Advertisement

SV40-Mediated Immortalization

  • H. L. Ozer
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 24)

Abstract

Simian virus 40 (SV40) has been extensively used as a model system for mammalian cell replication and gene expression and has served as a highly effective “probe” for cellular functions. This has also been the case for understanding carcinogenesis since viral gene expression can result in altered cell proliferation and appearance of multiple “transformed” cell phenotypes associated with tumors. Both human and rodent SV40-transformed fibroblasts show reduced growth factor (i.e. serum) requirements, multilayer growth with increased saturation density and focus formation, and anchorage independence with growth in semi-solid media such as agar or agarose. Most relevant to this chapter, SV40 also increases the frequency at which cells become immortal. It should be noted that SV40 affects a wide variety of cell types (Tooze 1981) but this discussion will focus on fibroblasts, for convenience. Its effect on immortalization is particularly striking in human cells. Mouse cells have a quite limited life span in culture (approximatelyl0–20 generations) but can spontaneously become immortal at a measurable frequency; infection with wild-type SV40 results in almost 100% occurrence (Tevethia et al. 1998). On the other hand, normal human diploid fibroblasts virtually never spontaneously become immortal even within the greater life span of 50–60 generations observed with newborn or fetal cells in culture (McCormick and Maher 1988).

Keywords

Human Papilloma Virus Human Fibroblast Senescent Cell Simian Virus Replicative Senescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcorta D, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC (1996) Involvement of the cyclindependent kinase inhibition p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 93: 13742–13747PubMedCrossRefGoogle Scholar
  2. Alfano C, McMacken R (1989) Heat shock protein-mediated disassembly of nucleoprotein structures is required for the initiation of bacteriophage lambda DNA replication. J Biol Chem 264: 10709–10718PubMedGoogle Scholar
  3. Allen RG (1998) Oxidative stress and superoxide dismutase in development, aging and gene regulation. AGE 21: 47–76CrossRefGoogle Scholar
  4. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Grieder CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89: 10114–10118PubMedCrossRefGoogle Scholar
  5. Atadja P, Wong H, Garkavtsev I, Veillette C, Riabowol K (1995) Increased activity of p53 in senescing fibroblasts. Proc Natl Acad Sci USA 92: 8348–8352PubMedCrossRefGoogle Scholar
  6. Banga SS, Kim S-H, Hubbard K, Dasgupta T, Jha KK, Patsalis P, Hauptschein R, Gamberi B, Dalla-Favera R, Kraemer P, Ozer HL (1997) SEN6, a locus for SV40-mediated immortalization of human cells, maps to 6q26–27. Oncogene 14: 313–321PubMedCrossRefGoogle Scholar
  7. Bargonetti J, Reynisdottir I, Friedman P, Prives C (1992) Site specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev 6: 1886–1898PubMedCrossRefGoogle Scholar
  8. Bell DW, Jhanwar SC, Testa JR (1997) Multiple regions of allelic loss from chromosome arm 6q in malignant mesotheliomas. Cancer Res 57: 4057–4062PubMedGoogle Scholar
  9. Bertrand P, Rouillard D, Boulet A, Levalois C, Soussi T, Lopez B (1997) Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene 14: 1117–1122PubMedCrossRefGoogle Scholar
  10. Berube NG, Smith JR, Pereira-Smith OM (1998) The genetics of cellular senescence. Am J Hum Genet 62: 1015–1019PubMedCrossRefGoogle Scholar
  11. Bischoff FZ, Yim SO, Pathak S, Grant GMJ, Giovanclla B, Strong LC, Tainsky MA (1990) Spontaneous abnormalities in normal fibroblasts from patients with Li-Fraumeni cancer syndrome: aneuploidy and immortalization. Cancer Res 50: 7979–7984PubMedGoogle Scholar
  12. Blasco MA, Lee HW, Hande MR, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34PubMedCrossRefGoogle Scholar
  13. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of lifespan by introduction of telomerase into normal human cells. Science 279: 349–352PubMedCrossRefGoogle Scholar
  14. Bravard A, Hoffschir F, Sabatier L, Ricoul M, Pinton A, Cassingena R, Estrade S, Luccioni C, Dutrillaux B (1992) Early superoxide dismutase alteration during SV40-transformation of human fibroblasts. Int J Cancer 52: 797–801PubMedCrossRefGoogle Scholar
  15. Brehm A, Miska E, McCance D, Reid J, Bannister A, Kouzarides T (1998) Reintoblastoma protein recruits histone deacetylase to repress transcription. Nature 391: 597–601PubMedCrossRefGoogle Scholar
  16. Brockman WW (1978) Transformation of Balb/c-3T3 cells by tsA mutants of simian virus 40: temperature sensitivity of transformed phenotype and retransformation by wild-type virus. J Virol 25: 860–870PubMedGoogle Scholar
  17. Brodsky JL, Pipas JM (1998) Polymavirus T antigens: molecular chaperones for multi-protein complexes. J Virol 72: 5329–5334PubMedGoogle Scholar
  18. Brown F, Lewis AM (1998) Simian virus 40 (SV40): a possible human polyomavirus. Dev Biol Stand 94: 1–392Google Scholar
  19. Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21 gene in normal diploid human fibroblasts. Science 277: 831–834PubMedCrossRefGoogle Scholar
  20. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR (1995) Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14: 4240–4248PubMedGoogle Scholar
  21. Bryan TM, Englezou A, Dunham MA, Reddel RR (1998) Telomere length dynamics in telomerase-protein immortal human cell populations. Exp Cell Res 239: 370–378PubMedCrossRefGoogle Scholar
  22. Caelles C, Helmberg A, Karin M (1994) p53-dependent apoptosis in the absence of transcrip-tional activation of p53-target genes. Nature 370: 220–223Google Scholar
  23. Campbell KS, Mullane KP, Ibraham IA, Stubdal H, Zalvide J, Pipas JM, Silver, PA, Roberts TM, Schauffhausen BS, DeCaprio JA (1997) DnaJ/hsp40 chaperone domain of SV40 large T antigen promotes efficient viral DNA replication. Genes Dev 11: 1098–1110PubMedCrossRefGoogle Scholar
  24. Campisi L (1996) Replicative senescence: an old wives tale? Cell 84: 497–500PubMedCrossRefGoogle Scholar
  25. Chang T, Ray FA, Thompson DNA, Schlegel R (1997) Disregulation of mitotic checkpoints and regulatory proteins following acute expression of SV40 large T antigen in diploid human cells. Oncogene 14: 2383–2393PubMedCrossRefGoogle Scholar
  26. Chen S, Tsao Y, Chen Y, Huang S, Chang J, Wu S (1998) The induction of apoptosis by SV40 T antigen correlates with c-jun overexpression. Virology 244: 521–529PubMedCrossRefGoogle Scholar
  27. Cheng R, Shammas M, Li J, Shmookler Reis RJ (1997) Expression of large T antigen stimulates reversion of a chromosomal gene duplication in human cells. Exp Cell Res 234: 300–312PubMedCrossRefGoogle Scholar
  28. Chowdary DR, Dermody JJ, Jha KK, Ozer HL (1994) Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway. Mol Cell Biol 14: 1997–2008PubMedGoogle Scholar
  29. Church ST, Grant J, Meese E, Trent JM (1992) Sublocalization of the gene encoding manganese superoxide dismutase (MnSOD/SOD2) to 6q25 by fluorescence in situ hybridization and somatic cell hybrid mapping. Genomics 14: 823–825Google Scholar
  30. Church ST, Grant JW, Ridnour LA, Oberley LW, Swanson P, Meltzer PS, Trent JM (1993) Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci USA 90: 3113–3117PubMedCrossRefGoogle Scholar
  31. Cicala C, Avanaggiati M, Graessman A, Rundell K, Levine AS, Carbone M (1994) Simian virus 40 small-t antigen stimulates viral DNA replication in permissive monkey cells. J Virol 68: 3138–3144PubMedGoogle Scholar
  32. Cole C (1996) Polyomavirinae: the viruses and their replication. In: Fields, Knipe, Howley (eds )Google Scholar
  33. Fundamental Virology, 3rd edn. Lippincott-Raven, Philadelphia, Pennsylvania, pp 947–978 Conzen SD, Snay CA, Cole CN (1997) Identification of a novel antiapoptotic functional domain in simian virus 40 large T antigen. J Virol 71: 4536–4543Google Scholar
  34. Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11: 1921–1929PubMedGoogle Scholar
  35. Damania B, Alwine JC (1996) TAF-like function of SV40 large T antigen. Genes Dev 10: 1369–1381PubMedCrossRefGoogle Scholar
  36. DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livinston DM (1988) SV40 large T antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54: 275–283PubMedCrossRefGoogle Scholar
  37. DePinho RA (1998) The cancer-chromatin connection. Nature 391: 533–536PubMedCrossRefGoogle Scholar
  38. Deppert W (1980) SV40 T-antigen-related surface antigens: correlated expression with nuclearGoogle Scholar
  39. T-antigen in cells transformed by an SV40 A-gene mutant. Virology 104:497–501Google Scholar
  40. Deppert W, Haug M, Steinmayer T (1987) Modulation of p53 protein expression during cellular transformation with SV40. Mol Cell Biol 7: 4453–4463PubMedGoogle Scholar
  41. DeRonde A, Sol C, van Stein A, Schegget J, van der Noordaa J (1989) The SV40 small t antigen is essential for morphological transformation of human fibroblasts. Virology 171: 260–263CrossRefGoogle Scholar
  42. Devilee P, van Vilet M, van Sloun P, Dijkshoorn NK, Hermans J, Pearson PL, Cornelisse CJ (1991) Allelotype of human breast carcinoma: a second major site for loss of heterozygosity is on chromosome 6q. Oncogene 6: 1705–1709PubMedGoogle Scholar
  43. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj J, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367PubMedCrossRefGoogle Scholar
  44. Dulic V, Drullinger L, Lees E, Reed S, Stein G (1993) Altered regulation of G1 cyclins in senescent human diploid fibroblasts: accumulation of inactive cyclin E-cdk2 and cyclin D1-cdk2 complexes. Proc Natl Acad Sci USA 90: 11034–11038PubMedCrossRefGoogle Scholar
  45. Duncan EL, Whitaker NJ, Moy EL, Reddel RR (1993) Assignment of SV40- immortalized cells to more than one complementation group for immortalization. Exp Cell Res 205: 337–344PubMedCrossRefGoogle Scholar
  46. El-Deiry WS, Tokino T, Velculescu V, Levy D, Parsons R, Trent J, Lin D, Mercer WE, Kinzlev KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825PubMedCrossRefGoogle Scholar
  47. Ferber A, Chang C, Sell C, Ptasznik A, Cristofalo VJ, Hubbard K, Ozer HL, Adamo M, Roberts CJ, LeRoith D, Dumenil G, Baserga R (1993) Failure of senescent human fibroblasts to express the insulin-like growth factor-1 gene. J Biol Chem 268: 17883–17888PubMedGoogle Scholar
  48. Foulkes WD, Ragoussis J, Stamp GWH, Allan GJ, Trowsdale J (1993) Frequent loss of heterozygosity on chromosome 6 in human ovarian carcinoma. Br J Cancer 67: 551–559PubMedCrossRefGoogle Scholar
  49. Gaidano G, Hauptschein RS, Parsa NZ, Offit K, Rao PH, Lenoir G, Knowles DM, Chaganti RSK, Dalla-Favera R (1992) Deletions involving two distinct regions of 6q in B-cell non-Hodgkin lymphoma. Blood 80: 1781–1787PubMedGoogle Scholar
  50. Gershey E (1979) Simian virus 40-host cell interaction during lytic infection. J Virol 30: 76–83PubMedGoogle Scholar
  51. Giaccia A, Kastan M (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12: 2973–2983PubMedCrossRefGoogle Scholar
  52. Girardi AJ, Jensen FC, Koprowski H (1965) SV40-induced transformation of human diploid cells: crisis and recovery. J Cell Comp Physiol 65: 69–84CrossRefGoogle Scholar
  53. Giriat I, Schmidtt A, de Lange T (1998) Tankyrase, a poly ( ADP-ribose) polymerase of human telomeres. Science 282: 1484–1488Google Scholar
  54. Gluzman Y, Sambrook J, Frisque RJ (1980) Expression of early genes of origin-defective mutants of SV40. Proc Natl Acad Sci USA 77: 3898–3902PubMedCrossRefGoogle Scholar
  55. Goldstein S (1990) Replicative senescence: the human fibroblast comes of age. Science 249: 1129–1133PubMedCrossRefGoogle Scholar
  56. Gorman SD, Cristofalo VJ (1985) Reinitiation of cellular DNA synthesis in BrdU-selected nondividing senescent WI-38 cells by SV40 infection. J Cell Physiol 125: 122–126PubMedCrossRefGoogle Scholar
  57. Gruss C, Wetzel E, Baack M, Mock U, Knippers R (1988) High-affinity SV40 T-antigen binding sites on the human genome. Virology 167: 349–360PubMedGoogle Scholar
  58. Hara E, Tsurui H, Shinozaki A, Nakada S, Oda K (1991) Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of lifespan in human diploid fibroblasts, TIG-1. Biochem Biophys Res Commun 179: 528–534PubMedCrossRefGoogle Scholar
  59. Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G (1996) Regulation of p16cDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 16: 859–867PubMedGoogle Scholar
  60. Harley CB, Futcher AB, Greider CW (1990) Telomere shortening during aging of human fibro-blasts. Nature 346: 866–868CrossRefGoogle Scholar
  61. Harper J, Adami G, Wei N, Keyomarssi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cipl is a potent inhibitor of GI cyclin-dependent kinases. Cell 75: 805–816PubMedCrossRefGoogle Scholar
  62. Harvey DM, Levine AJ (1991) p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev 5: 2375–2385Google Scholar
  63. Harvey M, Sands A, Weiss R, Hegi M, Wiseman R, Pantazis P, Giovanella B, Tainsky M, Bradley A, Donehower LA (1993) In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8: 2457–2467PubMedGoogle Scholar
  64. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614–636PubMedCrossRefGoogle Scholar
  65. Hess R, Brandner G (1997) DNA-damage-inducible p53 activity in SV40-transformed cells. Oncogene 15: 2501–2504PubMedCrossRefGoogle Scholar
  66. Hinzpeter M, Deppert W (1987) Analysis of biological and biochemical parameters for chromatin and nuclear matrix association of SV40 large T antigen in transformed cells. Oncogene 1: 119–129PubMedGoogle Scholar
  67. Hock B, Bohme B, Karn T, Yamamoto T, Kaibuchi K, Holtrich U, Holland S, Pawson T, Rubsamen-Waigmann H, Strebhardt K (1998) PDZ-domain-mediated interaction of the Ephrelated receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc Natl Acad Sci USA 95: 9779–9784PubMedCrossRefGoogle Scholar
  68. Hoffschir F, Ricoul M, Lemieux N, Estrude S, Cassingena R, Dutrillaux B (1992) Jumping translocations originate clonal rearrangements in SV40-transformed human fibroblasts. Int J Cancer 52: 130–136PubMedCrossRefGoogle Scholar
  69. Hoffschir F, Vuillaume M, Sabatier L, Ricoul M, Daya-Grosjean L, Estrade S, Cassingena R, Sara-sin A, Dutrillaux B (1993) Decrease in catalase activity and loss of the l 1p chromosome arm in the course of SV40 transformation of human fibroblasts. Carcinogenesis 14: 1569–1572PubMedCrossRefGoogle Scholar
  70. Hubbard-Smith K, Patsalis P, Pardinas JR, Jha KK, Henderson AS, Ozer HL (1992) Altered chromosome 6 in immortal human fibroblasts. Mol Cell Biol 12: 2273–2281PubMedGoogle Scholar
  71. Ikram Z, Norton T, Jat PS (1994) The biological clock that measures the mitotic life-span of mouse embryo fibroblasts continues to function in the presence of simian virus 40 large tumor antigen. Proc Natl Acad Sci USA 91: 6448–6452PubMedCrossRefGoogle Scholar
  72. Imai S, Takano T (1992) Loss of collagenase gene expression in immortalized clones of SV40 T antigen-transformed human diploid fibroblasts. Biochem Biophys Res Commun 189: 148–153PubMedCrossRefGoogle Scholar
  73. Imai S, Fujino T, Nishibayashi S, Manabe T, Takano T (1994) Immortalization-susceptible elements and their binding factors mediate rejuvenation of regulation of the type I collagenase gene in simian virus 40 large T antigen-transformed immortal human fibroblasts. Mol Cell Biol 14: 7182–7194PubMedGoogle Scholar
  74. Kelley WL, Georgopoulos C (1997) The T/t common exon of simian virus 40, JC, and BK polyomavirus T antigens can functionally replace the J-domain of the Escherichia coli DnaJ molecular chaperone. Proc Natl Acad Sci USA 94: 3674–3684Google Scholar
  75. Khosravi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M, Van Aest L, Wigler MH, Der CJ (1996) Oncogenic Ras activation of raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol Cell Biol 16: 3923–3933PubMedGoogle Scholar
  76. Kierstead TD, Tevethia MJ (1993) Association of p53 binding and immortalization of primary C57B46 mouse embryo fibroblasts by using simian virus 40 T-antigen mutants bearing internal overlapping deletion mutations. J Virol 67: 1817–1829PubMedGoogle Scholar
  77. Kim S-H (1997) Localization of SEN6, a gene involved in SV40-mediated immortalization of human cells. Thesis dissertation. UMDNJ ( GSBS ), Newark, NJGoogle Scholar
  78. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PLC, Coviello GM, Wright WE, Weinrach SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015PubMedCrossRefGoogle Scholar
  79. Ko L, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10: 1054–1072Google Scholar
  80. Kuriyama M, Harada N, Kuroda S, Yamamoto T, Nakafuka M, Iwamatsu A, Yamamoto D, Prasad R, Croce C, Canaani E, Kaibuchi K (1996) Identification of AF-6 and canoe as putative targets for Ras. J Biol Chem 27: 607–610CrossRefGoogle Scholar
  81. LaBella F, Ozer HL (1985) Differential replication of SV40 and polyoma DNA in Chinese hamster ovary cells. Virus Res 2: 329–343CrossRefGoogle Scholar
  82. Lenahan M (1998) Analysis of crisis in SV40-transformed human firbroblasts. Thesis dissertation. UMDNJ ( GSBS ), Newark, NJGoogle Scholar
  83. Lenahan MK, Ozer HL (1996) Induction of c-myc mediated apoptosis in SV40-transformed rat fibroblasts. Oncogene 12: 1847–1854PubMedGoogle Scholar
  84. Lill NL, Grossman S, Ginsberg D, DeCaprio J, Livingston D (1997a) Binding and modulation of p53 by p300/CBP coactivators. Nature 387: 823–827PubMedCrossRefGoogle Scholar
  85. Lill NL, Tevethia, MJ, Eckner R, Livingston D, Modjtahedi N (1997b) p300 family members associate with the carboxyl terminus of SV40 large tumor antigen. J Virol 71: 129–137Google Scholar
  86. Lin JY, Simmons DJ (1991) The ability of large T-antigen to complex with p53 is necessary for the increased lifespan and partial transformation of human cells by simian virus 40. J Virol 65: 6447–6453PubMedGoogle Scholar
  87. Loeken M, Bikel I, Livingston D, Brady J (1988) Trans-activation of RNA polymerase II and III promoters by SV40 small t antigen. Cell 55: 1171–1177PubMedCrossRefGoogle Scholar
  88. Lundblat V, Blackburn EH (1993) An alternate pathway for yeast telomere maintenance rescues estl-senescence. Cell 73: 347–360CrossRefGoogle Scholar
  89. Ma L, Broomfield S, Lavery C, Lin S, Xiao W, Bacchetti S (1998) Up-regulation of CIR1/CROC1 expression upon cell immortalization and in tumor-derived human cell lines. Oncogene 17: 1321–1326PubMedCrossRefGoogle Scholar
  90. Maclean K, Rogan E, Whitaker N, Chang A. Rowe P, Dalla-Pozza L, Symonds G, Reddel RR (1994) In vitro transformation of Li-Fraumeni syndrome fibroblasts by SV40 large T antigen mutants. Oncogene 9:719–725Google Scholar
  91. Magnaghi-Jaulin L, Groisman R, Nagwbneva I, Robin P, Lorain S, Le Villain J, Troalen F, Trouche D, Harel-Bellan A (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391: 601–604PubMedCrossRefGoogle Scholar
  92. Mandai K, Nakanishi H, Satoh A, Obaishi H, Wada M, Nishioka H, Itoh M, Mizoguchi A, Aoki T, Fujimoto T, Matsuda Y, Tsukita S, Takai Y (1997) Afadin: A novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J Cell Biol 139: 517–528Google Scholar
  93. McCormick JJ, Maher VM (1988) Towards an understanding of the malignant transformation of diploid human fibroblast. Mutat Res 199: 273–291PubMedCrossRefGoogle Scholar
  94. Mekeel K, Tang W, Kachnic L, Luo C, DeFrank J, Powell S (1997) p53 suppresses homologous recombination. Oncogene 14: 1847–1857Google Scholar
  95. Menasce LP, Orphanos V, Santibanex-Koref M, Boyle JM, Harrison CJ (1994) Common region of deletion on the long arm of chromosome 6 in non-Hodgkin’s lymphoma and acute lymphoblastic leukaemia. Genes Chromosome Cancer 10: 286–288CrossRefGoogle Scholar
  96. Mitelman F (1991) Catalog of chromosome aberrations in cancer. 4th edn, vol 1, Wiley-Liss, New York, pp 393–474Google Scholar
  97. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299PubMedCrossRefGoogle Scholar
  98. Moorwood K, Price T, Mayne V (1996) Mutation of p53 is not a prerequisite for immortalization of human fibroblats by SV40 T antigen. Exp Cell Res 223: 308–313PubMedCrossRefGoogle Scholar
  99. Morelli C, Sherratt T, Trabanelli C, Rimessi P, Gualandi F, Greaves MJ, Negrini M, Boyle JM, Barbanti-Brodano G (1997) Characterization of a 4-Mb region at chromosome 6q21 harboring a replicative senescence gene. Cancer Res 57: 4153–4157PubMedGoogle Scholar
  100. Mungre S, Enderle K, Tuok B, Porras A, Wu Y, Muby M, Rundell R (1994) Mutations which affect the inhibition of protein phosphastase 2A by SV40 small t-antigen in vitro decrease viral transformation. J Virol 68: 1675–1681PubMedGoogle Scholar
  101. Negrini M, Sabbioni S, Possati L, Rattan S, Corallini A, Barbanti-Brodano G, Croce C (1994) Suppression of tumorigenicity of breast cancer cells by microcell-mediated chromosome transfer: studies on chromosomes 6 and 11. Cancer Res 54: 1331–1336PubMedGoogle Scholar
  102. Neufeld DS, Ripley S, Henderson A, Ozer HL (1987) Immortalization of human fibroblasts transformed by origin-defective SV40. Mol Cell Biol 7: 2794–2802PubMedGoogle Scholar
  103. Ning Y, Weber JL, Killary AM, Ledbetter DH, Smith JR, Pereira-Smith OM (1991) Genetic analysis of indefinite division in human cells: evidence for a cell senescence-related gene(s) on human chromosome 4. Proc Natl Acad Sci USA 88: 5635–5639PubMedCrossRefGoogle Scholar
  104. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90–98PubMedCrossRefGoogle Scholar
  105. Oberley LW (1998) Inhibition of tumor cell growth by overexpression of manganese-containing superoxide dismutase. AGE 21: 95–98CrossRefGoogle Scholar
  106. O’Connor R, Kauffman-Zeh A, Liu Y, Lehar S, Evan GI, Baserga R, Blattner WA, (1997) Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. Mol Cell Biol 17: 427–435PubMedGoogle Scholar
  107. Offit K, Parsa NZ, Gaidano G, Filippa DA, Louie D, Pan D, Jhanwar SC, Dalla-Favera R, Chaganti RSK (1993) 6q deletions define distinct clinico-pathologic subsets of non-Hodgkin’s lymphoma. Blood 82: 2157–2162Google Scholar
  108. Ogata T, Ayusawa D, Namba M, Takahasi E, Oshimura M, Oishi M (1993) Chromosome 7 suppresses indefinite division of nontumorigenic immortalized human fibroblast cell lines KMST-6 and SVSM-1/. Mol Cell Biol 13: 6036–0643PubMedGoogle Scholar
  109. O’Neill FJ, Hu Y, Chen T, Carney H (1997) Identification of p53 unbound to T-antigen in human cells transformed by SV40 T-antigen. Oncogene 14: 955–966PubMedCrossRefGoogle Scholar
  110. V, McGown G, Hey Y, Boyle JM, Santibanez-Kore M. (1995) Proximal 6q, a region showing allele loss in primary breast cancer. Br J Cancer 71: 290–293PubMedCrossRefGoogle Scholar
  111. Ozer HL, Slater ML, Dermody JJ, Mandel M (1981) Replication of SV40 DNA in normal human fibroblasts and in fibroblasts from xeroderma pigmentosum. J Virol 39: 481–489PubMedGoogle Scholar
  112. Ozer HL, Banga SS, Dasgupta T, Houghton J, Hubbard K, Jha KK, Kim S-H, Lenahan M, Pang Z, Pardinas JR, Patsalis P (1996) SV40-mediated immortalization of human fibroblasts. Exp Gerontol 31: 303–310PubMedCrossRefGoogle Scholar
  113. Pages J, Manteuil S, Stehelin D, Fiszman M, Marx M, Girard M (1973) Relationship between replication of SV40 DNA and specific events of the host cell cycle. J Virol 12: 99–107PubMedGoogle Scholar
  114. Pardinas J, Pang Z, Houghton J, Palejwala V, Donnelly R, Hubbard K, Small MB, Ozer HL (1997) Differential gene expression in SV40-mediated immortalization of human fibroblasts. J Cell Physiol 171: 325–335PubMedCrossRefGoogle Scholar
  115. Pereira-Smith OM, Smith JR (1981) Expression of SV40 T antigen in finite lifespan hybrids of normal and SV40-transformed fibroblasts. Somatic Cell Genet 7: 411–421PubMedCrossRefGoogle Scholar
  116. Pereira-Smith OM, Smith JR (1983) Evidence for the recessive nature of cellular immortality. Science 221: 964–966PubMedCrossRefGoogle Scholar
  117. Pereira-Smith OM, Smith JR (1988) Genetic analysis of indefinite division in human cells: identification of four complementation groups. Proc Natl Acad Sci USA 85: 6042–6046PubMedCrossRefGoogle Scholar
  118. Peterson S, Gradbois D, Bradbury E, Kraemer PM (1995) Immortalization of human fibroblasts by SV40 large T antigen results in the reduction of cyclin D1 expression and subunit association with proliferating cell nuclear antigen and Wafl. Cancer Res 55: 4651–4657PubMedGoogle Scholar
  119. Porras A, Bennett J, Howe A, Tokos K, Bouck N, Henglein B, Sathyamangalam S, Thimmapaya B, Rundell K (1996) A novel simian virus 40 early-region domain mediates transactivation of the cyclin A promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. J Virol 70: 6902–6908PubMedGoogle Scholar
  120. Prasad R, Gu Y, Adler H, Nakamura T, Canaani O, Sato H, Huebner K, Gale RP, Nowell PC, Kuriyama K, Miyazaki Y, Croce CM, Canaani E (1993) Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemia with the t (6;11) chromosome translocation. Cancer Res 53: 5624–5628PubMedGoogle Scholar
  121. Qin XQ, Livingston DM, Ewen E, Sellers WR, Adams PD (1994) Deregulated E2F-1 transcription factor expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 91: 10918–10922PubMedCrossRefGoogle Scholar
  122. Radna RL, Caton Y, Jha KK, Kaplan P, Li G, Traganos F, Ozer HL (1989) Growth of immortal simian virus 40 tsA-transformed human fibroblasts is temperature dependent. Mol Cell Biol 9: 3093–3096PubMedGoogle Scholar
  123. Ray FA, Kraemer PM (1992) Frequent deletions at chromosome 6q21 and other recurrent changes in nine newly immortalized human fibroblast cell lines. Cancer Genet Cytogenet 59: 39–44PubMedCrossRefGoogle Scholar
  124. Ray FA, Peabody DS, Cooper JL, Cram LS, Kraemer PM (1990) SV40 T antigen alone drives karyotypic instability that preceeds neoplastic transformation of human diploid fibroblast. J Cell Biochem 13–31Google Scholar
  125. Resnick-Silverman L, Pang Z, Li G, Jha KK, Ozer HL (1991) Retinoblastoma protein and simian virus 40-dependent immortalization of human fibroblasts. J Virol 65: 2845–2852PubMedGoogle Scholar
  126. Robinson CG, Pipas JM (1998) SV40 large tumor antigen (T antigen): database of mutants. Nucleic Acids Res 26: 295–296PubMedCrossRefGoogle Scholar
  127. Rubelj I, Pereira-Smith OM (1994) SV40-transformed human cells in crisis exhibit changes that occur in normal cellular senescence. Exp Cell Res 211: 82–89PubMedCrossRefGoogle Scholar
  128. Saffer JD, Jackson SP, Thurston SJ (1990) SV40 stimulates expression of the transacting factor Spl at the mRNA level. Genes Dev 4: 659–666PubMedCrossRefGoogle Scholar
  129. Saha V, Lillington DM, Shelling AN, Chaplin T, Yaspo M, Ganesan TS, Young BD, (1995) AF6 gene on chromosome band 6q27 maps distal to the minimal region of deletion in epithelial ovarian cacer. Genes Chromosomes Cancer 14: 220–222PubMedCrossRefGoogle Scholar
  130. Saito S, Sirahama S, Matsushima M, Suzuki M, Sagae S, Kudo R, Saito J, Noda K, Nakamura Y (1996) Definition of a commonly deleted region in ovarian cancers to a 300-kb segment of chromosome 6q27. Cancer Res 56: 5586–5589PubMedGoogle Scholar
  131. Sandhu AK, Hubbard K, Kaur GP, Jha KK, Ozer HL, Athwal RS (1994) Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6. Proc Natl Acad Sci USA 91: 5498–5502PubMedCrossRefGoogle Scholar
  132. Sandhu AK, Kaur GP, Reddy DE, Rane NS, Athwal RS (1996) A gene on 6q14–21 restores senescence to immortal ovarian tumor cells. Oncogene 12: 247–252PubMedGoogle Scholar
  133. Satoh Y, Kishimura M, Kaneko S, Karasaki Y, Higashi K, Gotoh S (1994) Cloning of cDNAs with possible association with senescence and immortalization of human cells. Mutat Res 316: 25–36PubMedCrossRefGoogle Scholar
  134. Sawai ET, Butel JS (1989) Association of a cellular heat shock protein with simian virus 40 large T antigen in transformed cells. J Virol 63: 3961–3973PubMedGoogle Scholar
  135. Scheffner M, Werness B, Huibregtse J, Levine A, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136PubMedCrossRefGoogle Scholar
  136. Scheidtmann KH, Mumby MC, Rundell K, Walter G (1991a) Dephosphorylation of simian virus 40 large-T antigen and p53 protein by protein phosphatase 2A: inhibition by small-t antigen. Mol Cell Biol 11: 1996–2003PubMedGoogle Scholar
  137. Scheidtmann KH, Virshup DM, Kelly TJ (1991b) Protein phosphatase 2A dephosphorylates SV40 large T antigen specifically at residues involved in regulation of the DNA- binding activity. J Virol 65: 2098–2101PubMedGoogle Scholar
  138. Schenker T, Trueb B (1998) Down-regulated proteins of mesenchymal tumor cells. Exp Cell Res 239: 161–168PubMedCrossRefGoogle Scholar
  139. Schenker T, Lach C, Kessler B, Calderara S, Trueb B (1994) A novel GTP-binding protein which is selectively repressed in SV40 transformed fibroblasts. J Biol Chem 269: 25447–25453PubMedGoogle Scholar
  140. Sedivy JM (1998) Can ends justify the means? Telomeres and the mechanism of replicative senescence and immortalization in mammalian cells. Proc Natl Acad Sci USA 95: 9078–9081PubMedCrossRefGoogle Scholar
  141. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16. Cell 88: 593–602PubMedCrossRefGoogle Scholar
  142. Shay JW, Wright WE (1989) Quantitation of the frequency of immortalization of normal diploid fibroblasts by SV40 large T-antigen. Exp Cell Res 1874: 109–118CrossRefGoogle Scholar
  143. Shikama N, Lyon L, La Thanque NB (1997) The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol 7: 230–236CrossRefGoogle Scholar
  144. Slansky JE, Li Y, Kaelin WG, Farnham PJ (1993) A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter. Mol Cell Biol 13: 1610–1618PubMedGoogle Scholar
  145. Small MB, Gluzman Y, Ozer HL (1982) Enhanced transformation of human fibroblasts by origin-defective simian virus 40. Nature 296: 671–672PubMedCrossRefGoogle Scholar
  146. Small MB, Hubbard K, Pardinas J, Marcus AM, Dhanaraj SM, Sethi KA (1996) Maintenance of telomeres in SV40-transformed pre-immortal and immortal human fibroblasts. J Cell Phys 168: 727–736CrossRefGoogle Scholar
  147. Srinivasan A, McClellan AJ, Vartikar J, Marks I, Cantalupo P, Li Y, Whyte P, Rundell K, Brodsky JL, Pipas JM (1997) The amino-terminal transforming region of simian virus 40 large T and small t antigens functions as a J domain. Mol Cell Biol 17: 4761–1773Google Scholar
  148. Stadlbauer F, Voitenleiter C, Bruckner A, Fanning E, Nasheuer H (1996) Species-specific replication of SV40 DNA in vitro requires the p180- subunit of human DNA polymerase u-primase. Mol Cell Biol 16: 94–104PubMedGoogle Scholar
  149. Stamps AC, Gusterson BA, O’Hare MJ (1992) Are tumors immortal? Eur J Cancer 28A: 1495–1500CrossRefGoogle Scholar
  150. Stein G (1985) SV40-transformed human fibroblasts: Evidence for cellular aging in precrisis cells. J Cell Physiol 125: 36–44PubMedCrossRefGoogle Scholar
  151. Stein GH, Besson M, Gordon L (1990) Failure to phosphorylate retinoblastoma gene product in senescent human fibroblasts. Science 249: 666–669PubMedCrossRefGoogle Scholar
  152. Stein GH, Drullinger LF, Robetorye RS, Pereira-Smith OM, Smith JR (1991) Senescent cells fail to express cdc2, cycA and cycB in response to mitogen stimulation. Proc Natl Acad Sci USA 88: 11012–11016PubMedCrossRefGoogle Scholar
  153. Stubdal H, Zalvide J, DeCaprio JA (1996) Simian virus 40 large T antigen alters the phosphorylation state of the RB-related proteins p130 and p107. J Virol 70: 2781–2788PubMedGoogle Scholar
  154. Stubdal H, Zalvide J, Campbell K, Schweitzer C, Roberts T, DeCaprio JA (1997) Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of SV40 large T antigen. Mol Cell Biol 17: 4979–4990Google Scholar
  155. Sugawara O, Oshimura M, Koi M, Annab LA, Barrett JC (1990) Induction of cellular senescence in immortalized human cells by human chromosome I. Science 247: 707–710PubMedCrossRefGoogle Scholar
  156. Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T (1994) p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78: 703–711Google Scholar
  157. Takekawa M, Maeda T, Saito H (1998) Protein phosphatase 2Cu inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J 17: 4744–4752PubMedCrossRefGoogle Scholar
  158. Tara Y (1997) Rb kinases and RB-binding proteins: new points of view. Trends Biochem Sci 22: 14–17Google Scholar
  159. Tevethia MJ, Lacko HA, Conn A (1998) Two regions of simian virus 40 large T-antigen independently extend the life span of primary C57BL/6 mouse embryo fibroblasts and cooperate in immortalization. Virology 243: 303–312PubMedCrossRefGoogle Scholar
  160. Teyssier JR, Ferre D (1992) Identification of a clustering of chromosomal breakpoints in the analysis of 203 human primary solid tumor non specific karyotypic rearrangements. Anticancer Res 12: 997–1004.PubMedGoogle Scholar
  161. Tiemann F, Zerrahn J, Deppert W (1995) Cooperation of SV40 large and small T antigens in metabolic stabilization of tumor suppressor p53 during cellular transformation. J Virol 69: 6115–6121PubMedGoogle Scholar
  162. Tooze J (ed) (1981) DNA tumor viruses, 2nd edn. Cold Spring Harbor Laboratory. Cold Spring Harbor, New YorkGoogle Scholar
  163. Trent JM, Stanbridge EJ, McBride HL, Meese EU, Casey G, Araujo DE, Witkowski CM, Nagle RB (1990) Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. Science 247: 568–571PubMedCrossRefGoogle Scholar
  164. Tresini M, Cristofalo VJ (1998) Defects in MAPK-mediated signal transduction during replica-five senescence of human fibroblasts. In: Bohr V, Clark B, Stevnsner T, Svejgaard A (eds) Molecular biology of aging. Munksgaard International, Copenhagen, DenmarkGoogle Scholar
  165. Van Steensel B, de Lange T (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385: 470–473Google Scholar
  166. Vellucci VF, Germino FJ, Reiss M (1995) Cloning of putative growth regulatory genes from primary human keratinocytes by subtractive hybridization. Gene 106: 213–220CrossRefGoogle Scholar
  167. Wan M, Zweizig S, D=Ablaing G, Zheng J, Velicescu M, Dubean L (1994) Three distinct regions of chromosome 6 are targets of loss of heterozygosity in human ovarian carcinomas. Int J Oncol 5: 1043–1048Google Scholar
  168. Wang E (1995) Senescent human fibroblasts resist programmed cell death and failure to suppress bd-2 is involved. Cancer Res 55: 2284–2292PubMedGoogle Scholar
  169. Watanabe G, Howe A, Lee R, Albanese C, Shu I, Karneziss A, Zon L, Kyriakis J, Rundell K, Pes-tell RG (1996) Induction of cyclin D1 by SV40 small tumor antigen. Proc Natl Acad Sci USA 93: 12861–12866PubMedCrossRefGoogle Scholar
  170. Weinberg R (1995) The Rb protein and cell cycle control. Cell 81: 323–330PubMedCrossRefGoogle Scholar
  171. West MD, Pereira-Smith OM, Smith JR (1989) Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp Cell Res 184: 138–147PubMedCrossRefGoogle Scholar
  172. White E (1996) Life, death, and the pursuit of apoptosis. Genes Dev 10: 1015CrossRefGoogle Scholar
  173. Wiessmuller L, Cammenga J, Deppert WW (1996) In vivo assay of p53 function in homologous recombination between SV40 chromosomes. J Virol 70: 737–744Google Scholar
  174. Wiman KG, Klein G (1997) An old acquaintance resurfaces in human mesothelioma. Nat Med 3: 839–840PubMedCrossRefGoogle Scholar
  175. Wright WE, Pereira-Smith OM, Shay JW (1989) Reversible cellular senescence: a two-stage model for the immortalization of normal diploid fibroblasts. Mol Cell Biol 9: 3088–3092PubMedGoogle Scholar
  176. Xiong Y, Zhang H, Beach D (1993) Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev 7: 1572–1583PubMedCrossRefGoogle Scholar
  177. Yaciuk P, Carter M, Pipas J, Moran E (1991) SV40 large T antigen expresses a biological activity complementary to the p300-associated transforming function of the adenovirus E1A gene products. Mol Cell Biol 11: 2116–2124PubMedGoogle Scholar
  178. Yan T, Oberley LW, Zhong W, St. Clair DK (1996) Manganese-containing superoxide dismutase overexpression causes phenotypic reversion in SV40-transformed human lung fibroblasts. Cancer Res 56:2864–2871Google Scholar
  179. Yang S-I, Lickteig RL, Estes R, Rundell K, Walter G, Mumby MC (1991) Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol Cell Biol 11: 1988–1995PubMedGoogle Scholar
  180. Yew P, Liu X, Berk AJ (1994) Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53 genes. Genes Dev 8: 190–202PubMedCrossRefGoogle Scholar
  181. Zalvide J, Stubdal H, DeCaprio JA (1998) The J domain of SV40 large T antigen is required to functionally inactivate RB family proteins. Mol Cell Biol 18: 1408–1415PubMedGoogle Scholar
  182. Zerrahn J, Knippschild U, Winkler T, Deppert W (1993) Independent expression of the transforming amino-terminal domain of SV40 large T antigen from an alternatively spliced third SV40 early mRNA. EMBO J 12: 4739–4746PubMedGoogle Scholar
  183. Zhai W, Tuan J, Cornai L (1997) SV40 large T antigen binds to the TBP-TAF I complex SL1 and coactivates ribosomal RNA transcription. Genes Dev 11: 1605–1617PubMedCrossRefGoogle Scholar
  184. Zhu J, Rice PW, Chamberlan M, Cole CN (1991) Mapping the transcriptional transactivation function of SV40 large T-antigen. J Virol 65: 2778–2790PubMedGoogle Scholar
  185. Zouzias D, Jha KK, Mulder C, Basilico C, Ozer HL (1980) Transformation of human fibroblasts by SV40 DNA. Virology 104: 439–453PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • H. L. Ozer
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsUMD-New Jersey Medical SchoolNewarkUSA

Personalised recommendations