lena and Anabar draining the basement terrain of the Siberian Craton and the Trans-Baikal Highlands. Geochim Cosmochim Ac 63 (7–8): 967–987

    CrossRef  Google Scholar 

  • Isozaki Y (1997) Permo-Triassic Boundary Superanoxia and Stratified Superocean: Records from Lost Deep Sea. Science 276 (5310): 235–238

    CrossRef  Google Scholar 

  • Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass-dominated ecosystems. Ann Miss Bot Gard 86: 590–643

    CrossRef  Google Scholar 

  • Janis CM, Damuth J, Theodor JM (2002) The origins and evolution of the North American grassland biome: the story from the hoofed mammals. Palaeogeogr Palaeocl 177: 183–198

    CrossRef  Google Scholar 

  • Jeffrey SW, Mantoura RFC, Wright SW (1997) Phytoplankton Pigments in Oceanography. UNESCO, Paris

    Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakasaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyano-bacterium Synechocystis sp. strain PCC6803 II Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Research 3: 109–136

    CrossRef  Google Scholar 

  • Katz ME, Wright JD, Miller KG, Cramer BS, Fennel K, Falkowski PG (in review) Biological overprint of the geological carbon cycle. Nature

    Google Scholar 

  • Kellogg EA (2000) The grasses: a case study in macroevolution. Annu Rev Ecol Syst 31: 217–238

    CrossRef  Google Scholar 

  • Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and their impact on global paleoceanography. J Geophys Res 82: 3843–3859

    CrossRef  Google Scholar 

  • Knoll AH (1992) The Early Evolution of Eukaryotes: A Geological Perspective. Science 256: 622–627

    CrossRef  Google Scholar 

  • Knoll AH, Grant S, Tsao J (1986) The early evolution of land plants. Dept of Geol Sci University of Tennessee: 45–63

    Google Scholar 

  • Kump L, Arthur M (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161: 181–198

    CrossRef  Google Scholar 

  • Latorre C, Quade J, Mcintosh WC (1997) The expansion of C4 grasses and global change in the late Miocene: stable isotope evidence from the Americas. EPSL 146: 83–96

    CrossRef  Google Scholar 

  • Leander B, Witek R, Farmer M (2001) Trends in the evolution of the euglenid pellicle. Evolution 55: 2215–2235

    Google Scholar 

  • Li W (2002) Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature: 419

    Google Scholar 

  • Lipps JH (1993) Fossil Prokaryotes and Protists. Blackwell Scientific Publications, Boston

    Google Scholar 

  • Margalef R (1997) Our Biosphere. Oldendorf, Ecology Institute

    Google Scholar 

  • McFadden GI (1999) Endosymbiosis and evolution of the plant cell. Curr Op Plant Biol 2: 513–519

    CrossRef  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37: 951–959

    CrossRef  Google Scholar 

  • Medlin LK, Kooistra WHCF, Potter D, Saunders GW, Andersen RA (1997) Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokont chromophytes) and their plastids Plant. Systematics and Evolution [Suppl] 11: 187–219

    CrossRef  Google Scholar 

  • Moldowan JM, Jacobson SR (2000) Chemical signals for early evolution of major taxa: biosignatures and taxon-specific biomarkers. Int Geol Rev 42: 805–812

    CrossRef  Google Scholar 

  • Moldowan J, Talyzina N (1998) Biogeochemical evidence for dinoflagellate ancestors in the Early Cambrian. Science 281: 1168–1170

    CrossRef  Google Scholar 

  • Moldowan J, Dahl J, Jacobson S, Huizinga B, Fago F, Shetty R, Watt D, Peters K (1996) Chemostratigraphic reconstruction of biofacies: Molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors. Geology 24: 159–162

    CrossRef  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39: 4–11

    CrossRef  Google Scholar 

  • Prauss M, Riegel W 1989 Evidence of phytoplankton associations for causes of black shale formation in epicontinental seas. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 11: 671–682

    Google Scholar 

  • Prauss M, Ligouis B, Luterbacher H 1991 Organic matter and palynomorphs in the ‘Posi-donienschiefer’ (Toarcian, Lower Jurassic) of southern Germany. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia. The Geological Society of London, London, pp 335–352

    Google Scholar 

  • Quigg AZ, Finkel V, Irwin AJ, Rosenthal Y, Ho T-Y, Reinfelder JR, Schofield O, Morel F, Falkowski P (2003) Plastid inheritance of elemental stoichiometry in phytoplankton and its imprint on the geological record. Nature 425: 291–294

    CrossRef  Google Scholar 

  • Raven JA (1997) The Vacuole: A Cost Benefit Analysis. Adv Bot Res 25: 59–86

    CrossRef  Google Scholar 

  • Retallack G (1997) Neogene expansion of the North American prairie. Palios 12: 380–390

    CrossRef  Google Scholar 

  • Retallack G (2001) Cenozoic expansion of grasslands and climatic cooling. J Geol 109: 407–426

    CrossRef  Google Scholar 

  • Rothpletz A (1896) Über die Flysh-Fucoiden und einzige andere fossile Algen, sowie über Liasische Diatomeen fuhrende Hornschwamme. Deutsch geol Ges 48: 858–914

    Google Scholar 

  • Shen Y, Canfield DE, Knoll AH (2002) The chemistry of mid-Proterozoic oceans: evidence from the McArthur Basin, northern Australia. Am J Sci 302: 81–109

    CrossRef  Google Scholar 

  • Shen Y, Knoll AH, Walter MR (2003) Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423: 632–635

    CrossRef  Google Scholar 

  • Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150: 25–32

    CrossRef  Google Scholar 

  • Spencer-Cervato C (1999) The Cenozoic deep sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database. Palaeontologia Electronica 2: 270

    Google Scholar 

  • Stover LE, Brinkhuis H, Damassa SP, de Verteuil L, Helby RJ, Monteil E, Partridge AD, Powell AJ, Riding JB, Smelror M, Williams JMGL (1996) Mesozoic-Tertiary dinoflagellates, acritarchs & prasinophytes. In: Jansonius DC, McGregor J (eds) Palynology: principles and applications. Amer Assoc Strat Palynologists Foundation, Vol. 2, Washington DC, Amer Assoc Strat Palynologists Foundation: 641–750

    Google Scholar 

  • Tappan HN (1980) The paleobiology of plant protists. San Francisco, Freeman WH

    Google Scholar 

  • Tappan HN, Loeblich J AR (1988) Foraminiferal evolution, diversification, and extinction. J Paleontol 62(5):695–714

    Google Scholar 

  • Tozzi S, Schofield O, Falkowski PG (in press) Turbulence as a selective agent of two phytoplankton functional groups. Mar. Ecol. Prog. Ser.

    Google Scholar 

  • Twitchett R (1999) Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeogr Palaeocl 154: 27–37

    CrossRef  Google Scholar 

  • Tyson RV (1995) Sedimentary Organic Matter. Chapman & Hall, London, 615pp

    Google Scholar 

  • Van de Schootbrugge B, Bailey T, Katz ME, Wright JD, Rosenthal Y, Feist-Burkhardt S, Falkowski PG (in press) Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys. Paleobiology

    Google Scholar 

  • Whitfield M (2001) Interactions between phytoplankton and trace metals in the ocean. Adv Mar Biol 41: 3–128

    Google Scholar 

  • Wignall P, Twitchett R (2002) Permian-Triassic sedimentology of Jameson Land, East Greenland: incised submarine channels in an anoxic basin. J Geol Soc London 159: 691–703

    CrossRef  Google Scholar 

  • Williams RJP (1981) Natural selection of the chemical elements. Proc Roy Soc Lon 213: 361–397

    CrossRef  Google Scholar 

  • Woods KN, Knoll AH German T (1998) Xanthophyte algae from the Mesoproterozoic/Neoproterozoic transition: confirmation and evolutionary implications. Geological Society of America, Abstracts with Programs 30 (7): A232

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Falkowski, P.G., Schofield, O., Katz, M.E., Van de Schootbrugge, B., Knoll, A.H. (2004). Why is the Land Green and the Ocean Red?. In: Thierstein, H.R., Young, J.R. (eds) Coccolithophores. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06278-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06278-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06016-8

  • Online ISBN: 978-3-662-06278-4

  • eBook Packages: Springer Book Archive