Cellular Mortality and Immortalization: A Complex Interplay of Multiple Gene Functions

  • R. Wadhwa
  • S. C. Kaul
  • Y. Mitsui
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 24)


Since the pioneering work of Hayflick and Moorhead (1961) it has been generally accepted that normal somatic cells when cultured can undergo only a limited number (depending on the cell type) of divisions and reach an irreversibly growth arrested, but viable stage. The age of cells is determined by the number of times cells divide rather than the calendar time elapsed. The restricted replicative capacity of normal cells which confers them the mortal divisional phenotype is widely accepted as the most consistent manifestation of cellular aging. Relevance of in vitro life span of cells to in vivo aging is evidenced by
  1. (1)

    the correlation of in vitro life span and the donor age

  2. (2)

    correlation between in vitro life span with the average life expectancy of the species, and

  3. (3)

    the reduced life span of cells from patients afflicted with premature aging syndromes (Smith and Pereira-Smith 1996; Kaul et al. 1998a).



Cellular Senescence Senescent Cell Replicative Senescence Immortal Cell Senescent Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banga SS, Kim S, Hubbard K, Dasgupta T, Jha KK, Patsalis P, Hauptschein R, Gamberi B, DallaFavera R, Kraemer P, Ozer H L (1997) SEN6, a locus for SV40-mediated immortalization of human cells, maps to 6q26–27. Oncogene 14: 313–321PubMedCrossRefGoogle Scholar
  2. Barrett JC, Annab LA, Alcorta D, Preston G, Vojta P, Yin Y (1994) Cellular senescence and cancer. Cold Spring Harbor Symp Quant Biol 59: 411–418PubMedCrossRefGoogle Scholar
  3. Bartek J, Bartkova J, Lukas J (1997) The retinoblastoma protein pathway in cell cycle control and cancer. Exp Cell Res 237: 1–6PubMedCrossRefGoogle Scholar
  4. Berube NG, Smith JR, Pereira-Smith OM (1998) The genetics of cellular senescence. Am J Hum Genet 62: 1015–1019PubMedCrossRefGoogle Scholar
  5. Bini L, Magi B, Marzocchi B, Arcuri F, Tripodi S, Cintorino M, Sanchez JC, Frutiger S, Hughes G, Pallini V, Hochstrasser DF, Tosi P (1997) Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis 18: 2832–2841PubMedCrossRefGoogle Scholar
  6. Blasco MA, Lee HW, Rizen M, Hanahan D, DePinho R, Greider CW (1997) Mouse models for the study of telomerase. Ciba Found Symp 211: 160–170PubMedGoogle Scholar
  7. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay J W, Lichtsteiner S, Wright W E (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–352PubMedCrossRefGoogle Scholar
  8. Bond JA, Wyllie FS, Wynford-Thomas D. (1994) Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 9: 1885–1889PubMedGoogle Scholar
  9. Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F (1996) Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13: 2097–2104PubMedGoogle Scholar
  10. Broccoli D, Godley LA, Donehower LA, Varmus HE, de Lange T (1996) Telomerase activation in mouse mammary tumors: lack of detectable telomere shortening and evidence for regulation of telomerase RNA with cell proliferation. Mol Cell Biol 16: 3765–3772PubMedGoogle Scholar
  11. Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277: 831–834PubMedCrossRefGoogle Scholar
  12. Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ (1995) Radiationinduced cell cycle arrest compromised by p21 deficiency. Nature 377: 552–557PubMedCrossRefGoogle Scholar
  13. Bruschi SA, Lindsay JG (1994) Mitochondrial stress protein actions during chemically induced renal proximal tubule cell death. Biochem Cell Biol 72: 663–667PubMedCrossRefGoogle Scholar
  14. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR (1995) Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14: 4240–4248PubMedGoogle Scholar
  15. Carman TA, Afshari CA, Barrett JC (1998) Cellular senescence in telomerase-expressing Syrian hamster embryo cells. Exp Cell Res 244: 33–42PubMedCrossRefGoogle Scholar
  16. Chang ZF (1997) Regulatory mechanisms of replication growth limits in cellular senescence. J Formos Med Assoc 96: 784–791PubMedGoogle Scholar
  17. Chin L, Pomerantz J, DePinho RA (1998) The INK4a/ARF tumor suppressor: one gene-two products-two pathways. Trends Biochem Sci 23: 291–296PubMedCrossRefGoogle Scholar
  18. Counter CM (1996) The roles of telomeres and telomerase in cell life span. Mutat Res 366: 45–63PubMedCrossRefGoogle Scholar
  19. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–84PubMedCrossRefGoogle Scholar
  20. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens, M, Rubelj IGoogle Scholar
  21. Pereira-Smith OM, et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci. USA 92: 9363–9967CrossRefGoogle Scholar
  22. Domanico SZ, DeNagel DC, Dahlseid JN, Green JM, Pierce SK (1993) Cloning of the gene encoding peptide-binding protein 74 shows that it is a new member of the heat shock protein 70 family. Mol Cell Biol 13: 3598–3610PubMedGoogle Scholar
  23. Duncan EL, Reddel RR (1997) Genetic changes associated with immortalization. A review. Biochemistry (Mosc) 62: 1263–1274Google Scholar
  24. Fujii M, Ide T, Wadhwa R, Tahara H, Kaul SC, Mitsui Y, Ogata T, Oishi M, Ayusawa D. (1995) Inhibitors of cGMP-dependent protein kinase block senescence induced by inactivation of T antigen in SV40-transformed immortal human fibroblasts. Oncogene 11: 627–634PubMedGoogle Scholar
  25. Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12: 2973–2983PubMedCrossRefGoogle Scholar
  26. Gire V, Wynford-Thomas D (1998) Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol Cell Biol 18: 1611–1621PubMedGoogle Scholar
  27. Gonos ES (1998) Expression of the growth arrest specific genes in rat embryonic fibroblasts undergoing senescence. Ann N Y Acad Sci 851: 466–469PubMedCrossRefGoogle Scholar
  28. Guarente L (1996) Do changes in chromosomes cause aging ? Cell 86: 9–12PubMedCrossRefGoogle Scholar
  29. Guarente L (1997) Link between aging and the nucleolus. Genes Dev 11: 2449–2455PubMedCrossRefGoogle Scholar
  30. Haber DA (1997) Splicing into senescence: the curious case of p16 and p19ARF. Cell 91: 555–558PubMedCrossRefGoogle Scholar
  31. Hara E, Smith R, Parry D, Tahara, H, Stone S, Peters G (1996) Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell Biol 16: 859–867Google Scholar
  32. Harley CB, Vaziri H, Counter CM, Allsopp RC (1992) The telomere hypothesis of cellular aging. Exp Gerontol 27: 375–382PubMedCrossRefGoogle Scholar
  33. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585–621PubMedCrossRefGoogle Scholar
  34. Holliday R (1987) The inheritance of epigenetic defects. Science 238: 163–170PubMedCrossRefGoogle Scholar
  35. Holliday R (1995) Understanding Ageing. Cambridge University Press Cambridge Iatropoulos MJ, Williams GM (1996) Proliferation markers. Exp Toxicol Pathol 48: 175–181Google Scholar
  36. Jost CA, Marin MC, Kaelin WG Jr (1997) p73 is a human p53-related protein that can induce apoptosis. Nature 389: 191–194Google Scholar
  37. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819PubMedCrossRefGoogle Scholar
  38. Kaneko S, Satoh Y, Ikemura K, Konishi T, Ohji T, Karasaki Y, Higashi K, Gotoh S (1995) Alterations of expression of the cytoskeleton after immortalization of human fibroblasts. Cell Struct Fund 20: 107–115CrossRefGoogle Scholar
  39. Kaul SC, Wadhwa R, Komatsu Y, Sugimoto Y, Mitsui Y (1993) On the cytosolic and perinuclear mortalin: an insight by heat shock. Biochem Biophys Res Commun 193: 348–355PubMedCrossRefGoogle Scholar
  40. Kaul SC, Mitsui Y, Komatsu Y, Reddel RR, Wadhwa R. (1996) A highly expressed 81 kDa protein in immortalized mouse fibroblast: its proliferative function and identity with ezrin. Oncogene 13: 1231–1237PubMedGoogle Scholar
  41. Kaul SC, Matsui M, Takano S, Sugihara T, Mitsui Y, Wadhwa R (1997) Expression analysis of mortalin, a unique member of the Hsp70 family of proteins, in rat tissues. Exp Cell Res 232: 56–63PubMedCrossRefGoogle Scholar
  42. Kaul SC, Mitsui Y, Wadhwa R (1998a) Molecular insights to cellular mortality and immortalization. Ind J Exp Biol 36: 345–352Google Scholar
  43. Kaul SC, Duncan EL, Englezou A, Takano S, Reddel RR, Mitsui Y, Wadhwa R (1998b) Malignant transformation of NIH 3t3 cells by overexpression of mot-2 protein. Oncogene 17: 907–911PubMedCrossRefGoogle Scholar
  44. Kim NW (1997) Clinical implications of telomerase in cancer. Eur J Cancer 33: 781–786PubMedCrossRefGoogle Scholar
  45. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387: 299–303PubMedCrossRefGoogle Scholar
  46. Kulju KS, Lehman JM (1995) Increased p53 protein associated with aging in human diploid fibroblasts. Exp Cell Res 217: 336–345PubMedCrossRefGoogle Scholar
  47. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12: 3008–3019PubMedCrossRefGoogle Scholar
  48. Massa SM, Longo FM, Zuo J, Wang S, Chen J, Sharp FR (1995) Cloning of rat grp75, an hsp70family member, and its expression in normal and ischemic brain. J Neurosci Res 40: 807–819PubMedCrossRefGoogle Scholar
  49. Merrick BA, Patterson RM, Witcher LL, He C, Selkirk JK (1994) Separation and sequencing of familiar and novel murine proteins using preparative two-dimensional gel electrophoresis. Electrophoresis 15: 735–745PubMedCrossRefGoogle Scholar
  50. Mizzen LA, Kabiling AN, Welch WJ (1991) The two mammalian mitochondrial stress proteins, grp 75 and hsp 58, transiently interact with newly synthesized mitochondrial proteins. Cell Regul 2: 165–179PubMedGoogle Scholar
  51. Nakabayashi K, Ogata T, Fujii M, Tahara H, Ide T, Wadhwa R, Kaul SC, Mitsui Y, Ayusawa D. (1997) Decrease in amplified telomeric sequences and induction of senescence markers by introduction of human chromosome 7 or its segments in SUSM-1. Exp Cell Res 235: 345–353PubMedCrossRefGoogle Scholar
  52. Ning Y, Weber JL, Killary AM, Ledbetter DH, Smith JR, Pereira-Smith OM (1991) Genetic analysis of indefinite division in human cells: evidence for a cell senescence-related gene(s) on human chromosome 4. Proc Natl Acad Sci USA 88: 5635–5639PubMedCrossRefGoogle Scholar
  53. Noble JR, Rogan EM, Neumann AA, Maclean K, Bryan TM, Reddel RR (1996) Association of extended in vitro proliferative potential with loss of p16INK4 expression. Oncogene 13: 1259–1268PubMedGoogle Scholar
  54. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90–98PubMedCrossRefGoogle Scholar
  55. Ogata T, Ayusawa D, Namba M, Takahashi E, Oshimura M, Oishi M (1993) Chromosome 7 suppresses indefinite division of nontumorigenic immortalized human fibroblast cell lines KMST-6 and SUSM-1. Mol Cell Biol 13: 6036–6043PubMedGoogle Scholar
  56. Ogryzko VV, Hirai TH, Russanova VR, Barbie DA, Howard BH (1996) Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol 16: 5210–5218PubMedGoogle Scholar
  57. Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I, Ikawa Y, Nimura Y, Nakagawara A, Obinata M, Ikawa S (1998) Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 4: 839–843PubMedCrossRefGoogle Scholar
  58. Oshimura M, Barrett JC (1997) Multiple pathways to cellular senescence: role of telomerase repressors. Eur J Cancer 33: 710–715PubMedCrossRefGoogle Scholar
  59. Palmero I, Pantoja C, Serrano M (1998) p19ARF links the tumour suppressor p53 to Ras. Nature 395: 125–126Google Scholar
  60. Pereira-Smith OM, Smith JR (1988) Genetic analysis of indefinite division in human cells: identification of four complementation groups. Proc Natl Acad Sci USA 85: 6042–6046PubMedCrossRefGoogle Scholar
  61. Prowse KR, Greider CW (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci USA 92: 4818–4822PubMedCrossRefGoogle Scholar
  62. Rattan SI (1996) Cellular and molecular determinants of ageing. Indian J Exp Biol 34: 1–6PubMedGoogle Scholar
  63. Reddel RR, Bryan TM, Murnane JP (1997) Immortalized cells with no detectable telomerase activity. A review. Biochemistry (Mosc) 62: 1254–1262Google Scholar
  64. Sandhu AK, Hubbard K, Kaur GP, Jha KK. Ozer HL, Athwal RS (1994) Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6. Proc Natl Acad Sci USA 91: 5498–5502PubMedCrossRefGoogle Scholar
  65. Sasaki M, Honda T, Yamada H, Wake N, Barrett JC, Oshimura M (1994) Evidence for multiple pathways to cellular senescence. Cancer Res 54: 6090–6093PubMedGoogle Scholar
  66. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602PubMedCrossRefGoogle Scholar
  67. Seshadri T, Campisi J (1990) Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science 247: 205–209PubMedCrossRefGoogle Scholar
  68. Sherr CJ (1998). Tumor surveillance via the ARF-p53 pathway. Genes Dev 12: 2984–2991PubMedCrossRefGoogle Scholar
  69. Sherwood SW, Rush D, Ellsworth JL, Schimke RT (1988) Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc Natl Acad Sci USA 85: 9086–9090PubMedCrossRefGoogle Scholar
  70. Smith JR, Pereira-Smith OM (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273: 63–67PubMedCrossRefGoogle Scholar
  71. Sugawara O, Oshimura M, Koi M, Annab LA, Barrett JC. (1990) Induction of cellular senescence in immortalized cells by human chromosome 1. Science 247: 707–710PubMedCrossRefGoogle Scholar
  72. Takano S, Wadhwa R, Yoshii Y, Nose T, Kaul SC, Mitsui Y (1997) Elevated levels of mortalin expression in human brain tumors. Exp Cell Res 237: 38–45PubMedCrossRefGoogle Scholar
  73. ATrink B, Okami K, Wu L, Sriuranpong V, Jen J, Sidransky D (1998) A new human p53 homologue. Nat Med 4: 747–748CrossRefGoogle Scholar
  74. Vaziri H, Benchimol S (1996) From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp Gerontol 31: 295–301PubMedCrossRefGoogle Scholar
  75. von Zglinicki T, Saretzki G (1997) Molecular mechanisms of senescence in cell culture. Z. Gerontol Geriatr 30: 24–28Google Scholar
  76. Wadhwa R, Kaul SC, Ikawa Y, Sugimoto Y (1991a) Protein markers for cellular mortality and immortality. Mutat Res 256: 243–254PubMedCrossRefGoogle Scholar
  77. Wadhwa R, Ikawa Y, Sugimoto Y (199 lb) Natural and conditional ageing of mouse fibroblasts: genetic vs. epigenetic control. Biochem Biophys Res Commun 178: 269–275Google Scholar
  78. Wadhwa R, Kaul SC, Ikawa Y, Sugimoto Y (1993a) Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype. J Biol Chem 268: 6615–6621Google Scholar
  79. Wadhwa R, Kaul SC, Sugimoto Y, Mitsui Y (1993b) Induction of cellular senescence by transfection of cytosolic mortalin cDNA in NIH 3T3 cells. J Biol Chem 268: 22239–22242PubMedGoogle Scholar
  80. Wadhwa R, Kaul SC, Mitsui Y, Sugimoto Y (1993c) Differential subcellular distribution of mortalin in mortal and immortal mouse and human fibroblasts. Exp Cell Res 207: 442–448PubMedCrossRefGoogle Scholar
  81. Wadhwa R, Kaul SC, Mitsui Y (1994) Cellular mortality to immortalization: mortalin. Cell Struct Funct 19: 1–10PubMedCrossRefGoogle Scholar
  82. Wadhwa R, Pereira-Smith OM, Reddel RR, Sugimoto Y, Mitsui Y, Kaul SC (1995) Correlation between complementation group for immortality and the cellular distribution of mortalin. Exp Cell Res 216: 101–106PubMedCrossRefGoogle Scholar
  83. Wadhwa R, Akiyama S, Sugihara T, Reddel RR, Mitsui Y, Kaul SC (1996) Genetic differences between the pancytosolic and perinuclear forms of murine mortalin. Exp Cell Res 226: 381–386PubMedCrossRefGoogle Scholar
  84. Wadhwa, R, Takano S, Robert M, Yoshida A, Nomura H, Reddel RR, Mitsui Y, Kaul SC (1998) Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J Biol Chem 273: 29586–29591PubMedCrossRefGoogle Scholar
  85. Wang E (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bc12 is involved. Cancer Res 55: 2284–2292PubMedGoogle Scholar
  86. Wang E, Lee MJ, Pandey S (1994) Control of fibroblast senescence and activation of programmed cell death. J Cell Biochem 54: 432–439PubMedCrossRefGoogle Scholar
  87. Wareham KA, Lyon MF, Glenister PH, Williams ED (1987) Age related reactivation of an X-linked gene. Nature 327: 725–727PubMedCrossRefGoogle Scholar
  88. Webster TI, Naylor DJ, Hartman DJ, Hoj PB, Hoogenraad NJ (1994) cDNA cloning and efficient mitochondrial import of pre-mtHSP70 from rat liver. DNA Cell Biol. 13: 1213–1220Google Scholar
  89. Weinberg R. A. (1996) The molecular basis of carcinogenesis: understanding the cell cycle clock. Cytokines Mol Ther 2: 105–110PubMedGoogle Scholar
  90. Whitaker NJ, Bryan TM, Bonnefin P, Chang AC, Musgrove EA, Braithwaite AW, Reddel RR (1995) Involvement of RB-1, p53, p16INK4 and telomerase in immortalisation of human cells. Oncogene 11: 971–976PubMedGoogle Scholar
  91. Wynford-Thomas D (1996a) p53: guardian of cellular senescence. J Pathol 180: 118–121Google Scholar
  92. Wynford-Thomas D (1996b) Telomeres, p53 and cellular senescence. Oncol Res 8: 387–398PubMedGoogle Scholar
  93. Yeager TR, Stadler W, Belair C, Puthenveettil J, Olopade O, Reznikoff C. (1995) Increased p16 levels correlate with pRb alterations in human urothelial cells. Cancer Res. 55: 493–497PubMedGoogle Scholar
  94. Yeager TR, DeVries S, Jarrard DF, Kao C, Nakada SY, Moon TD, Bruskewitz R, Stadler WM, Meisner LF, Gilchrist KW, Newton MA, Waldman FM, Reznikoff CA (1998) Overcoming cellular senescence in human cancer pathogenesis. Genes Dev 12: 163–174PubMedCrossRefGoogle Scholar
  95. Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725–734PubMedCrossRefGoogle Scholar
  96. Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12: 2997–3007.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • R. Wadhwa
    • 1
  • S. C. Kaul
    • 2
  • Y. Mitsui
    • 2
  1. 1.Chugai Research Institute for Molecular Medicine153-2 Nagai,IbarakiJapan
  2. 2.National Institute of Bioscience and Human-Technology, AISTTsukuba, IbarakiJapan

Personalised recommendations