Advertisement

Microbiology, Epidemiology and Diagnosis of Clostridium difficile Infection

  • J. S. Brazier
  • S. P. Borriello
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 250)

Abstract

Clostridium difficile made its first appearance in the literature when Hall and O’Toole (1935) described Bacillus dificilis as part of the bacterial flora of the meconium and faeces of infants. Although they postulated that toxins from certain strains, when liberated in the infant gut, might play a role in conditions such as the formation of occult blood and febrile convulsions of the newborn. it was not until 1969 that the first real clue to the pathogenic potential of this organism to mammals in the absence of competing colonic microbiota was provided. In experiments on germ-free rats, it was noted that mono-contamination with C. difficile often led to development of transient diarrhoea, which occasionally caused death (Hnmmarstrom et al. 1969). The significance of this finding remained unappreciated until the mid 1970s.

Keywords

Stool Specimen Toxigenic Strain Pyrolysis Mass Spectrometry Cytotoxin Assay Diarrhoeal Stool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Saif N, Brazier is (1996) The distribution of Clostridium difficile in the environment of South Wales..1 Med Microbiol 45: 133 137Google Scholar
  2. Alonso R, Munoz C, Pelaez T, Cercenado E, Rodriquez-Creixems M, Bouza E (1997) Rapid detection of toxigenic Clostridium difficile strains by a nested PCR of the toxin B gene. Clin Microbiol Infect 3: 145 147Google Scholar
  3. Anonymous (1998) Clostridium difficile in England and Wales. Communicable Disease Report. 9, 7, 12 February 1999Google Scholar
  4. Aronsson B, Molby R. Nord CE (1985) Antimicrobial agents and Clostridium difficile in acute enteric disease: epidemiological data from Sweden, 1980–1982. J Infect Dis 151: 476–481Google Scholar
  5. Arrow SA, C’roese L, Bowman RA, Riley TV (1994) Evaluation of three commercial enzyme immunoassay kits for detecting faecal Clostridium difficile toxins. J Clin Pathol 47: 954 956Google Scholar
  6. Arzese A, Tram G. Riul L, Botta GA (1995) Rapid polymerase chain reaction method for specific detection of toxigenic Clostridium difficile. Eur J Clin Microbiol Infect Dis 14: 716–719CrossRefGoogle Scholar
  7. Aspinall ST, Hutchinson DN (1992) New selective medium for isolating Clostridium difficile from faeces. Clin Pathol 45: 812–814CrossRefGoogle Scholar
  8. Barbut F, Mario N, Meyohas MC, Binet D, Frottier J, Petit JC (1993) Investigation of a nosocomial outbreak of Clostridium difficile - associated diarrhoea among AIDS patient; by random to iplified polymorphic DNA ( RAPD) assay. J Hosp Infect 26: 181–189Google Scholar
  9. Barhut F, Corthier G, (’harpak Y, Cerf M. Monteil H, Fosse T (1996) Prevalence and pathogenicity of Clostridium difficile in hospitalized patients. Arch Intern Med 156: 1449 1454Google Scholar
  10. Bartlett JG, Onderdonk AB, Cisneros RL, Kasper DL (1977) Clindamycin associated colitis due to a toxin-producing species of Clostridium in hamsters. J Infect Dis 136:70I 71)5Google Scholar
  11. Bartlett JG, Chang TW, Gurwith M, Gorbach SL, Onderdonk AB (1978) Antibiotic associated pseudomembranous colitis duc to toxin producing clostridia. N Engl J Med 298: 531 534Google Scholar
  12. Bartlett JO (1988) Introduction. In: Rolfe RD, Finegold SM (eds) Clostridium (Wile: its role in intes-tinal disease. San Diego Academic Press, San DiegoGoogle Scholar
  13. Bartlett JG (1997) Clostridium difficile infection: pathophysiology and diagnosis. Semis Gastrointest Dis 8:12–21Google Scholar
  14. Bartley SL, Dowell VR Jr (1991) Comparison of media for the isolation of Clostridium difficile, from faecal specimens. Lab Med 22: 335 338Google Scholar
  15. Bentley AH, Patel NB, Sidorczuk M, Loy P, Fulcher J, Dexter P, Richards J (1998) Fur J (din Microhiol Infect Dis 17: 788 790Google Scholar
  16. Berry AP, Lovett PN (1986) Chronic diarrhoea in dogs associated with Clostridium difficile infection. Vet Rec 118: 102–103PubMedCrossRefGoogle Scholar
  17. Blawat F, Chylinski (i (1958) Pathogenic clostridia in soil and faeces of domestic animals in the Gdansk region. Bull lust Marine Med (Gdansk) 9: 117–126Google Scholar
  18. Bolton RP, Tait SK, Dear PRF, Lowsowsky MS (1984) Asymptomatic neonatal colonisation by Clostridium difficile. Arch Dis Child 59: 466 472Google Scholar
  19. Boondeekhun HS, Gurtler V, Odd ML, Wilson VA, MayaIl BC (1993) Detection of Clostridium difficile enterotoxin gene in clinical specimens by the polymerase chain reaction. J Med Microhiol 38: 384–387CrossRefGoogle Scholar
  20. Borriello SP, Honour P (1981) Simplified procedure for routine isolation of Clostridium difficile from faeces.J Clin Pathol 34: 1124–1127Google Scholar
  21. Borriello SP, Honour P, Turner T, Barclay F (1983) Household pets as a potential reservoir for Clostridium difficile. J Clin Pathol 36: 84–87PubMedCrossRefGoogle Scholar
  22. Borriello SP, Kelley.IM, Mitchell TJ, Barclay FE, Welch AR. Price AB (1987) Clostridium difficile a spectrum of virulence and analysis of putative virulence determinants in the hamster model of antibiotic-associated colitis. J Med Microhiol 24: 53–64Google Scholar
  23. Borriello SP, Larson HE, Welch AR, Barclay F, Stringer MF, Bartholomew BA (1984) Enterotoxigenic Clostridium perfringens a possible cause of antibiotic associated diarrhoea. Lancet 1: 305 307Google Scholar
  24. Borriello SP, Vale T, Brazier JS, Hyde S, Chippeck F, (1992) Evaluation of a commercial enzyme im-munoassay kit for the detection of Clostridium c/ifficile toxin A. L(ur J Clin Microhiol Infect Dis 11: 360–363CrossRefGoogle Scholar
  25. Bowman RA, Riley TV (1986) Isolation of Clostridium difficile from stored specimens and comparative susceptibility of various tissue culture cell lines to cytotoxin. FEMS Microbiol l,ett 34: 31 35Google Scholar
  26. Bowman RA, Riley TV (1988) Laboratory diagnosis of Clostridium difficile associated diarrhoea. Fur.1 Clin Microbiol Infect Dis 7: 476 484Google Scholar
  27. Bowman RA, O’Neill GL, Riley TV (1991) Non-radioactive restriction fragment length polymorphism (RELP) typing of Clostridium dfilieilc. I’EMS Microbiol Lett 63: 269–272CrossRefGoogle Scholar
  28. Brazier JS (1990) Cross reactivity of Clostridium glycolicum with the latex particle agglutination reagent for C. (Wile identification. In: Borriello SP (ed) Clinical and molecular aspects of anaerobes. Wrightson Biomedical Publishing, Peterslield, pp 293 296Google Scholar
  29. Brazier JS (1993) Role of the laboratory in investigations of Clostridium difficile diarrhea. Clin infect Dis 16 [Suppl 4): S228–233PubMedCrossRefGoogle Scholar
  30. Brazier JS, Delmee M, Tabagchali S, Hill LR, Mulligan ME, Riley TV (1994) Proposed unified nomenclature for Clostridium difficile typing. Lancet 343: 157CrossRefGoogle Scholar
  31. Brazier JS, Mulligan ME, Delmee M, Tabagchali S (1997) Preliminary findings of the international typing study on Clostridium difficile. Clin Infect Dis 25[Suppl 21: S199–201CrossRefGoogle Scholar
  32. Brazier JS, O’Neill GL, Duerden BI (1997a) Polymerase chain reaction rihotypes of Clostridium difficile in hospitals in England and Wales. Reviews in Medical Microbiology 8[Suppl I I: S55 56Google Scholar
  33. Brazier JS, Stubbs SLJ, Duerden BI (1999) Prevalence of toxin A negative/toxin B positive Clostridium difficile strains. J I losp infect 42: 248 249Google Scholar
  34. Brooks JB, Nunez-Monteil OL, Basta MT, Hierholzer JC (1984) Studies of stools from pseudomembranous colitis rotaviral and other diarrhoea! syndromes by frequency-pulsed electron capture liquid chromatography. J Clin Microhiol 20: 549 560Google Scholar
  35. Buchanan AG (1984) Selective enrichment broth culture for detection of Clostridium difficile and associated cytotoxin. J Clin Microbiol 20: 74–76PubMedGoogle Scholar
  36. Buggy BP, Wilson KH, Fekety R (1983) Comparison of methods for recovery of Clostridium difficile from an environmental source. J Clin Microbiol 18: 348–352PubMedGoogle Scholar
  37. Burdon DW (1982) Clostridium difficile: the epidemiology and prevention of hospital-acquired infection. Infection 10:203204Google Scholar
  38. Byl B, Jacobs F, Strulens MJ, Thys JP (1996) Extraintestinal Clostridium difficile infections. Clin Infect Dis 22: 712PubMedCrossRefGoogle Scholar
  39. Carroll SM, Bowman RA, Riley TV (1983) A selective broth for lostridium difficile. Pathology 15:165 167 Cartmill TDI, Orr K, Freeman R, Sisson PR, Lightfoot NF (1992) Nosocomial infection with Clostridium difficile investigated by pyrolysis mass spectrometry. J Med Microbiol 37: 352–356Google Scholar
  40. Cartmill TDI, Panigrahi H, Worsley MA, McCann DC, Nice CN, Keith E (1994) Management and control of a large outbreak of diarrhoea due to Clostridium difficile. J Hosp Infect 27: 1–15PubMedCrossRefGoogle Scholar
  41. Cartwright CP, Stock F, Beckmann SE, Williams EC, Gill VJ (1995) PCR amplification of rRNA intergenic spacer regions as a method for epidemiologic typing of Clostridium dificile J Clin Microbiol 33: 184–187Google Scholar
  42. Chachaty EP, Sauliner P, Martin A, Mario N, Andremont A (1994) Comparison of ribotyping, pulsed-field gel electrophoresis and random amplified polymorphic DNA for typing Clostridium difficile strains. FEMS Microbiol Lett 122: 61–68PubMedCrossRefGoogle Scholar
  43. Chang TW, Lauermann M, Bartlett JG (1979) Cytotoxic assay in antibiotic-associated colitis. J Infect Dis 140: 765–770PubMedCrossRefGoogle Scholar
  44. Clabots CR, Peterson LR, Gerding DN (1988) Characterization of a noscomial Clostridium difficile outbreak by using plasmid profile typing and clindamycin susceptibility testing. J Infect Dis 158: 731–736PubMedCrossRefGoogle Scholar
  45. Clabots CR, Bettin KM, Peterson LR, Gerding DN (1991) Evaluation of cycloserine-cefoxitin fructose agar and cycloserine-cefoxitin fructose broth for recovery of Clostridium difficile from environmental sites. J Clin Microbiol 29: 2633–2635PubMedGoogle Scholar
  46. Collier MC, Stock F, De Girolami PC, Samore MH, Cartwright CP (1996) Comparison of PCR-based approaches to molecular analysis of Clostridium difficile. J Clin Microbiol 34: 1153–1157PubMedGoogle Scholar
  47. Costas M, Holmes B, Gunner M, On SL, Hoffman PN, Worsley MA (1994) Identification of outbreak-associated and other strains of Clostridium difficile by numerical analysis of SDS-PAGE protein patterns. Epidemiol Infect 113: 1–12Google Scholar
  48. Dansinger ML, Johnson S, Jansen PC, Opstad NL, Bettin KM, Gerding DN (1996) Protein-losing enteropathy is associated with Clostridium difficile diarrhea but not with asymptomatic colonization: a prospective, case-control study. Clin Infect Dis 22: 932–937PubMedCrossRefGoogle Scholar
  49. De Girolami PC, Hanff PA, Eichelberger K, Longhi L, Teresa H, Pratt J (1992) Multicenter evaluation of a new enzyme immunoassay for detection of Clostridium dfficile enterotoxin A. J Clin Microbiol 30: 1085–1088PubMedGoogle Scholar
  50. Delmee M, Homel M, Wauters G (1985) Serogrouping of Clostridium difficile strains by slide agglutination. J Clin Microbiol 21: 323–327PubMedGoogle Scholar
  51. Delmee M, Avesani V (1990) Virulence of ten serogroups of Clostridium difficile in hamsters. J Med Microhiol 33: 85–90CrossRefGoogle Scholar
  52. Delmee M, Mackey T, Hamitou A (1992) Evaluation of a new commercial Clostridium difficile toxin A enzyme immunoassay using diarrhoeal stools. Eur J Clin Microbiol Infect Dis 11: 246–249PubMedCrossRefGoogle Scholar
  53. Department of Health and Public Health Laboratory Service Joint Working Group (1994) Clostridium difficile infection. Prevention and Management. BAPS Health Publication Unit, Heywood LancashireGoogle Scholar
  54. Depitre C, Delmee M, Avesani V, L’Haridon R, Roels A, Popoff M, Corthier G (1993) Serogroup F strains of Clostridium difficile produce toxin B but not toxin A. J Med Microhiol 38: 434–441CrossRefGoogle Scholar
  55. Devlin HR, Au W, Foux L, Bradbury WC (1987) Restriction endonuclease analysis of nosocomial isolates of Clostridium difficile. J Clin Microbiol 25: 2168–2172PubMedGoogle Scholar
  56. Donta ST, Myers MG (1982) Clostridium dificile toxin in asymptomatic neonates. J Pediatr 100: 431–434Google Scholar
  57. El Mohandes AE, Keiser JE, Refat M, Jackson BJ (1993) Prevalence and toxigenicity of Clostridium difficile isolates in fecal microflora of preterm infants in the intensive care nursery. Biol Neonate 63: 225 229Google Scholar
  58. Elsden SR, Hilton MG, Waller JM (1976) The end products of the metabolism of aromatic amino acids by clostridia. Arch Microbiol 107: 283–288PubMedCrossRefGoogle Scholar
  59. Fedorko DP, Williams EC (1997) Use of cycloserine-cefoxitin fructose agar and L-proline amino-peptidase (PRO Discs) in the rapid identification of Clostridium difficile. J Clin Microbiol 35: 12581259Google Scholar
  60. Feldman R.I, Kallich M, Wienstein MI’ (1995) Bacteremia due to Clostridium dfficde: case report and review of extraintestinal C. difficile infections. (’lin Infect Dis 20: 1560 1562CrossRefGoogle Scholar
  61. Forward KR, Dalton MT, Kerr E, Paisley N, Cooper (i (1994) Comparison of Tech Lab Closiriditau difficile Tux-A enzyme immunoassay and Bartels Prima system toxin A I{IA. Diagn Microbiol Infect Dis 20: I- 5Google Scholar
  62. Frazier KS, Herron AJ, Hines ME, Gaskin.IM, Altman NH (1993) Diagnosis of enteritis and entcrotoxemia due to (Iosnidium difficile in captive ostriches (SIrathin camclus). J Vet Diagn Inyesl 5: 623 625Google Scholar
  63. George WL, Sutter VL, Goldstein EJC, Ludwig SL, Finegold SM (1978) Etiology of antimicrobial agent associated colitis. Lancet 1: 802 803Google Scholar
  64. George WL, Sutter VL, (Citron D, Finegold SM (1979) Sclectivcand differential medium for isolation of Clostridium c/ìffici/c. J Clin Microbiol 19: 214–219Google Scholar
  65. Gerding DN, Brazier JS (1993) Optimal methods for identifying Clostridium difficile infections. Clin Infect Dis 16lSuppl 4]: S439–442Google Scholar
  66. Green GA, Riot B, Monied II (1994) Evaluation of an oligonucleotide probe and an immunological test for direct detection of toxigenic Clostridium difficile in stool samples. Eta J (`lin Microbiol Infect Dis 13: 576–581CrossRefGoogle Scholar
  67. Green RH (1974) The association of viral activation with penicillin toxicity in guinea pigs and hamsters. Yale J Biol Med 3: 166–181Google Scholar
  68. Gumerlock PH, Tang YJ, Meyers FJ, Silva J Jr (1991) Use of the polymerise chain reaction for the specific and direct detection of Clostridium difficile in human feces. Rev Infect Dis 13: 1053 1060Google Scholar
  69. Gutnerlock PH, Tang YJ, Weiss JB, Silva J Jr (1993) Specific detection of toxigenic strains of Clostridium difficile in stool specimens. J Clin Microbiol 31: 507–511Google Scholar
  70. Giurtler V (1993) Typing of Clostridium difficile strains by PC’R Ctmplilication of variable length 16S–23S rDNA spacer regions. J Gen Microbiol 139: 3089 3097Google Scholar
  71. Hafiz S (1974) Closvridium difficile and its toxins. (Thesis, POD) Department of Microbiology, Unisersity of LeedsGoogle Scholar
  72. Hafiz S, McEntegart MG, Morton RS, Waitkins SA (1975) Clostridium difficile in the urogenital tract of males and females. Lancet 1: 420–421Google Scholar
  73. Hafiz S, Oakley CI. (1976) Clostridium difficile isolation and charactertstics..l Med Microbiol 9:129 136Google Scholar
  74. Hall IC, O’Toole E (1935) Intestinal flora in newborn infants with a description of a new pathogenic anaerobe, Bacillus dia fieilis. Am J Dis Child 49: 390 402Google Scholar
  75. Hammarstrom S, Perlmann P, (ìusta sson BE, Lagercrantz R (1969) Autoantihodies to colon in germftee rats monocontaminaled with Clostridium difficile J Exp Mcd 129: 747 756Google Scholar
  76. Hceard SR, Rasburn B, Matthews RC’, Tabagchali S (1986) Immunoblotling to demonstrate antigenic and immunogenic differences among nine standard strains of Clostridium difficile. J (’lin Microbiol 24: 384–387)Google Scholar
  77. Hirschorn LR, Trnka Y, Onderdonk AB, Lee ML, Platt R (1994) Epidemiology of community-acquired Clostridium difficile-associated diarrhea. J Infect Dis 169: 127 133Google Scholar
  78. Holst E, Helin 1, Mardh PA (1981) Recovery of Clostridium difficile from children. Scandinavian.1 Infect Dis 13:41 45:Google Scholar
  79. Infection with Clostridium difficile investigated by pyrolysis mass spectrometry. J Med Microbiol 37:352356; Investigation of a nosocomial outbreak of Clostridium difficile by pyrolysis mass spectrometry. J Med Microbiol 39:345–351Google Scholar
  80. Jacobs J, Rudensky B, Dresner J, Berman A, Sonneblick M, van Dijk Y, Yinnon AM (1996) Comparison of tour laboratory tests for diagnosis of Clostridium difficile-associated diarrhea. Fur J Clin Microbiol Infect Dis 15: 561–566CrossRefGoogle Scholar
  81. Johnson S, Clahots CR, Linn FV, Olson MM, Peterson I R, Gerding ON (1990) Nosocomial Clostridium difficile colonisation and disease. Lancet 336: 97–100PubMedCrossRefGoogle Scholar
  82. Kato N, Ou CY, Kato II (1991) Identification of toxigenic Clostridium difficile by the polymerise chain reaction. J Clin Microbiol 29: 33 37Google Scholar
  83. Kato N, Ou C’Y, Kato II (1993) Detection of toxigenic Clostridium difficile in stool specimens by the polymerise chain reaction. J Infect Dis 167: 455–458Google Scholar
  84. Kato II, Kato N, Watanabe K. Ueno K, Sakata Y, Fujita K (1996) Relapses, or refnfections: analysis of u case of Clostridium difficile associated colitis by two typing systems. Curr Microbiol 33:220 223Google Scholar
  85. Kato H, Kato N. Fukui K, O’Hara A, Watanabe K (1997) IJigh prevalence of toxin A-negativetoxin-13 positive Clostridium difficile strains among adult inpatients. (’lin Microbiol Infect 3iSuppl 2]:S22OGoogle Scholar
  86. Katz DA, Bates DW, Rittenberg E, Ondcrdonk A, Sands K, Barefoot LA, Snydmau I (1997) Predicting Clo.stridhmi difficile stool cytotoxin results in hospitalized patients with diarrhea..1 Gen Intern Med 12: 57–62Google Scholar
  87. Kauffman L. Weaver RH (1960) Use of neutral red fluorescence for the identification of colonies of clostridia. J Bacteriol 79: 292–294Google Scholar
  88. Killgore GE, Kato H (1994) Use of arbitrary primer PCR to type Clostridium difficile and comparison of results with those by immunoblot typing. J Clin Microbiol 32: 1591 - I593PubMedGoogle Scholar
  89. Kim KH, Fekety R, Batts DH, Brown D, Cudmore M, Silva J Jr (1981) Isolation of Clostridium difficile from the environment of contacts of patients with antibiotic-associated colitis. J Infect Dis 143: 42–50PubMedCrossRefGoogle Scholar
  90. Knapp CC, Sandie RL, Hall GS, Ludwig M D, Rutherford I, Washington JA (1993) Comparison of vidas Clostridium (Wile toxin-A assay and premier C. difficile toxin-A assay to cytotoxin-B tissue culture assay for the detection of toxins of C. difficile. Diagn Microbiol Infect Dis I7: 7–12CrossRefGoogle Scholar
  91. Kuijper EJ, Oudbier JH, Stuifbergen WNHM, Jansz A, Zanen HC (1987) Application of whole-cell DNA restriction endonuclease profiles to the epidemiology of Clostridium difficile induced diarrhea. J Clin Microbiol 25: 751–753PubMedGoogle Scholar
  92. Larson HE, Parry,IV, Price AB, Davies DR, Dolby J. Tyrell DA (1977) Undescribed toxin in pseudo-membranous colitis. Br Med J 1: 1246 1248Google Scholar
  93. Larson HE, Price AB, Honour P. Borriello SP (1978) Clostridium difficile and the aetiology of pseudo-membranous colitis. Lancet 1: 1063–1065Google Scholar
  94. Larson HE, Barclay FE, Honour P, Hill ID (1982) Epidemiology of Clostridium difficile in infants. J Infect Dis 146: 727–733PubMedCrossRefGoogle Scholar
  95. Levett PN (1984) Detection of Clostridium diTTiede in faeces by direct gas liquid chromatography. J Clin Pathol 37: 117–119PubMedCrossRefGoogle Scholar
  96. Levett PN (1985) Effect of antibiotic concentration in a selective medium on the isolation of Clostridium difficile from faecal specimens. J Clin Pathol 38233–234Google Scholar
  97. Lovett PN (1986) Clostridium difficile in habitats other than the human gastro-intestinal tract. J Infect 12253 263Google Scholar
  98. Lyerly DM, Wilkins TD (1986) Commercial latex test for Clostridium difficile toxin A does not detect toxin A. J Clin Microbiol 23: 622–623PubMedGoogle Scholar
  99. Madewell BR, Tang YJ„tang S, Madigan JE, Hirsh DC, Gumerlock PH (1995) Apparent outbreaks of (’/ostridium difficile-associated diarrhea in horses in a veterinary medical teaching hospital. J Vet Diagn Invest 7: 343–346PubMedCrossRefGoogle Scholar
  100. Magee JT, Brazier JS, Hosein 1K, Ribeiro CD, Hill DW, Griffiths A (1993) An investigation of a nosocomial outbreak of Clostridium difficile by pyrolysis mass spectrometry. J Med Microbiol 39: 345 351Google Scholar
  101. Mahony DE, (’low J, Atkinson L, Vakharia N. Schlech WE (1991) Development and application of a multiple typing system for Clostridium (Wile. Appl Environ Microbiol 57:1873–1879 Malamou-Ladas H, O’Farrell SO, Nash,1Q, Tabagchali S (1983) Isolation of Clostridium difficile from the patients and the environment of hospital wards. J Clin Pathol 36: 88–92Google Scholar
  102. Manabe YC, Vintez.IM, Moore RD, Merz C, Charache P, Bartlett JG (1995) Clostridium difficile colitis: an efficient clinical approach to diagnosis. Ann Intern Med 123: 835–840Google Scholar
  103. Martirosian G, Kuipers S, Verburgh H, van Belkum A, Meisel-Mikolajczyk FM (1995) PCR ribotyping and arbitrarily primed PCR for typing strains of Clostridium difficile from a Polish maternity hospital. J Clin Microbiol 33:2016 2(121Google Scholar
  104. Mattia AR, Doern GV, Clark J. Holden J, Wu L, Ferraro MJ (1993) Comparison of four methods in the diagnosis of Clostridium dif/idle disease. Fur J Clin Microbiol Infect Dis 12: 882–886CrossRefGoogle Scholar
  105. McBee RH (1960) Intestinal flora of some antarctic birds and mammals. J Bacteriol 79:31 I-312 McCluskey J. Riley TV, Owen ET, Langlands DR (1982) Reactive arthritis associated with Clostridium difficile. Aust N Z J Med 12: 535–537Google Scholar
  106. McFarland LV, Surawicz CM, Stamm WE (1990) Risk factors for Clostridium difficile carriage and C. difficile-associated diarrhea in a cohort of hospitalised patients..1 Infect Dis 162: 678–684Google Scholar
  107. McMillin DE, Muldrow LL (1992) Typing of toxic strains of Clostridium difficile using DNA finger-printings generated with arbitrary polymerase chain reaction primers. FEMS Microbiol Lett 92: 5–10CrossRefGoogle Scholar
  108. Merz CS, Kramer C. Forman M, Gluck L, Mills K, Senft K (1994) Comparison of four commercially available rapid enzyme immunoassays with cytotoxin assay for detection of Clostridium difficile toxin(s) from stool specimens. J Clin Microbiol 32: 1142 1147Google Scholar
  109. Muldrow LL, Archibold ER, Nunez-Monteil OL, Sheeny 12.1 (1982) Survey of the extrachromosomal gene pool of Clostridium dì//icile..1 Infect Dis 16: 637 640Google Scholar
  110. Mulligan ME, Peterson LR, Kwok RY, Clabots (’R, Gerding DN (1988) Immunohlots and plasmid fingerprints compared with serotyping and polyacrylamide gel electrophoresis for typing Clostridium difficile. J Clin Microbiol 26: 41–46Google Scholar
  111. Nakamura S, Mikawa M, Nakashio S, Takabatake M. Okada I, Yamakawa K (1981) Isolation of Clostridium difficile from feces and the antibody in sera of young and elderly adults. Microbiol Immun 25: 345–351Google Scholar
  112. Nakamuara S, Serikawa T, Mikawa M, Nakashio S, Yamakawa K, Nishida S (1981) Agglutination. toxigenicity and sorbitol fermentation of Clostridium difficile. Microbiol Immunol 25: 863 870Google Scholar
  113. O’Neill GL, Beaman M Riley TV (1991) Relapse versus reinfection with Clostridium difficile. Epidemiol Infect 107: 627–635PubMedCrossRefGoogle Scholar
  114. O’Neill GL, Adams JE, Bowman RA, Riley TV (1993) A molecular characterisation of Clostridium difficile isolates from humans, animals and their environments. Epidemiol Infect I 11: 257–264CrossRefGoogle Scholar
  115. O’Neill GL, Ogunsola FT, Brazier JS, Duerden BI (1996) Modification of a P(’R rihotyping method for application as a routine typing scheme for Clostridium difficile. Anaerobe 2: 205–209CrossRefGoogle Scholar
  116. Ogunsola FT, Ryley HC’, Duerden BI (1995) Sodium dodecyl sulfate - polyacrylamide gel electrophoresis anlaysis of EDTA-extracted cell-surface protein antigens is a simple and reproducible method for typing Clostridium difficile. Clin Infect Dis 20[Suppl 21: 5327 330Google Scholar
  117. Peerbooms PGH, Kuijt P, Maclaren DM (1987) Application of chromosomal restriction endonuclease digest analysis for use as a typing method for CIavtrridium di/ici/e. J Clin Pathol 40: 771 776Google Scholar
  118. Pepersack F, Labbe M, Nonhoff C, Schoutens E (1983) Use of gas liquid chromatography as a screening test for toxigenic Clostridium difficile in diarrhoea) stools.. Clin Pathol 36: 1233 1236Google Scholar
  119. Phillips KD, Rogers PA (1981) Rapid detection and presumptive identification of Clostridium difficile by p-cresol production on a selective medium. J Clin Pathol 34: 642–644PubMedCrossRefGoogle Scholar
  120. Potvliege C, Labre M, Yourassowsky E (1981) Gas liquid chromatography as a screening test for Clostridium difficile. Lancet 1: 1 105Google Scholar
  121. Poxton IR, Byrne MD (1981) Immunochemical analysis of the FDTA-soluble antigens of Clostridium difficile and related species. J Gen Microbiol 122: 41 46Google Scholar
  122. Poxton IR, Aronsson B, Molby R, Nord CE, Collee i(ì (1984) Immunochemical fingerprinting of Clostridium difficile strains isolated from an outbreak of antibiotic-associated colitis and diarrhoea. J Med Microbiol 17: 317–324Google Scholar
  123. Renshaw AA, Stelling JM, Doolittle MH (1996) The lack of value of repeated Clostridium difficile cytotoxicity assays. Arch Pathol Lab Med 120: 49–52PubMedGoogle Scholar
  124. Riley TV, Adams JE, O’Neill GL, Bowman RA (1991) Gastrointestinal carriage of Clostridium difficile in cats and dogs attending veterinary clinics. Epidemiol Infect 107: 659–665PubMedCrossRefGoogle Scholar
  125. Riley TV, Wetherall F, Bowman J, Mogyorosy I, Golledge CL (1991) Diarrhoea) disease due to Clostridium difficile in general practice. Pathology 23: 346–349PubMedCrossRefGoogle Scholar
  126. Riley TV (1994) The epidemiology of Clostridium diflicite-associated diarrhoea. Rev Med Microbiol 5: 117–126CrossRefGoogle Scholar
  127. Riley TV, Cooper M, Bell B, Golledge CL (1995) Community -acquired Clostridium difficile- associated diarrhea. Clin Infect Dis 20[Suppl 21:5263–265 -Google Scholar
  128. Riley TV, Bowman RA, Golledge CL (1995a) Usefulness of culture in the diagnosis of Clostridium difficile infection. Fur.l Clin Microbiol Infect Dis 14:1109–1111CrossRefGoogle Scholar
  129. Ryan RW, Kwasnik I, Tilton RC (1980) Rapid detection of Clostridium difficile toxin in human feces. J Clin Microbiol 12: 776–779PubMedGoogle Scholar
  130. Samore MH, Bertin KM, DeGirolami PC, Clahots (`R.. Gerding DN. Karchmcr AW (1994) Wide diversity of Clostridium difficile types at a tertiary referral hospital..1 Infect Dis 170: 615 621Google Scholar
  131. Samore MII, Vankataraman L, De Girolami PC, Arbeit RD. Karchmer AW (1996) Clinical and molecular epidemiology of sporadic and clustered cases of nosocomial Clostridiunm difficile diarrhea. Am J Med 100:32–40Google Scholar
  132. Schue V, Green GA, Monteil 1–1 (1994) Comparison of the Tox-A test with cytotoxicity assay and culture for the detection of Clostridium difficile-associated diarrhoea disease..1 Med Microbiol 41: 316–318Google Scholar
  133. Sell TL, Schaberg DR, Fekety FR (1983) Bacteriophage and hacteriocin typing scheme for Clostridium difficile. J Clin Microbiol 17: 1148 1 152Google Scholar
  134. Shanholtzer CJ, Peterson LR. Olsen MM, Gerding ON (1983) Prospective study of grain stained stool smears in diagnosis of Clostridium difficile colitis..1 Clin Microbiol 17: 906 908Google Scholar
  135. Shanholtzer CI, Willard KE, Holier JJ, Olson MM. Gerding DN, Peterson LR (1992) Comparison of VIDAS Clostridium difficile toxin A immunoassay with C. difficile culture and cytoioxin and latex tests. J Clin Microbiol 30: 1837–1840PubMedGoogle Scholar
  136. Sharabadi MS, Bryan LE, Gaffney D, Coderre SE, Gordon R, Pai CH (1984) Latex agglutination test for detection of Clostridium difficile toxin in stool samples. J Clin Microbiol 20: 339 341Google Scholar
  137. Sheretz RJ, Sarubbi MD (1982) The prevalence of Clostridium difficile and toxin in a nursery population: a comparison between patients with necrotizing enterocolitis and an asymptomatic group. J Pediatr 100: 435–439CrossRefGoogle Scholar
  138. Silva J Jr, Yajarayma,IT, Gumerlock PT (1994) Genotyping of Clostridium difficile isolates. J Infect Dis 169: 661–664CrossRefGoogle Scholar
  139. Smith LDS, King EO (1962) Occurrence of Clostridium difficile in infections of man. J Bacteriol 84: 65–67PubMedGoogle Scholar
  140. Spencer RC (1998) Clinical impact and associated costs of Clostridium difficile-associated disease. J Antimicrob Chemother 4I [Suppl C]: S5 - I2CrossRefGoogle Scholar
  141. Staneck JL, Weckbach LS, Allen SD, Siders JA, Gilligan PH, Coppitt G, Kraft JA, Willism DH (1996) Multicenter evaluation of four methods for Clostridium difficile detection: immunocard C. difficile, cytotoxin assay, culture and latex agglutination. J Clin Microbiol 34: 2718–2721PubMedGoogle Scholar
  142. Stevenson JP (1966) The normal bacterial flora of the alimentary canal of laboratory stocks of the desert locust Schistocerca gregario Forskal. J Invertebr Pathol 8: 205–211PubMedCrossRefGoogle Scholar
  143. Struble AL, Tang YJ, Kass PH, Gumerlock PH, Madewell BR, Silva J Jr (1994) Fecal shedding of Clostridium diffi’cle in dogs: a period of prevalence survey in a veterinary medical teaching hospital. J Vet Diagn Invest 6: 342–347PubMedCrossRefGoogle Scholar
  144. Stubbs SLJ, Brazier JS, O’Neill GL, Duerden BI (1999) PCR targeted to the 16S–23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37: 461–463PubMedGoogle Scholar
  145. Tabagchali S, Holland D, O’Farrell S, Sihnan R (1984) Typing scheme for Clostridium difficile: its application in clinical and epidemiological studies. Lancet 1: 935–938CrossRefGoogle Scholar
  146. Talon D, Bailly P, Delmee M, Thouverez M, Mulin B, Iehl-Robert M (1995) Use of pulsed-field gel electrophoresis for investigation of an outbreak of Clostridium difficile infection among geriatric patients. Eur J Microbiol Infect Dis 14: 987–993CrossRefGoogle Scholar
  147. Tedesco FJ, Barton RW, Alpers DH (1974) Clindamycin-associated colitis. Ann Intern Med 81:429–433 Thelestam M, Bronnegard M (1980) Interaction of cytopathogenic toxin from Clostridium difficile with the cells in tissue culture. Scand J Infect Dis Suppl 22: 16–29Google Scholar
  148. van Dijck P, Avesani V, Delmee M (1996) Genotyping of outbreak-related and sporadic isolates of Clostridium difficile belonging to serogroup C. J Clin Microbiol 34: 3049–3055PubMedGoogle Scholar
  149. West S, Wilkins TD (1982) Problems associated with counterimmunoelectrophoresis assays for detecting Clostridium difficile toxin. J Clin Microbiol 15: 347–349PubMedGoogle Scholar
  150. Whittier S, Shapiro DS, Kelly WF, Walden TP, Wait KJ, McMillon LT (1993) Evaluation of four commercially available enzyme immunoassays for laboratory diagnosis of Clostridium difficile-assoelated diseases. J Clin Microbiol 31: 2861–2865PubMedGoogle Scholar
  151. Wilcox MH, Smyth ETM (1998) UK survey of the incidence and impact of Clostridium difficile infection 1993–1996 (abstract). In: Programme of the Third Federation of Infection Societies Conference, Manchester, p 20Google Scholar
  152. Wilks M, Tabagchali S (1994) Typing of Clostridium difficile by polymerase chain reaction with an arbitrary primer. J Hosp Infect 28: 231–234PubMedCrossRefGoogle Scholar
  153. Willey SH, Bartlett JG (1979) Cultures for Clostridium difficile in stools containing a cytotoxin neutralised by Clostridium.cordellii antitoxin. J Clin Microbiol 10: 880–884PubMedGoogle Scholar
  154. Wilson KH, Silva J, Fekety FR (1982) Fluorescent-antibody test for detection of Clostridium difficile in stool specimens. J Clin Microbiol 16: 464–468Google Scholar
  155. Wolfhagen MJHM, Fluit AC, Jansze M, Rademaker CMA, Verhoef J (1993) Detection of toxigenic Clostridium difficile in fecal samples by colony blot hybridization. Eur J Clin Microbiol Infect Dis 12: 463–466PubMedCrossRefGoogle Scholar
  156. Wolfhagen MJ, Fluit AC, Torensma R, Poppelier MJ, Verhoef J (1994) Rapid detection of toxigenic Clostridium difficile in fecal samples by magnetic PCR assay. J Clin Microbiol 32: 1629–1633PubMedGoogle Scholar
  157. Wren BW, Tabagchali S (1987) Restriction endonuclease DNA analysis of Clostridium difficile. J Clin Microbiol 25: 2402–2404PubMedGoogle Scholar
  158. Wren BW, Clayton CL, Tabagchali S (1990) Rapid identification of toxigenic Clostridium difficile by polymerase chain reaction. Lancet 335: 423PubMedCrossRefGoogle Scholar
  159. Wust J, Sullivan NM, Hardegger U, Wilkins TD (1982) Investigation of an outbreak of antibiotic-associated colitis by various typing methods. J Clin Microbiol 16: 1096–1101PubMedGoogle Scholar
  160. Yolken RH, Whitcomb ES, Marien G (1981) Enzyme immunoassay for the detection of Clostridium difficile antigen. J Infect Dis 144: 378PubMedCrossRefGoogle Scholar
  161. Yong WH, Mattia AR, Ferarro MJ (1994) Comparison of fecal lactoferrin latex agglutination assay and methylene blue microscopy for detection of fecal leukocytes in Clostridium difficile associated disease. J Clin Microbiol 32: 1360–1361PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • J. S. Brazier
    • 1
  • S. P. Borriello
    • 2
  1. 1.Anaerobe Reference Unit, Public Health LaboratoryUniversity Hospital of WalesCardiffUK
  2. 2.Central Public Health LaboratoryLondonUK

Personalised recommendations