Skip to main content

Enantioselective Chromatographic Methods for the Analysis of Chiral Environmental Pollutants

  • Chapter
Chiral Environmental Pollutants

Abstract

Enantioselective separations by chromatographic methods can be achieved using two different experimental approaches [1]. Firstly, diastereomeric derivatives are formed by reaction of a chiral compound with a chiral reagent. They may be separated on a stationary phase, which needs not necessarily be chiral. The advantage of this procedure is that a separation is possible with any chromatographic system as long as the required selectivity is available. The presence of at least one functional group as a site of reaction with an optically pure reagent is mandatory if the substrate is to be separated. One of the main drawbacks is the need to use optically pure reagents in order to avoid a systematic error. Another error may be introduced by the generation of energetically different (diastereomeric) transition states in the reaction of a mixture of enantiomers with a chiral reagent. Unless the reaction proceeds to completion, the different rates of these reactions may cause kinetic resolution and result in erroneous proportions of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. König WA (1987) The practice of enantiomer separation by capillary gas chromatography. Hüthig, Heidelberg, p 168

    Google Scholar 

  2. Jaus A, Oehme M (1999) Enantioselective behaviour of ethylated y-cyclodextrins as GC stationary phases for chlorinated pesticides and phase characterisation by HPLC. Chromatographia 50: 299–304

    Article  CAS  Google Scholar 

  3. Vetter W, Klobes U, Luckas B, Hottinger G (1997) Enantiomeric resolution of persistent compounds of technical toxaphene ( CTTs) on t-butyldimethylsilylated ß-cyclodextrin phases. Chromatographia 45: 255–262

    Google Scholar 

  4. Oehme M, personal communication

    Google Scholar 

  5. Vetter W, Klobes U, Luckas B, Hottinger G (1998) Enantioselective determination of persistent toxaphene compounds: possibilities on and alternatives to tert-butyldimethylsilylated ß-cyclodextrin. Organohalogen Compd 35: 305–308

    CAS  Google Scholar 

  6. Koizumi K, Kubota Y, Utamura T, Horiyama (1986) Analysis of heptakis(2,6-di-O-methyl)-ß-cyclodextrin by thin-layer, high-performance liquid and gas chromatography and mass spectrometry. J Chromatogr 368: 329–337

    CAS  Google Scholar 

  7. Jaus A, Oehme M (1999) Benefits of partially alkylated cyclodextrins for the enantioselective separation of chiral polychlorinated compounds. Organohalogen Compd 40: 387–390

    CAS  Google Scholar 

  8. Grob K Jr, Grob G, Grob K (1978) Comprehensive, standardized quality test for glass capillary columns. J Chromatogr 156: 1–20

    Article  CAS  Google Scholar 

  9. Grob K Jr, Grob G, Grob K (1981) Testing capillary gas chromatography columns. J Chromatogr 219: 13–20

    Article  CAS  Google Scholar 

  10. Taylor DR, Maher K (1992) Chiral separations by high-performance liquid chromatography. J Chromatogr Sci 30: 67–85

    CAS  Google Scholar 

  11. Armstrong DW (1984) Chiral stationary phases for high performance liquid chromatographic separation of enantiomers: a mini-review. J Liq Chromatogr 7: 353–376

    Article  CAS  Google Scholar 

  12. Armstrong DW (1987) Optical isomer separation by liquid chromatography. Anal Chem 59: 84A - 91A

    CAS  Google Scholar 

  13. Armstrong DW, Han SM (1988) Enantiomeric separations in chromatography. CRC Crit Rev Anal Chem 19: 175–224

    Article  CAS  Google Scholar 

  14. Krstulovic AM (ed) (1989) Chiral separations by HPLC. Ellis Horwood, Chichester, UK

    Google Scholar 

  15. Allenmark S (1991) Chromatographic enantioseparation, methods and applications, Ellis Horwood, Chichester, UK, p 282

    Google Scholar 

  16. Ahuja S (ed) (1997) Chiral separations: applications and technology, ACS, Washington DC, p 349

    Google Scholar 

  17. Armstrong DW (1998) The evolution of chiral stationary phases for liquid chromatography. LC-GC Intl 22–31

    Google Scholar 

  18. Dalgliesh CE (1952) Optical resolution of aromatic amino acids on paper chromatograms. J Chem Soc 47: 3940–3942

    Article  Google Scholar 

  19. Easson LH, Stedman E (1933) Studies on the relationship between chemical constitution and physiological action. V. Molecular dissymmetry and physiological activity. Biochem J 27: 1257–1266

    Google Scholar 

  20. Kotake M, Saken T, Nakamura N, Senoh S (1951) Resolution of enantiomers of some amino acids by paper chromatography. J Am Chem Soc 73: 2973–2974

    Article  CAS  Google Scholar 

  21. Karagounis G, Coumoulos (1938) A new method of resolving a racemic compound. Nature 142: 162–163

    Article  Google Scholar 

  22. Henderson GM, Rule HG (1938) Resolving a racemic compound. Nature 141: 917–919

    Article  CAS  Google Scholar 

  23. Krebs H, Rasche R (1954) Über die chromatographische Spaltung von Racematen I. Optisch aktive Kobaltkomplexe von Dithiosäuren. Z Anorg Chem 276: 236–238

    Google Scholar 

  24. Krebs H, Schumacher W (1966) Über die chromatographische Spaltung von Racematen. IV. Camphersäuren, Diphensäuren and Aminosäuren. Chem Ber 99: 1341–1346

    Google Scholar 

  25. Steckelberg W, Bloch M, Musso HJ (1968) Notiz zur Antipodentrennung von Biphenylderivaten durch Chromatographie. Chem Ber 101: 1519–1521

    Article  CAS  Google Scholar 

  26. Taylor LT, Busch DH (1967) Chromatographic resolution of the antipodes of a helical complex of nickel(II). J Am Chem Soc 89: 5372–5376

    Article  CAS  Google Scholar 

  27. Leitch RE, Rothbart HL, Rieman W III (1967) Partial resolution of mandelic acid with Sephadex gels. J Chromatogr 28: 132–136

    Article  CAS  Google Scholar 

  28. Karagounis G, Charbonnier E, Floss E (1959) Chromatographic resolution of racemic compounds. J Chromatogr 2: 84–89

    Article  CAS  Google Scholar 

  29. Klemm LH, Reed D (1960) Optical resolution by molecular complexation chromatography. J Chromatogr 3: 364–368

    Article  CAS  Google Scholar 

  30. Grubhofer N, Schleith L (1953) Modifizierte Ionenaustauscher als spezifische Adsorbentien. Naturwissenschaften 40: 508–512

    Article  CAS  Google Scholar 

  31. Manecke G, Lamer W (1967) Zur Racemattrennung an optisch aktiven Polymeren. Naturwissenschaften 54: 140–142

    Article  CAS  Google Scholar 

  32. Blaschke G (1971) Chromatographic resolution of racemates.Angew Chem Int Ed Engl 10: 520–521

    Article  Google Scholar 

  33. Blaschke G (1974) Chromatographie racemischer Mandelsäure an Polyacrylsäure-estern and -amiden optisch aktiver Ephedrinderivate. Chem Ber 107: 237–252

    Article  CAS  Google Scholar 

  34. Buss DR, Vermeulan T (1968) Optical isomer separation. Ind Eng Chem 60: 12–29

    Article  CAS  Google Scholar 

  35. Davankov VA (1980) Resolution of racemates by ligand exchange chromatography. Adv Chromatogr 18: 139–195

    CAS  Google Scholar 

  36. Wainer IW (1988) A practical guide to the selection and use of HPLC chiral stationary phases. J.T. Baker, Phillipsburg, NJ, USA

    Google Scholar 

  37. Pirkle WH, Pochapsky TC (1989) Considerations of chiral recognition relevant to the liquid chromatographic separation of enantiomers. Chem Rev 89: 347–362

    Article  CAS  Google Scholar 

  38. Doury-Berthod M, Poitrenaud C, Tremillon B (1977) Ligand-exchange separation of amino acids. I. Distribution equilibria of some amino acids between ammoniacal copper(II) nitrate solution and phosphonic, carboxylic, and iminodiacetic ion exchangers in the copper(II) form. J Chromatogr 131: 73–77

    Google Scholar 

  39. Davankov VA, Semechkin AV (1977) Ligand-exchange chromatography. J Chromatogr 141: 313–353

    Article  CAS  Google Scholar 

  40. Mikes F, Boshart G, Gil-Av E (1976) Resolution of optical isomers by high-performance liquid chromatography, using coated and bonded chiral charge-transfer complexing agents as stationary phases. J Chromatogr 122: 205–221

    Article  CAS  Google Scholar 

  41. Matlin SA, Stacey VE, Lough WJ (1988) Hexahelicene chiral stationary phase. I. Phase synthesis and use in HPLC resolution of enantiomers. J Chromatogr 450: 157–163

    Google Scholar 

  42. Liu RH, Ku WW (1983) Chiral stationary phases for the gas-liquid chromatographic separation of enantiomers. J Chromatogr 271: 309–323

    Article  CAS  Google Scholar 

  43. Lough WJ (ed) (1989) Chiral liquid chromatography. Blackie & Sons, Glasgow, Scotland

    Google Scholar 

  44. Dappen R, Arm H, Meyer VR (1986) Applications and limitations of commercially available chiral stationary phases for HPLC. J Chromatogr 373: 1–20

    Article  CAS  Google Scholar 

  45. Pirkle WH, Pochapsky TC (1986) Generation of extreme selectivity in chiral recognition. J Chromatogr 369: 175–177

    Article  CAS  Google Scholar 

  46. Pirkle WH, Finn JM, Schreiner JL, Hamper BC (1981) A widely used chiral stationary phase for the high-performance liquid chromatographic separation of enantiomers. J Am Chem Soc 103: 3964–3966

    Article  CAS  Google Scholar 

  47. Doyle TD, Adams WM, Fry FS, Wainer IW (1986) The application of HPLC chiral stationary phases to stereochemical problems of pharmaceutical interest: a general method for the resolution of enantiomeric amines as a-naphthylcarbamate derivatives. J Liq Chromatogr 9: 455–471

    Article  CAS  Google Scholar 

  48. Wainer IW, Doyle TD (1984) Application of high-performance liquid chromatographic chiral stationary phases to pharmaceutical analysis: structural and conformational effects in the direct enantiomeric resolution of a-methylarylacetic antiinflammatory agents. J Chromatogr 284: 117–124

    Article  CAS  Google Scholar 

  49. Dotsevi G, Sogah Y, Cram DJ (1975) Chromatographic optical resolution through chiral complexation of amino ester salts by a host covalently bound to silica gel. J Am Chem Soc 97: 1259–1261

    Article  CAS  Google Scholar 

  50. Udvarhelyi PM, Sunter DC, Watkins JC (1990) Direct separation of amino acid enantiomers using a chiral crown ether stationary phase. Application to 2-amino-w-phosphonoalkanoic acids. J Chromatogr 519: 69–74

    Article  CAS  Google Scholar 

  51. Armstrong DW, DeMond W (1984) Cyclodextrin bonded phases for the liquid chromatographic separation of optical, geometrical, and structural isomers. J Chromatogr Sci 22: 411–421

    CAS  Google Scholar 

  52. Armstrong DW (1985) Bonded phase material for chromatographic separations. US Patent 4,539, 399

    Google Scholar 

  53. Hesse G, Hagel R (1973) A complete separation of a racemic mixture by elution chromatography on cellulose triacetate. Chromatographia 6: 277–278

    Article  CAS  Google Scholar 

  54. Lindner KR, Mannschreck A (1980) Separation of enantiomers by HPLC on triacetylcellulose. J Chromatogr 193: 308–310

    Article  CAS  Google Scholar 

  55. Köller H, Rimbock K-H, Mannschreck A (1983) Characterization of a sorbent for the separation of enantiomers. J Chromatogr 282: 89–95

    Article  Google Scholar 

  56. Mintas M, Mannschreck A, Schneider MP (1997) (1S,2S)-(+)- and (1R,2R)-(-)-1,2Diphenylcyclopropane from their racemic mixture by liquid chromatography on triacetylcellulose. J Chem Soc Chem Commun 602–603

    Google Scholar 

  57. Rizzi AM (1990) Coupled column chromatography in chiral separations. I. Enantiomeric separations on swollen microcrystalline cellulose triacetate columns after a preseparation on a non-chiral alkylsilica column. J Chromatogr 513: 19 2207

    Google Scholar 

  58. Okamoto Y, Kawashima M, Aburatani R, Hatada K, Nishiyama T, Masuda M (1986) Optical resolution of /3-blockers by HPLC on cellulose triphenylcarbamate derivatives. Chem Lett 1237–1243

    Google Scholar 

  59. Allenmark S, Bomgren B, Boren H (1982) Direct resolution of enantiomers by liquid affinity chromatography on albumin-agarose under isocratic conditions. J Chromatogr 237: 473–481

    Article  CAS  Google Scholar 

  60. Allenmark S, Bomgren B (1982) Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases. II. Optical resolution of a sulfoxide, a sulfoxamine, and a benzoylamino acid. J Chromatogr 25: 297–303

    Google Scholar 

  61. Hermansson J, Eriksson M (1986) Direct liquid chromatographic resolution of acidic drugs using a chiral a1-acid glycoprotein column. J Liq Chromatogr 9: 621–639

    Article  CAS  Google Scholar 

  62. Krstulovic AM, Vende JL (1989) Improved performance of the second generation alAGP columns: applications to the routine assay of plasma levels of alfuzosin hydrochloride. Chirality 1: 243–245

    Article  CAS  Google Scholar 

  63. Ôi N, Kitahara H, Doi T (1988) European Patent EP029703, 15 July 1988

    Google Scholar 

  64. Pirkle WH, Welch CJ (1992) An improved chiral stationary phase for the chromatographic separation of underivatized naproxen enantiomers. J Liq Chromatogr 15: 1947–1955

    Article  CAS  Google Scholar 

  65. Armstrong DW, Hilton M, Coffin L (1992) Multimodal chiral stationary phases for liquid chromatography: (R)- and ( S)-naphthylethylcarbamate-derivatized ß-cyclodextrin. LC-GC Intl 5: 28–36

    Google Scholar 

  66. ) Cyclobond handbook. Advanced Separation Technologies Inc., Whippany, NJ, USA

    Google Scholar 

  67. Stalcup AM, Chang S-C, Armstrong DW (1990) (S)-2-Hydroxypropyl-ß-cyclodextrin, a new chiral stationary phase for reversed-phase liquid chromatography. J Chromatogr 513: 181–194

    Google Scholar 

  68. Chang SC, Wang LR,Armstrong DW (1992) Facile resolution ofN-tent-butoxycarbonyl amino acids: the importance of enantiomeric purity in peptide synthesis. J Liq Chromatogr 15: 1411–1429

    CAS  Google Scholar 

  69. Zukowski J, Pawlowska M, Armstrong DW (1992) Efficient enantioselective separation and determination of trace impurities in secondary acids (i.e., imino acids). J Chromatogr 623: 33–41

    Article  CAS  Google Scholar 

  70. Zukowski J, Pawlowska M, Nagatkina M, Armstrong DW (1993) High-performance liquid chromatographic enantioseparation of glycyl di-and tripeptides on native cyclodextrin bonded phases. Mechanistic considerations. J Chromatogr 629: 169–179

    Google Scholar 

  71. Pawlowska M, Chen S, Armstrong DW (1993) Enantiomeric separation of fluorescent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, tagged amino acids. J Chromatogr 641: 257–265

    Article  CAS  Google Scholar 

  72. Armstrong DW, Chen S, Chang C, Chang S (1992) A new approach for the direct resolution of racemic beta adrenergic blocking agents by HPLC. J Liq Chromatogr 15: 545–556

    Article  CAS  Google Scholar 

  73. Chang SC, Reid GL III, Chen S, Chang CD, Armstrong DW (1993) Evaluation of a new polar-organic high-performance liquid chromatographic mobile phase for cyclodextrin-bonded chiral stationary phases. Trends Anal Chem 12: 144–153

    Article  CAS  Google Scholar 

  74. Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen J-R (1994) Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal Chem 66: 1473–1484

    Article  CAS  Google Scholar 

  75. Chen S, Liu Y, Armstrong DW, Borrell JI, Martinez-Teipel B, Matallana J L (1995) Enantioresolution of substituted 2-methoxy-6-oxo-1,4,5,6-tetrahydropyridine-3-carbonitriles on macrocyclic antibiotic and cyclodextrin stationary phases. J Liq Chromatogr 18: 1495–1507

    Article  CAS  Google Scholar 

  76. Armstrong DW, Liu Y, Ekborg-Ott KH (1995) A covalently bonded teicoplanin chiral stationary phase for HPLC. Chirality 7: 474–497

    Article  CAS  Google Scholar 

  77. Berthod A, Liu Y, Bagwill C, Armstrong DW (1996) Facile LC enantioresolution of native amino acids and peptides using teicoplanin chiral stationary phase. J Chromatogr A 731: 123–137

    Article  CAS  Google Scholar 

  78. ) Chirobiotic handbook. Advanced Separation Technologies Inc., Whippany, NJ, USA

    Google Scholar 

  79. Ringo MC, Evans CE (1998) Liquid chromatography as a measurement tool for chiral interactions. Anal Chem News & Features 315A - 321A

    Google Scholar 

  80. Locke DC (1976) In: Advances in chromatography, vol 14. Giggings JC, Grushka E, Cazes J, Brown PR (eds) Marcel Dekker, New York, 1976, pp 87–198

    Google Scholar 

  81. de Ligny CL (1976) In: Giggings JC, Grushka E, Cazes J, Brown PR (eds) Advances in chromatography, vol 14. Marcel Dekker, New York, pp 265–304

    Google Scholar 

  82. Hafkenscheid TL, Tomlinson E In: Giggings JC, Grushka E, Cazes J, Brown PR, (eds) Advances in chromatography, vol 25. Marcel Dekker, New York, pp 2–62

    Google Scholar 

  83. Giddings JC (1965) Dynamics of chromatography Part 1: Principles and theory. Marcel Dekker, New York

    Google Scholar 

  84. Noctor TAG, Felix G, Wainer IW (1991) Stereochemical resolution of enantiomeric 2arylpropionic acid non-steroidal anti-inflammatory drugs on a human serum albumin based high-performance liquid chromatographic chiral stationary phase. Chromatographia 31: 55–59

    Article  CAS  Google Scholar 

  85. Wainer IW (1994) Enantioselective high-performance liquid affinity chromatography as a probe of ligand-biopolymer interactions: an overview of a different use for high-performance liquid chromatographic chiral stationary phases. J Chromatogr 666: 221–234

    Article  CAS  Google Scholar 

  86. Domenici E, Bertucci C, Salvadori P, Motellier S, Wainer IW (1990) Immobilized serum albumin: rapid HPLC probe of stereoselective protein-binding interactions. Chirality 2: 263–268

    Article  CAS  Google Scholar 

  87. Cancelliere G, DAcquarica L, Gasparrini F, Misiti D, Villani C (1999) Enantioselective chromatographic techniques. Principles and state of the art. Chim Ind (Milan) 81: 475–480

    Google Scholar 

  88. Welch CJ, Protopopova MN, Bhat GA (1999) Microscale synthesis and screening of combinatorial libraries of new chromatographic stationary phases. Spec Publ–R Soc Chem 235: 129–138

    CAS  Google Scholar 

  89. Bojarski J, Aboul-Enein HY (1999) Recent chromatographic and electrophoretic enantioseparations of cardiovascular drugs. Biomed Chromatogr 13: 197–208

    Article  CAS  Google Scholar 

  90. Tanaka N (1999) An approach to high-performance packing materials for HPLC. Chromatography 20: 1–10

    CAS  Google Scholar 

  91. Hage DS (1999) Affinity chromatography: a review of clinical applications. Clin Chem 45: 593–615

    CAS  Google Scholar 

  92. Ishida K, Matsuda H, Murakami M, Yamaguchi K (1999) Biologically active compounds of the cyanobacterium Microcystis aeruginosa. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 1997, 39: 667–672

    Google Scholar 

  93. Makino S (1999) Scaling-up procedures on chiral separation by HPLC. Yuki Gosei Kagaku Kyokaishi 57: 472–477

    Article  CAS  Google Scholar 

  94. Hühnerfuss H, Kallenborn R (1992) Review. Chromatographic separation of marine organic pollutants. J Chromatogr 580: 191–214

    Google Scholar 

  95. Hühnerfuss H, Faller J, Kallenborn R, König WA, Ludwig P, Pfaffenberger B, Oehme M, Rimkus G (1993) Enantioselective and nonenantioselective degradation of organic pollutants in the marine ecosystem. Chirality 5: 393–399

    Article  Google Scholar 

  96. Vetter W, Schurig V (1997) Enantioselective determination of chiral organochlorine compounds in biota by gas chromatography on modified cyclodextrins. J Chromatogr A774: 143–175

    Article  CAS  Google Scholar 

  97. Hühnerfuss H (1992) Chromatographische Trennung von Enantiomeren organischer Schadstoffe–ein neuer Zugang zu Prozeßstudien im marinen Ökosystem. GIT Fachz Lab 36: 489–497

    Google Scholar 

  98. Hühnerfuss H (1998) Chromatographic enantiomer separation of chiral xenobiotics and their metabolites–a versatile tool for process studies in marine and terrestrial ecosystems. Organohalogen Compd 35: 319–324

    Google Scholar 

  99. Hühnerfuss H (2000) Chromatographic enantiomer separation of chiral xenobiotics and their metabolites–a versatile tool for process studies in marine and terrestrial ecosystems. Chemosphere 40: 913–919

    Article  Google Scholar 

  100. Gil-Av E, Feibush B, Charles-Sigler R (1966) In: Littlewood AB (ed) Gas chromatography. Institute of Petroleum, London, p 227

    Google Scholar 

  101. Gil-Av E, Feibush B, Charles-Sigler R (1966) Separation of enantiomers by gas liquid chromatography with an optically active stationary phase. Tetrahedron Lett 1009–1015

    Google Scholar 

  102. König WA, Parr W, Lichtenstein HA, Bayer E, Oro J (1970) Gas chromatographic separation of amino acids and their enantiomers: non-polar stationary phases and a new optically active phase. J Chromatogr Sci 8: 183–186

    Google Scholar 

  103. König WA, Nicholson GJ (1975) Glass capillaries for fast gas chromatographic separation of amino acid enantiomers. Anal Chem 47: 951–952

    Article  Google Scholar 

  104. Feibush B, Gil-Av E (1967) Gas chromatography with optically active stationary phases. Resolution of primary amines. J Gas Chromatogr 5: 257–260

    Google Scholar 

  105. Feibush B, Gil-Av E, Tamari T (1972) Assignment of the configuration of optical isomers by gas chromatography with asymmetric phases. Order of emergence of aminoalkanes, and a-, /3-, and y-amino acids on carbonylbis(N-L-valine isopropyl ester) J Chem Soc Perkin 2 1197–1203

    Google Scholar 

  106. Feibush B (1971) Interaction between asymmetric solutes and solvents. N-Lauroyl-Lvalyl-t-butylamide as stationary phase in gas liquid partition chromatography. Chem Commun 544–545

    Google Scholar 

  107. Weinstein S, Feibush B, Gil-Av E (1976) N-Acyl derivatives of chiral amines as novel, readily prepared phases for the separation of optical isomers by gas chromatography. J Chromatogr 126: 97–111

    Article  CAS  Google Scholar 

  108. König WA, Sievers S, Schulze U (1980) Enantiomerentrennung von 2-Hydroxycarbonsäuren an optisch aktiven stationären Phasen. Angew Chem 92:935–936; Angew Chem Int Ed Engl 19: 910

    Article  Google Scholar 

  109. König WA, Sievers S (1980) Structural requirements for enantioselectivity in gas chromatography of chiral a-hydroxy acids. J Chromatogr 200: 189–194

    Article  Google Scholar 

  110. König WA, Benecke I, Sievers S (1981) New results in the gas chromatographic separation of enantiomers of hydroxy acids and carbohydrates. J Chromatogr 217: 71–79

    Article  Google Scholar 

  111. Ôi N, Doi T, Kitahara H, Inda Y (1982) Gas chromatographic determination of optical isomers of some carboxylic acids and amines with optically active stationary phases. J Chromatogr 239: 493–498

    Article  Google Scholar 

  112. Oi N, Kitahara H, Doi T (1983) Gas chromatographic separation of chrysanthemic acid ester enantiomers on a novel chiral stationary phase. J Chromatogr 254: 282–284

    Article  CAS  Google Scholar 

  113. Oi N, Doi T, Kitahara H, Inda Y (1981) Direct separation of some alcohol enantiomers by gas chromatography with amino acid derivatives as chiral stationary phases. J Chromatogr 208: 404–408

    Article  CAS  Google Scholar 

  114. Frank H, Nicholson GJ, Bayer E (1977) Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. J Chromatogr Sci 15: 174–176

    CAS  Google Scholar 

  115. Frank H, Nicholson GJ, Bayer E (1978) Chirale Polysiloxane zur Trennung von optischen Antipoden. Angew Chem 90:396–398; Angew Chem Int Ed Engl 17: 363

    Article  Google Scholar 

  116. Schurig V, Nowotny H-P (1990) Gaschromatographische Enantiomerentrennung an Cyclodextrinderivaten. Angew Chem 102:969–986; Angew Chem Int Ed Engl 29: 939

    Article  Google Scholar 

  117. Bayer E (1983) Chirale Erkennung von Naturstoffen an optisch aktiven Polysiloxanen. Z Naturforsch 38b: 1281–1291

    Google Scholar 

  118. Schurig V (1984) Gaschromatographische Enantiomerentrennung an metallkomplex-freien Stationärphasen. Angew Chem 96:733–752; Angew Chem Int Ed Engl 23: 747

    Article  Google Scholar 

  119. Koppenhoefer B, Bayer E (1985) In: Proceedings of the AJP Martin Honorary Symposium, Urbino, p 1; J Chromatogr Libr 32: 1

    Google Scholar 

  120. Saeed T, Sandra P, Verzele M (1979) Synthesis and properties of a novel chiral stationary phase for the resolution of amino acid enantiomers. J Chromatogr 186: 611–618

    Article  CAS  Google Scholar 

  121. Saeed T, Sandra P, Verzele M (1980) GC separation of the enantiomers of proline and secondary amines. J High Res Chromatogr Chromatogr Commun 3: 35–36

    Article  CAS  Google Scholar 

  122. König WA, Benecke I (1981) Gas chromatographic separation of enantiomers of amines and amino alcohols on chiral stationary phases. J Chromatogr 209: 91–95

    Article  Google Scholar 

  123. König WA, Sievers S, Benecke I (1981) In: Kaiser RE (ed) Proceed IVth Intern Symp Capillary Chromatogr. Institut für Chromatographie, Bad Durkheim and A Hüthig Verlag, Heidelberg, p 703

    Google Scholar 

  124. König WA (1982) Separation of enantiomers by capillary gas chromatography with chiral stationary phases. J High Res Chromatogr Chromatogr Commun 5: 588–595

    Article  Google Scholar 

  125. König WA (1984) In: Schreier P (ed) Analysis of volatiles, de Gruyter, Berlin, p 77

    Google Scholar 

  126. Chrompack International, Middelburg, Netherlands

    Google Scholar 

  127. Schomburg G, Benecke I, Severin G (1985) Modified GC-phases for the enantiomeric separation of optically active compounds: crosslinking experiments with polymeric chiral compounds. J High Res Chromatogr Chromatogr Commun 8: 391–394

    Article  CAS  Google Scholar 

  128. Liu RH, Ku WW (1983) Chiral stationary phases for the gas-liquid chromatographic separation of enantiomers. J Chromatogr 271: 309–323

    Article  CAS  Google Scholar 

  129. Schurig V (1977) Enantiomerentrennung eines chiralen Olefins durch Komplexierungschromatographie an einem optisch aktiven Rhodium(I)-Komplex. Angew Chem 89:113–114; Angew Chem Int Ed Engl 16: 1

    Article  Google Scholar 

  130. Schurig V, Bürkle W (1982) Extending the scope of enantiomer resolution by complexation gas chromatography. J Am Chem Soc 104: 7573–7580

    Article  CAS  Google Scholar 

  131. Koscielski T, Sybilska D, Jurczak J (1983) Separation of a-and ß-pinene into enantiomers in gas-liquid chromatography systems via a-cyclodextrin inclusion complexes. J Chromatogr 280: 131–134

    Article  CAS  Google Scholar 

  132. Schurig V (1994) Review. Enantiomer separation by gas chromatography on chiral stationary phases. J Chromatogr 666: 111–129

    Article  CAS  Google Scholar 

  133. König WA (1992) Gas chromatographic enantiomer separation with modified cyclodextrins. Hüthig Buch Verlag, Heidelberg

    Google Scholar 

  134. Juvancz Z, Alexander G, Szejtli J (1987) Permethylated ß-cyclodextrin as stationary phase in capillary gas chromatography. J High Resolut Chromatogr Chromatogr Commun 10: 105–107

    Article  CAS  Google Scholar 

  135. Alexander G, Juvancz Z, Szejtli J (1988) Cyclodextrins and their derivatives as stationary phases in GC capillary columns. J High Resolut Chromatogr Chromatogr Commun 11: 110–113

    Article  CAS  Google Scholar 

  136. Venema A, Tolsma PJA (1989) Enantiomer separation with capillary gas chromatography columns coated with cyclodextrins. I. Separation of enantiomeric 2-substituted propionic acid esters and some lower alcohols with permethylated ß-cyclodextrin. J High Resolut Chromatogr 12: 32–34

    Article  CAS  Google Scholar 

  137. Schurig V, Nowotny H-P (1988) Separation of enantiomers on diluted permethylated ß-cyclodextrin by high-resolution gas chromatography. J Chromatogr 441: 155–163

    Article  CAS  Google Scholar 

  138. König WA, Lutz S (1988) In: Holmstedt B, Frank H, Testa B (eds) Chirality and biological activity. Proc Intern Symp, April 5–8, Tübingen; ( 1990 ) AR Liss Inc., New York, p 55

    Google Scholar 

  139. König WA, Lutz S, Wenz G (1988) Modifizierte Cyclodextrine–neue, hochenantioselektive Trennphasen für die Gaschromatographie. Angew Chem 100:989–90; Angew Chem Int Ed Engl 27: 979–980

    Article  Google Scholar 

  140. Schomburg G, Weeke F, Müller F, Oreans M (1982) Multidimensional gas chromatography ( MDC) in capillary columns using double oven instruments and a newly designed coupling piece for monitoring detection after pre-separation. Chromatographia 16: 87–91

    Google Scholar 

  141. Duinker JC, Schulz DE, Petrick G (1988) Multidimensional gas chromatography with electron capture detection for the determination of toxic congeners in polychlorinated biphenyl mixtures. Anal Chem 60: 478–482

    Article  CAS  Google Scholar 

  142. Schulz DE, Petrick G, Duinker JC (1989) Complete characterization of polychlorinated biphenyl congeners in commercial Aroclor and Clophen mixtures by multidimensional gas chromatography-electron capture detection. Environ Sci Technol 23: 852859

    Google Scholar 

  143. Saenger W (1980) Cyclodextrin-Einschlußverbindungen in Forschung und Industrie. Angew Chem 92: 343–361

    Article  CAS  Google Scholar 

  144. Schurig V, Glausch A (1993) Enantiomer separation of atropisomeric polychlorinated biphenyls ( PCBs) by gas chromatography on Chirasil-Dex. Naturwissenschaften 80: 468–469

    Google Scholar 

  145. Glausch A, Nicholson GJ, Fluck M, Schurig V (1994) Separation of the enantiomers of stable atropisomeric polychlorinated biphenyls ( PCBs) by multidimensional gas chromatography on Chirasil-Dex. J High Resolut Chromatogr 17: 347–349

    Google Scholar 

  146. Glausch A, Hahn J, Schurig V (1995) Enantioselective determination of chiral 2,2’,3,3’,4,6’-hexachlorobiphenyl (PCB 132) in human milk samples by multidimensional gas chromatography/electron capture detection and by mass spectrometry. Chemosphere 30: 2079–2085

    Article  CAS  Google Scholar 

  147. Blanch GP, Glausch A, Schurig V, Serrano R, Gonzalez MJ (1996) Quantification and determination of enantiomeric ratios of chiral PCB 95, PCB 132, and PCB 149 in shark liver samples (C. coelolepis) from the Atlantic ocean. J High Resolut Chromatogr 19: 392–396

    Article  CAS  Google Scholar 

  148. Koske G, Leupold G, Angerhöfer D, Parlar H (1998) Multidimensional gas chromatographic enantiomer quantification of some polycyclic xenobiotics in cod liver and fish oils. Organohalogen Compd 35: 363–366

    CAS  Google Scholar 

  149. Reich S, Jiménez, Marsili L, Hernandez LM, Schurig V, Gonzalez MJ (1998) Enantiomeric ratios of chiral PCBs in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea. Organohalogen Compd 35: 335–338

    CAS  Google Scholar 

  150. Hinze WL, Williams RW Jr, Fu ZS, Suzuki Y, Quina FH (1990) Novel chiral separation techniques based on surfactants. Colloids Surf 48: 79–94

    Article  CAS  Google Scholar 

  151. Armstrong DW, Jin HL (1987) Enrichment of enantiomers and other isomers with aqueous liquid membranes containing cyclodextrin carriers. Anal Chem 59: 2237–2241

    Article  CAS  Google Scholar 

  152. Möller K (1993) Untersuchungen zur enantioselektiven Anreicherung von chiralen Schadstoffen im marinen and terrestrischen Ökosystem. Master Thesis, University of Hamburg, Germany p 49

    Google Scholar 

  153. Oehme M, Kallenborn R, Wiberg K, Rappe C (1994) Simultaneous enantioselective separation of chlordanes, a nonachlor compound, and o,p-DDT in environmental samples using tandem capillary columns. J High Resolut Chromatogr 17: 583–588

    Article  CAS  Google Scholar 

  154. Jorgenson JW, Lukacs KD (1981) Zone electrophoresis in open tubular glass capillaries. Anal Chem 53: 1298–1302

    Article  CAS  Google Scholar 

  155. Terabe S, Otsuka K, Ando T (1985) Electrokinetic chromatography with micellar solution and open-tubular capillary. Anal Chem 57: 834–841

    Article  CAS  Google Scholar 

  156. Chankvetadze B, Frost M, Blaschke G (1999) Kapillarelektrophorese, eine attraktive Methode zur Enantiomerenanalytik. Pharm u Z 28: 186–196

    Article  CAS  Google Scholar 

  157. Nishi H (1996) Review. Enantiomer separation of drugs by electrokinetic chromatography. J Chromatogr A 735: 57–76

    Article  CAS  Google Scholar 

  158. Jakubetz H, Juza M, Schurig V (1998) Duale Enantiomerendiskriminierung unter gleichzeitiger Verwendung zweier ß-Cyclodextrinderivate in mobiler and stationärer Phase. GIT 5 /98: 479–481

    Google Scholar 

  159. Majors RE (1998) Analytical HPLC column technology–the current status. LC-GC Intl 7–21

    Google Scholar 

  160. Zhong Y, Lin B (1998) Report on 2nd Asia-Pacific International Capillary Electrophoresis and Related Microscale Techniques (APCE’98), Dalian, China, October 8–11

    Google Scholar 

  161. Benito I, Marina ML, Diez-Masa, Gonzalez MJ (1996) Separation of chiral polychlorinated biphenyls by cyclodextrin modified micellar electrokinetic chromatography. Organohalogen Compd 27: 323–326

    CAS  Google Scholar 

  162. Garrison AW, Nzengung VA, Avants JK, Ellington J, Wolfe NL (1997) Determining the environmental enantioselectivity of o,p’-DDT and o,p’-DDD. Organohalogen Compd 31: 256–261

    CAS  Google Scholar 

  163. Grainger J, Smith P, Smith C, Otsuka K, Lovinggood J, Patterson DG Jr (1998) Chiral separation of ortho-substituted polychlorinated biphenyl enantiomers and phenoxy herbicides by capillary electrophoresis with UV and MS detectors. Organohalogen Compd 35: 351–354

    CAS  Google Scholar 

  164. Schurig V, Wistuba D (1999) Recent innovations in enantiomer separation by electrochromatography utilizing modified cyclodextrins as stationary phases. Electrophoresis 20: 2313–2328

    Article  CAS  Google Scholar 

  165. Okamoto M, Okumura T (1999) On-line CE-MS–present status and future prospect. Chromatography 20: 19–26

    CAS  Google Scholar 

  166. Chankvetadze B (1999) Recent trends in enantioseparations using capillary electromigration techniques. Trends Anal Chem 18: 485–498

    Article  CAS  Google Scholar 

  167. Hui F, Caude M (1999) Enantioseparations in CE using macrocyclic antibiotics as chiral selectors. Analusis 27: 131–137

    Article  CAS  Google Scholar 

  168. Zhu L, Xu X, Lin B (1999) Temperature effect and temperature gradient technology in capillary electrophoresis. Sepu 17: 21–25

    CAS  Google Scholar 

  169. Waetzig H, Degenhardt M, Kunkel A (1998) Strategies for capillary electrophoresis. Method development and validation for pharmaceutical and biological applications. Electrophoresis 19: 2695–2752

    Google Scholar 

  170. Hutt AJ, Patel BK (1998) Enantiospecific bioanalysis: techniques and applications. Biomed Health Res 25: 196–212

    CAS  Google Scholar 

  171. Schweitz L,Andersson LI, Nilsson S (1998) Molecular imprint-based stationary phases for capillary electrochromatography. J Chromatogr A 817: 5–13

    Google Scholar 

  172. Castellan GW (1995) Physical chemistry. Benjamin Cummings, Reading, MA, USA, p 942

    Google Scholar 

  173. Altria KD, Kelly MA, Clark BJ (1998) Current applications in the analysis of pharmaceuticals by capillary electrophoresis. II. Trends Anal Chem 17: 214–226

    Chapter  Google Scholar 

  174. Khaledi MG (1998) High-performance capillary electrophoresis: theory, techniques and applications. Chemical Analysis, vol 146. Wiley

    Google Scholar 

  175. Landers JP (1997) Handbook of capillary electrophoresis. CRC Press

    Google Scholar 

  176. Chankvetadze B (1997) Electrophoresis in chiral analysis. Wiley, Chichester

    Google Scholar 

  177. Ward TJ (1994) Chiral media for capillary electrophoresis. Anal Chem 66: 632–640A

    Google Scholar 

  178. Novotny M, Soini H, Steffansson M (1994) Chiral separation through capillary electromigration methods. Anal Chem 66: 646–665A

    Google Scholar 

  179. Bartle KD (1988) In: Smith RM (ed) Supercritical fluid chromatography. The Royal Society of Chemistry, London

    Google Scholar 

  180. Schurig V, Ossig A, Link R (1989) Temperaturabhängige Umkehr der Enantioselektivität bei der Komplexierungs-Gaschromatographie an chiralen Phasen. Angew Chem 101: 197–198

    Article  CAS  Google Scholar 

  181. Schleimer M, Schurig V (1992) In: Wenclawiak B (ed) Analysis with supercritical fluids. Springer, Berlin, p 134

    Google Scholar 

  182. Schurig V, Schleimer M, Jung M (1992) Separation of enantiomers by capillary SFC on Chirasil-Dex and Chiralsil-Metal. Proc 3` Int Symp Chiral Dicrimination, Tübingen, October 5–8, p 76

    Google Scholar 

  183. Jung M, Mayer S, Schurig V (1994) Enantiomer separation by GC, SFC, and CE on immobilized polysiloxane-bonded cyclodextrins. LC-GC Int 7: 340–347

    Google Scholar 

  184. Juza M, Mazzotti M, Morbidelli M (1998) Simulated moving-bed technology. Analytical separations on a large scale. GIT Spez Chromatogr 18:70, 72–74, 76

    Google Scholar 

  185. Maftouh M (1997) Supercritical fluid chromatography: a procedure developed for chiral analysis for pharmaceutical products. Spectra Anal 26: 25–28

    CAS  Google Scholar 

  186. Williams KL, Sander LC (1997) Enantiomer separations on chiral stationary phases in supercritical fluid chromatography. J Chromatogr A 785: 149–158

    Article  CAS  Google Scholar 

  187. Berger TA (1997) Separation of polar solutes by packed column supercritical fluid chromatography. J Chromatogr A 785: 3–33

    Article  CAS  Google Scholar 

  188. Wolf C, Pirkle WH (1997) Enantiomer separation by supercritical fluid chromatography on packed columns. LC-GC 15:352, 354–361, 363

    Google Scholar 

  189. Baycan-Keller R, Oehme M (1999) Optimization of tandem columns for the isomer and enantiomer selective separation of toxaphenes. J Chromatogr A 837: 201–210

    Article  CAS  Google Scholar 

  190. Jones JR, Purnell JH (1990) Prediction of retention times in serially linked open-tubular gas chromatographic columns and optimization of column lengths. Anal Chem 62: 2300–2306

    Article  CAS  Google Scholar 

  191. Benicka E, Novakovski R, Hrouzek J, Krupcik J (1996) Multidimensional gas chromatographic separation of selected PCB atropisomers in technical formulations and sediments. J High Resolut Chromatogr 19: 95–98

    Article  CAS  Google Scholar 

  192. de Geus HJ, Baycan-Keller R, Oehme M, de Boer J, Brinkman UATh (1998) Enantiomer ratios of bornane congeners in biological samples using heart-cut gas chromatography with an enantioselective column. J High Resol Chromatogr 21: 39–46

    Article  Google Scholar 

  193. Schurig V (1988) Enantiomer analysis by complexation gas chromatography. Scope, merits and limitations. J Chromatogr 441: 135–153

    Article  CAS  Google Scholar 

  194. Meyer VR (1995) Accuracy in the chromatographic determination of extreme enantiomeric ratios: a critical review. Chirality 7: 567–571

    Article  CAS  Google Scholar 

  195. Islam MR, Mandi JG, Bowen JD (1997) Pharmacological importance of stereochemical resolution of enantiomeric drugs. Drug Safety 17: 149–165

    Article  CAS  Google Scholar 

  196. Möller K, Bretzke C, Hühnerfuss H, Kallenborn R, Kinkel JN, Kopf J, Rimkus G (1994) The absolute configuration of (+)-a-1,2,3,4,5,6-hexachlorocyclohexane and its permeation through the seal blood-brain barrier. Angew Chem 33:882–884; Angew Chem Int Ed Eng! 33: 882–884

    Article  Google Scholar 

  197. König WA, Hardt IH, Gehrcke B, Hochmuth DH, Hühnerfuss H, Pfaffenberger B, Rimkus G (1994) Optisch aktive Referenzsubstanzen für die Umweltanalytik. Angew Chem 106:2175–2177; Angew Chem Int Ed Eng! 33: 2085–2087

    Article  Google Scholar 

  198. Berkman CE, Thompson CM, Perrin SR (1993) Synthesis, absolute configuration, and analysis of malathion, malaoxon, and isomalathion enantiomers. Chem Res Toxicol 6: 718–723

    Article  CAS  Google Scholar 

  199. Berkman CE, Thompson CM, Perrin SR (1993) Erratum: Synthesis, absolute configuration, and analysis of malathion, malaoxon, and isomalathion enantiomers. Chem Res Toxicol 7: 275

    Google Scholar 

  200. Nishikawa Y (1993) Enantiomer separation of synthetic pyrethroids by subcritical and supercritical fluid chromatography with chiral stationary phases. Anal Sci 9: 33–37

    Article  CAS  Google Scholar 

  201. Fingerling DM, Parlar H (1997) Spectroscopic characterization of 7b,8c,9c-trichlorocamphen-2-one formed from toxaphene components in an anaerobic soil. J Agric Food Chem 45: 4116–4121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kallenborn, R., Hühnerfuss, H. (2001). Enantioselective Chromatographic Methods for the Analysis of Chiral Environmental Pollutants. In: Chiral Environmental Pollutants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06243-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06243-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08569-7

  • Online ISBN: 978-3-662-06243-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics