Fundamentals of CMP Slurry

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 69)


Slurries are not new. In some form or another they have been around since individuals began polishing surfaces. The reasons vary depending upon the times, such as inlaid metal on Roman shields or Galileo’s first lenses. However they all consisted of the same components, a solution and an abrasive. It was a natural technology transfer of the lens polishing slurry to semiconductor wafer polishing slurries in the early 1980’s. The reasons were the need to planarize what was then advanced next-generation IC devices in a manner more reproducible and reliable than existing technology allowed. Although the application of the slurry was an advance in the semiconductor technology, the slurry composition remained unchanged from the composition used in lens polishing. However the devices soon became more complex and CMP related defects became more apparent as yield limits. This resulted in more attention to the finer details of CMP, in particular the slurry.


Removal Rate Shelf Life Silicon Nitride Fumed Silica Settling Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.M. Cook, J. Non-cryst. Solids, 120, 152, 1990.CrossRefGoogle Scholar
  2. 2.
    R.K. Iler, The Chemistry of Silica, John Wiley Sons Inc., NY, 1979.Google Scholar
  3. 3.
    T. Izumitani, Paper TuB-Al, Tech. Digest, Topical Meeting on the Science of Polishing, Optical Society of America, 17 April 1984.Google Scholar
  4. 4.
    S.D. Hosali, A.R. Sethuraman, J. Wang and L.M. Cook, “Composition and Method for Polishing a Composite of Silica and Silicon Nitride”, US Patent # 5,738, 800, April 1998.Google Scholar
  5. 5.
    J. Prasad, A. Misra, J. Sees, B. Morrison and L. Hall, “Mechanism of Chemical Mechanical Polishing Process for Oxide-Filled Shallow Trench Isolation Applications” in Chemical Mechanical Planarization I, I. Ali, S. Raghavan eds., 96–22, 36, The Electrochemical Society, 1997.Google Scholar
  6. 6.
    D. Cossaboon, J. Wang and L.M. Cook, “Compositions and Methods for Polishing Silica, Silicates and Silicon Nitride”, US Patent # 5,769, 689, June 1998.Google Scholar
  7. 7.
    C. Rahunath, K.T. Lee, E.A. Kneer, V. Mathew and S. Raghavan, “Mechanistic Aspects of Chemical Mechanical Polishing of Tungsten Using Ferric Ion Based Alumina Slurries”, in Chemical Mechanical Planarization I, I. Ali, S. Raghavan eds., 96–22, 1, The Electrochemical Society, 1997.Google Scholar
  8. 8.
    E.A. Kneer, C. Raghunath, V. Mathew, S. Raghavan and J.S. Jeon, J. Electrochem. Soc., 144, 3041, 1997.CrossRefGoogle Scholar
  9. 9.
    D.J. Stein, D. Hetherington, R. Guilinger and J.L. Cecchi, J. Electrochem. Soc., 145, 3190, 1998.CrossRefGoogle Scholar
  10. 10.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston, TX, 1975.Google Scholar
  11. 11.
    F. Kaufman, D. Thompson, R. Broadie, M. Jaso, W. Guthrie, D. Pearson and M. Small, J. Electrochem. Soc., 138, 3460, 1991.CrossRefGoogle Scholar
  12. 12.
    K. Yang, S. Avanzino and C. Woo, “Slurry for Chemical Mechanical Polishing of Copper”, US Patent # 6,143, 656, Nov. 2000.Google Scholar
  13. 13.
    R. Small, L. McGhee, D. Maloney and M. Peterson, “Chemical Mechanical Polishing Composition and Process”, US Patent # 6,117, 783, Sep. 2000.Google Scholar
  14. 14.
    V. Brusic and R.C. Kistler, “Chemical Mechanical Polishing Slurry useful for Copper Substrates”, US Patent # 5,954, 997, Sep. 1999.Google Scholar
  15. 15.
    V. Brusic, R.C. Kistler and S. Wang, “Chemical Mechanical Polishing Slurry useful for Copper Substrates”, US Patent # 6,126, 853, Oct. 2000.Google Scholar
  16. 16.
    V. Brusic, R.C. Kistler and S. Wang, “Chemical Mechanical Polishing Slurry useful for Copper/Tantalum Substrate”, US Patent # 6,063, 306, May 2000.Google Scholar
  17. 17.
    A.E. Braun, Semiconductor International, 22 (14), 54, 1999.Google Scholar
  18. 18.
    P.C. Heimenz, Principles of Colloid and Surface Chemistry 2nd ed., Marcel Dekker, Inc., NY, 1986.Google Scholar
  19. 19.
    C.H. Yao, D.L. Feke, K.M. Robinson and S. Meikle, J. Electrochem. Soc., 147, 1502, 2000.CrossRefGoogle Scholar
  20. 20.
    J.H. Golden, R. Small, L. Pagan, C. Shang, S. Raghavan, Semiconductor International, 23 (12), 85, 2000.Google Scholar
  21. 21.
    J.M. Steigerwald, S.P. Muraka and R.J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley Sons, Inc., NY, 1997.CrossRefGoogle Scholar
  22. 22.
    R. Jairath, M. Desai, M. Stell, R. Tolles and D. Scherber-Brewer, Mat. Res. Soc. Symp. Proc., 337, 121, 1994.CrossRefGoogle Scholar
  23. 23.
    C.H. Yao, D.L. Feke, K.M. Robinson and S. Meikle, J. Electrochem. Soc., 147, 3094, 2000.CrossRefGoogle Scholar
  24. 24.
    H. Erickson, “Method for Producing Alumina”, US Patent # 4,066, 740, Jan. 1978.Google Scholar
  25. 25.
    M. Mohri, Y. Uchida, Y. Sawabe, “Process for Producing Alpha-Alumina Powder”, US Patent # 5,538, 709, July 1996.Google Scholar
  26. 26.
    M. Mohri, Y. Uchida, Y. Sawabe and H. Watanabe, “Alpha-Alumina Powder and Process for Producing the Same”, US Patent # 6,159, 441, Dec 2000.Google Scholar
  27. 27.
    T. Harato, T. Furubayashi, T. Ashitani, T. Ogawa, “Process for Preparation of Alumina”, US Patent # 5,302, 368, April 1994.Google Scholar
  28. 28.
    L. Zhang, S. Raghavan, S.G. Meikle and G. Hudson, J. Electrochem. Soc., 146, 1442, 1999.CrossRefGoogle Scholar
  29. 29.
    F. Zhang, A.A. Busnaina and G. Ahmadi, J. Electrochem. Soc., 146, 2665, 1999.CrossRefGoogle Scholar
  30. 30.
    J. Wang, “Oxide Particles and Method for Producing Them”, US Patent # 5,389, 352, Feb. 1995.Google Scholar
  31. 31.
    C. David, C. Magnier and B. Latourrette, “Novel Ceric Oxide Particulates and Process of Making”, US Patent # 4,859, 432, Aug 1989.Google Scholar
  32. 32.
    G.B. Basim, J.J. Adler, U. Mahajan, R.K. Singh and B.M. Moudgil, J. Electrochem Soc., 147, 3523, 2000.CrossRefGoogle Scholar
  33. 33.
    Post-dilution Filtration“, Scholar
  34. 34.
    F.C. Chou, M.N. Fu and M.W. Wang, J. Electrochem. Soc., 147, 3873, 2000.CrossRefGoogle Scholar
  35. 35.
    Y.Z. Hu, R.J. Gutmann and T.P. Chow, J. Electrochem. Soc., 145, 3919, 1998.CrossRefGoogle Scholar
  36. 36.
    S. Kishii, K. Nakamura and Y. Arimoto, Symposium on VLSI Technology Digest of Technical Papers, 32, 27, 1997.Google Scholar
  37. 37.
    S. Kishii, K. Nakamura, Y. Arimoto, A. Hatada, R. Suzuki, N. Ueda and K. Hanawa, “Slurry Containing Manganese Oxide and Fabrication Process of a Semiconductor Device Using such a Slurry”, US Patent # 6,159, 858, Dec. 2000.Google Scholar
  38. 38.
    S. Kondo, N. Sakuma, Y. Homma, Y. Goto, N. Ohashi, H. Yamaguchi and N. Owada, J. Electrochem. Soc., 147, 3907, 2000.CrossRefGoogle Scholar
  39. 39.
    S. Kondo, N. Sakuma, Y. Homma, Y. Goto, N. Ohashi, H. Yamaguchi and N. Owada, IEEE, 253, 2000.Google Scholar
  40. 40.
    J.G. Darab and D.W. Matson, J. Elec. Mats., 27, 1068, 1998.CrossRefGoogle Scholar
  41. 41.
    S. Bruno, “Hydrothermal Process for Making Ultrafine Metal Oxide Powders”, US Patent # 5,776, 239, July 1998.Google Scholar
  42. 42.
    T. Noguchi, K. Iwasa, R. Anselmann, M. Knapp and M. Loch, “Coated Spherical SiO2 Particles”, US Patent # 5,846, 310, Dec. 1998.Google Scholar
  43. 43.
    A.E. Braun, Semiconductor International, 23 (12), 66, 2000.Google Scholar
  44. 44.
    S. Avanzino, C. Woo, D.M. Schonauer and P.A. Burke, “Chemical-mechanical polishing slurry formulation and method for tungsten and titanium thin films”, US Patent # 5,916, 855, June 1999.Google Scholar
  45. 45.
    S. Grumbine, C. Streinz and B. Mueller, “Composition and Slurry Useful for Metal CMP”, US Patent # 5,980, 775, Nov. 1999.Google Scholar
  46. 46.
    J.P. Bare, MICRO, 53, Sept. 1997.Google Scholar
  47. 47.
    A.S. Dukhin and P.J. Goetz, “Acoustic and Electroacoustic Spectroscopy” in Ultrasonic and Dielectric Characterization Techniques Ed.V. Hackley and J. Texter, American Ceramic Society, 77, (1998).Google Scholar
  48. 48.
    Handbook of Chemistry and Physics 70th ed, R. Weast and D. Lide, Eds., CRC Press, Boca Raton, Fl, D274–275, 1989.Google Scholar
  49. 49.
    T. Vo, T. Buley and J.J. Gagliardi, Solid State Technology, 43 (6), 123, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

There are no affiliations available

Personalised recommendations