Skip to main content

Mechanical Properties of Coatings

  • Chapter
Coated Metal

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Elasticity is the ability of a coating material to resist changes in its volume or shape under mechanical stress due to increase in internal energy. The main characteristic of this property is the elasticity modulus (Young’s modulus), which describes the resistance of a coating material to deformation. Numerically it represents the ratio of applied stress increment to the ensuing increment of elastic deformation. In other words, elasticity is a measure of the stiffness of the coating material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpas AT, Embury JD, Hardwick DA, Springer RW (1990) The mechanical properties of laminated microscale composites of Al/Al203. J Mater Sci 3: 1603–1609

    Article  Google Scholar 

  2. Anast M, Bell JM, Bell TJ, Ben-Nissan J (1992) Precision ultra-microhardness measurements of sol-gel-derived zirconia thin films. J Mater Sci Lett 11: 1483–1485

    Article  CAS  Google Scholar 

  3. Attar F, Johannesson T (1995) Adhesion and X-ray elastic constant evaluation of CrN coatings. Thin Solid Films 258: 205–212

    Article  CAS  Google Scholar 

  4. Barvinok VA (1990) Stressed state control and properties of plasma-sprayed coatings (in Russian). Mashinostroenie, Moscow

    Google Scholar 

  5. Benarioua Y, Bouaouadja N, Wendler B (1996) Carbide formation in titanium coatings deposited on carbon steel. J Mater Sci Lett 15: 1067–1069

    Article  CAS  Google Scholar 

  6. Bianco R, Rapp RA, Smialek JL (1993) Chromium and reactive element modified aluminide diffusion coatings on superalloys: Environmental testing. J Electrochem Soc 140: 1191–1203

    Google Scholar 

  7. Bull SJ, Rickerby DS, Gent JT (1991) Quality assurance assessment of thin films. Surface Eng 7: 143–145

    Google Scholar 

  8. Bulychev SI (1992) Progress and prospects of material testing by continuous impressing of indentor (in Russian). Zavodskaya Laboratoria 3: 29–36

    Google Scholar 

  9. Bulychev SI, Alekhin VP (1990) Testing of materials by continuous indentation (in Russian). Mashinostroenie, Moscow

    Google Scholar 

  10. Burnett PJ, Rickerby DS (1987) Assessment of coating hardness. Surface Eng 3: 69–76

    CAS  Google Scholar 

  11. Byakova AV (1995) Peculiarities of microhardness determination in the estimation of structural strength of coatings (in Russian). Problemy Prochnosti 9: 44–54

    Google Scholar 

  12. Byakova AV, Gorbach VG (1994) Strength to deformation and estimation of brittle strength of coatings with initial field of residual stresses (in Russian). Problemy Prochnosti 1: 51–57

    Google Scholar 

  13. Castro R, Chard G, Smith Ronald W, Rollett Anthony D, Stanek Paul W (1992) Toughness of dense MoSi2 and MoSi2/tantalum composites produced by low-pressure plasma deposition. Scr Met and Mater 26: 207–212

    Article  CAS  Google Scholar 

  14. Chen HC, Pfender E (1996) Microstructure of plasma-sprayed Ni—Al alloy coating on mild steel. Thin Solid Films 280: 188–198

    Article  CAS  Google Scholar 

  15. Chou TC, Nich TG, McAdams SD, Phar GM (1991) Microstructures and mechanical properties of thin films of aluminum oxide. Scr Met and Mater 25: 2203–2208

    Article  CAS  Google Scholar 

  16. Chou TC, Nich TG, McAdams SD, Phar GM, Oliver WC (1992) Mechanical properties and microstructures of metal/ceramic microlaminates. Part 2. Mo/Al2O3 system. J Mater Res 7: 2774–2784

    Article  CAS  Google Scholar 

  17. Chou TC, Nich TG, Tsui TY, Phar GM, Oliver WC (1992) Mechanical properties and microstructures of metal/ceramic microlaminates. Part 1. Nb/MoSi2 system. J Mater Res 7: 2765–2773

    Article  CAS  Google Scholar 

  18. Crostack HA, Jahnel W, Meyer EH, Selvadurai U (1996) Developments of nondestructive testing of surface coatings. Weld World 37: 114–120

    CAS  Google Scholar 

  19. Czerwinski F (1998) Diffusion annealing of Fe—Ni alloy coatings on steel substrates. J Mater Sci 33: 3831–3837

    Article  CAS  Google Scholar 

  20. Dekhtyar LI, Loskutov VS, Zilberman BV (1982) Determination of elastic moduli in heterogeneous materials (in Russian). Fizika I Khimia Obrabotki Materialov 11: 11–14

    Google Scholar 

  21. Deuis RL, Yeliup JM, Subramanian C (1997) Aluminum composite coatings produced by plasma transferred arc surfacing technique. Mater Sci and Technol 13: 511–512

    Article  CAS  Google Scholar 

  22. Diao DF, Sawaki Y (1995) Fracture mechanisms of ceramic coatings during wear. Thin Solid Films 270: 362–366

    Article  CAS  Google Scholar 

  23. Dolgov NA, Lyashenko BA, Veremchuk BS, Dmitriev YuV (1995) On the determination of elastic characteristics of protective coatings (in Russian). Problemy Prochnosti 7: 48–51

    Google Scholar 

  24. Du HL, Datta PK, Lewis DB, Burnell-Gray JS (1996) Enhancement of oxidation/sulphidation resistance of Ti and Ti-6A1–4V alloy by HfV coating. Mater Sci and Eng A 205: 199–208

    Article  Google Scholar 

  25. Eaton H, Novak R (1986) A study of the effects of variations in parameters on the strength and modulus of plasma-sprayed zirconia. Surface and Coating Technology 3: 257–267

    Article  Google Scholar 

  26. Engel PA, Chitsaz AR, Hsue EY (1992) Interpretation of superficial hardness for multilayer platings. Thin Solid Films 207: 144–152

    Article  CAS  Google Scholar 

  27. Fedorenko VK, Milman YuV, Kadyrov VK, Ivaschenko RK, Ivaschenko OV (1987) Physical-mechanical properties and destruction of powder detonation coatings (in Russian). Poroshkovaya Metallurgia 11: 88–94

    Google Scholar 

  28. Friesen T, Haupt J, Gissler W, Bata A, Bata PB (1991) Ultrahard coatings from Ti—BN multilayers and by co-sputtering. Surface and Coating Technology 48: 169–174

    Article  CAS  Google Scholar 

  29. Gogotsi GA (1991) Deformation behavior of ceramics. J Eur Ceram Soc 1: 87–92

    Article  Google Scholar 

  30. Gogotsi GA, Zavada VP (1994) Certification of mechanical properties of modern ceramics (in Russian). Problemy Prochnosti 1: 68–75

    Google Scholar 

  31. Guo Zhongcheng, Yang Xianwan, Liu Hong-Kong, Wang Zhiuin, Wang Min (1996) Characteristics of Re—Ni—B—Al2O3 coating material. Trans Nonferrous Metals Soc China 6: 33–36

    Google Scholar 

  32. Hainsworth SV, Bartlett T, Page TF (1993) The nanoindentation response of systems with thin hard carbon coatings. Thin Solid Films 236: 214–218

    Article  CAS  Google Scholar 

  33. Hankock P, Chien HH, Nicholls JR, Stephenson DJ (1990) In-site measurements of the mechanical properties of aluminide coatings. Surface and Coating Technology 4344: 359–370

    Article  Google Scholar 

  34. Hardwick DA (1987) The mechanical properties of thin films: a review. Thin Solid Films 154: 109–124

    Article  CAS  Google Scholar 

  35. Harmsworth PD, Stevens R (1992) Phase composition and properties of plasma-sprayed zirconia thermal barrier coatings. J Mater Sci 27: 611–615

    Article  CAS  Google Scholar 

  36. Heinke W, Leyland A, Matthews A, Berg G, Friedrich C, Broszert E (1995) Evaluation of PVD nitride coatings using impact, scratch and Rockwell-C adhesion tests. Thin Solid Films 270: 431–438

    Article  CAS  Google Scholar 

  37. Huang Chi-Tung, Dun Jeng-Gong (1997) Microhardness of (Ti, Al)N films deposited by reactive RF magnetron sputtering. J Mater Sci Lett 16: 59–61

    Google Scholar 

  38. Ilinsky AI, Lyakh GB (1978) Methods of mechanical testing for films and foils ( Review) (in Russian ). Zavodskaya Laboratoria 12: 1507–1511

    Google Scholar 

  39. Jankowski A (1995) Metallic multilayers at the nanoscale. Nanostruct Mater 6: 179190

    Google Scholar 

  40. Jehn HA, Thiergarten F, Ebersbach E, Fabian D (1991) Characterization of PVD ( Ti,Cr)N hard coatings. Surface and Coating Technology 50: 45–52

    Google Scholar 

  41. Jindal PC, Quinto DJ (1988) Load dependence of microhardness of hard coatings. Surface and Coating Technology 3–4: 683–694

    Article  Google Scholar 

  42. Katayama Sakae, Hashimura Masayuki (1997) Effects of microcracks in CVD coating layers on cemented carbide and cermet substrates on residual stress and transverse rupture strength. Trans ASME J Manuf Sci and Eng 119: 50–54

    Article  Google Scholar 

  43. Kerkush IR, Melnik PI (1997) Properties improvement of plasma-sprayed iron coatings by chromium plating. Poroshkovaya Metallurgia 40: 230

    Google Scholar 

  44. Khasui A, Morigaki 0 (1985) Hard Facing and Sputtering (in Russian). Mashinostroenie, Moscow

    Google Scholar 

  45. Kiiski AA, Ruuskanen PR, Rubin JB (1996) Wear resistant coatings produced by shock-wave compaction of powders. Met and Mater Trans A 27: 2297–2304

    Article  Google Scholar 

  46. Kobayashi A, Yamahiji K, Kitamura T (1991) Effect of heat treatment on high hardness zirconia sprayed coating by means of gas tunnel type plasma spraying. Trans JWRI 20: 47–52

    CAS  Google Scholar 

  47. Kolawa E, Sun X, Reid JS, Chen JS, Nickolet MA, Ruis R (1993) Amorphous W40Re40B20 diffusion barriers for *Si>/Al and *Si>/Cu metallizations. Thin Solid Films 236: 301–305

    Article  CAS  Google Scholar 

  48. Kovensky IM, Povetkin VV (1999) Physical metallurgy of coatings (in Russian). Joint Venture “Internet Engineering”, Moscow

    Google Scholar 

  49. Krus D (Jr), Hoffman RW (1993) Finite element studies of tensile testing on thin film multilayers. Thin Solid Films 236: 225–229

    Article  Google Scholar 

  50. Kudinov VV, Ivanov VM (1981) Plasma deposition of high-melting coatings (in Russian). Mashinostroenie, Moscow

    Google Scholar 

  51. Kuhnemann S, Kopacz U, Jehn H (1987) Erfahrungen beim Einsatz eines Ultramikrohartetesters zur Prufung von dünnen Hartstoffschichten (in German). Prakt Metallogr 24: 382–390

    Google Scholar 

  52. Kuroda S, Clyne TW (1991) The quenching stress in thermally sprayed coatings. Thin Solid Films 1: 49–66

    Article  Google Scholar 

  53. La Fontaine WR, Paszkiet CA, Korhonen MA, Li Che-Yu (1991) Residual stress measurements of thin aluminum metallizations by continuos indentation and X-ray stress measurement techniques. J Mater Res 6: 2084–2090

    Article  Google Scholar 

  54. Landa NI, Shpindler SS, Kolechkin YuK (1988) Installation for determination of impact viscosity of ceramics (in Russian). Zavodskaya Laboratoria 9: 1138–1140

    Google Scholar 

  55. Lawrynowicz DE, Wolfenstine J, Lavernia EJ (1995) Reactive synthesis and characterization of MoSi2/SiC using low-pressure plasma deposition and 100% methane. Scr Met and Mater 32: 689–693

    Article  CAS  Google Scholar 

  56. Lyashenko BA, Veremchuk BS, Dolgov NA, Ivanov VM (1996) Investigation of strength and strain properties of compounds with plasma deposited coatings (in Russian). Problemy Prochnosti 6: 57–60

    Google Scholar 

  57. Ma Dejun, Xu Kewei, He Jiawen (1997) Numerical simulation for measuring yield strength of thin metal film by nanoindentation method. Trans Nonferrous Metals Soc China 7: 66–68

    Google Scholar 

  58. Mahajan S, Wen JG, Ito W, Yoshida Y, Kubota N, Liu CJ, Morishita T (1994) Growth and superconductivity of C-axis in plane aligned YBa2Cu3O7 films fabricated by the self-template method. Appl Phys Lett 65: 3129–3131

    Article  CAS  Google Scholar 

  59. Maksimovich GT (1974) Micromechanical studies of properties of metals and alloys (in Russian). Nauchnaya Mysl, Kiev

    Google Scholar 

  60. Mehrotra PK, Quinto DT (1986) High-temperature microhardness profiles of hard CVD coatings. High Temp—High Pressures 18: 199–210

    CAS  Google Scholar 

  61. Monaghan DP, Teer DG, Laing KC, Logan PA (1994) The state-of-the-art in thin protective coatings. Surface Technol Int June: 2–5

    Google Scholar 

  62. Murakami Kenji, Okamoto Taira, Matsumoto Miroshi, Miyamoto Yoshinari, Irisana Tsuyoshi (1993) Structure and mechanical properties of thermal-sprayed nickel-20 wt% chromium alloy. Mater Sci and Eng A 160: 181–187

    Article  Google Scholar 

  63. Müller D, Fromm E (1995) Mechanical properties and adhesion strength of TiN and AI coatings on HSS, steel, aluminum and copper characterized by four testing methods. Thin Solid Films 270: 411–416

    Article  Google Scholar 

  64. Ostojic P, Berndt CC (1988) The variability in strength of thermally sprayed coatings. Surface and Coating Technology 34: 43–50

    Article  CAS  Google Scholar 

  65. Perry AJ, Jagner M, Wolner PF, Sproul WD (1990) Aspects of residual stress measurements in TiN prepared by reactive sputtering. Surface and Coating Technology 13: 234–244

    Article  Google Scholar 

  66. Pisarenko GS, Lyashenko BA, Kozub YN (1997) Methods of high-temperature mechanical testing of inorganic heat-resistant coatings. In: Pisarenko GS (ed) Heat-resistant coatings for protection of constructional materials (in Russian). Nauka, Leningrad, pp 50–60

    Google Scholar 

  67. Quinn G (1989) Flexure testing of advanced ceramics. Br Ceram Trans J 3: 94–95

    Google Scholar 

  68. Sampath S, Gansert R, Herman H (1995) Plasma-spray forming ceramics and layered composites. JOM: J Miner, Metals and Mater Soc 47: 30–33

    Google Scholar 

  69. Sampath S, Tiwari R, Gredmundsson B, Herman H (1991) Microstructure and properties of plasma-sprayed consolidated two-phase nickel aluminides. Scr Met and Mater 25: 1425–1430

    Article  CAS  Google Scholar 

  70. Saunders SR, Vetters HR (1997) Standardization of test methods for the mechanical properties of thin coatings. Thin Solid Films 299: 82–87

    Article  CAS  Google Scholar 

  71. Seino Y, Hida N, Nagai S (1992) Mechanical properties of diamond thin films prepared by chemical vapor deposition. J Mater Sci Lett 11: 515–517

    Article  CAS  Google Scholar 

  72. Sglavo VM, Dal Maschio R (1990) Adhesion testing of plasma-sprayed ceramic coatings on metals by an indentation technique. Eur Appl-Res Repts Nucl Sci and Technol Sec 7: 1487–1494

    Google Scholar 

  73. Smagorinski M, Tsantrizos P, Grenier S, Entazarian M, Ajersch F (1996) The thermal plasma near-netshape spray forming of Al composites JOM: J Miner, Metals and Mater Soc 48: 56–59

    Google Scholar 

  74. Takeda Koichi, Ito Mitihisa, Takeuchi Sunao, Sudo Katui, Koda Masamichi, Kazama Koichi (1993) Erosion resistant coating by low-pressure plasma spraying. ISJI International 33: 976–981

    Article  Google Scholar 

  75. Tamura Motonori, Fukuda Kanao (1993) Properties and tribological behavior of Ti(C,N) coatings deposited by reactive ion plating. ISIJ International 33: 949–956

    Article  Google Scholar 

  76. Tushinsky LI, Sindeev VI, Plokhov AV (1996) The structure and mechanical properties of modified surfaces of engineering materials (in Russian). Novosibirsk State University Press, Novosibirsk

    Google Scholar 

  77. Vaidya R, Zurek AK, Castro R, Wolfenden A, Hosman SL, Subramanian KN (1994) Alumina coated Ti-25A1–10Nb-3V–1Mo for improved oxidation resistance. J Adv Mater 26: 16–22

    CAS  Google Scholar 

  78. Vally JA (1986) A review of adhesion test methods for thin hard coatings. J Vac Sci and Technol A 4: 3007–3014

    Article  Google Scholar 

  79. Vally JA, Molarius JM, Korhonen AS (1987) The effect of nitrogen content on the critical normal force in scratch testing of TiN films. Thin Solid Films 154: 351–360

    Article  Google Scholar 

  80. Vancoille E, Celis JP, Roos JR (1993) Mechanical properties of heat-treated and worn PVD TiN, (Ti,A1)N, ( Ti,Nb)N and Ti(C,N) coatings as measured by nanoindentation. Thin Solid Films 224: 168–176

    Google Scholar 

  81. Voevodin AA, Spassky SE, Erokhin AL (1991) Determination of thin coating micro-hardness with consideration of its thickness and hardness of the substrate (in Russian). Zavodskaya Laboratoria 10: 45–46

    Google Scholar 

  82. Wang HF, Yang X, Bangert H, Torzicky P, Wen L (1992) Two-dimensional finite element method simulation of Vickers indentation of hardness measurements on TiNcoated steel. Thin Solid Films 214: 68–73

    Article  CAS  Google Scholar 

  83. Wang M, Schmidt K, Reichelt K, Jiang X, Hübsch H, Dimigen H (1992) The proper- ties of W—C films deposited by reactive rf sputtering. J Mater Res 7: 1465–1472

    Article  CAS  Google Scholar 

  84. Wen LS, Zhang HT, Zhou XK, Guan K, Liao B, Cao S (1987) Acoustic emission research on the fracture behavior of plasma-sprayed Ni—Al coatings during bend testing. Surface and Coating Technology 30: 115–123

    Article  CAS  Google Scholar 

  85. Whitehead AJ, Page TF (1992) Nanoindentation studies of thin film coated systems. Thin Solid Films 220: 277–283

    Article  CAS  Google Scholar 

  86. Zaitsev GG, Barabanov AF, Kuteinikov AF (1980) Determination of elastic constants of graphitized carbon materials by dynamic methods in the temperature range of 203000 °C ( Review) (in Russian ). Zavodskaya Laboratoria 1: 81–86

    Google Scholar 

  87. Zhang N, Wang Y (1992) Dislocations and hardness of hard coatings. Thin Solid Films 214: 4–5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tushinsky, L.I., Kovensky, I., Plokhov, A., Sindeyev, V., Reshedko, P. (2002). Mechanical Properties of Coatings. In: Coated Metal. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06276-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06276-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07722-7

  • Online ISBN: 978-3-662-06276-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics