Advertisement

Clonal Life Cycle of Paramecium in the Context of Evolutionally Acquired Mortality

  • Y. Takagi
Chapter
  • 161 Downloads
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 24)

Abstract

A single bacterium dividing every 20 minutes, if nutrients could be supplied, would divide 144 times in 2 days to produce 2144 (1043) bacteria. Their weight would exceed the weight of the earth (6 × 1027 g), even if the weight of a single bacterium is underestimated at 10−15 g (10−15 × 1043 = 1028). Our body, consisting of on the order of 1013 cells, all of which have been derived from a single cell (a fertilized egg) would be attained by only 43 cell divisions and would become the size of an elephant after several more cell divisions, if a fertilized egg grew exponentially (243 = 1013). These examples of the tremendous power of exponential cell division indicate how important it is for living organisms to regulate cell division.

Keywords

Sexual Reproduction Brake System Ciliated Protozoan Sexual Immaturity Paramecium Caudatum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell, third edition. Garland Publishing, New York LondonGoogle Scholar
  2. Ameisen JC (1998) The evolutionary origin and role of programmed cell death in single-celled organisms: a new view of executioners, mitochondria, host-pathogen interactions, and the role of death in the process of natural selection. In: Lockshin RA, Zakeri Z, Tilly JL (eds) When cells die. Wiley-Liss, New-York, pp 3–56Google Scholar
  3. Aufderheide KJ (1984) Clonal aging in Paramecium tetraurelia. Absence of evidence for cytoplasmic factor. Mech Ageing Dev 28: 57–66PubMedCrossRefGoogle Scholar
  4. Aufderheide KJ, Schneller M (1985) Phenotypes associated with early clonal death in Paramecium tetraurelia. Mech Ageing Dev 32: 299–309PubMedCrossRefGoogle Scholar
  5. Berger JD (1988) The cell cycle and regulation of cell mass and macronuclear DNA content. In: Görtz H-D (ed) Paramecium. Springer-Verlag, Berlin, pp 97–119CrossRefGoogle Scholar
  6. Bleymann LK (1971) Temporal patterns in the ciliated protozoa. In: Cameron IL, Padilla GM, Zimmer AM (eds) Developmental aspects of the cell cycle. Academic Press, New York, pp 67–91Google Scholar
  7. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-K, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–352PubMedCrossRefGoogle Scholar
  8. Bunn CL, Tarrant GM (1980) Limited lifespan in somatic cell hybrids and cybrids. Exp Cell Res 127: 385–396PubMedCrossRefGoogle Scholar
  9. Cutler RG (1978) Evolutionary biology of senescence. In: Behnke JA, Finch CE, Moment GB (eds) The biology of aging. Plenum Press, New York, pp 311–360CrossRefGoogle Scholar
  10. Davis MC, Ward JG, Herrick G, Allis CD (1992) Programmed nuclear death: apoptotic-like deg-radation of specific nuclei in conjugating Tetrahymena. Dev Biol 154: 419–432PubMedCrossRefGoogle Scholar
  11. Elliot AM, Bak IJ (1964) The fate of mitochondria during aging in Tetrahymena pyriformis. J Cell Biol 20: 113–129CrossRefGoogle Scholar
  12. Fok AK, Allen RD (1981a) Axenic Paramecium caudatum. II. Changes in fine structure with culture age. Eur J Cell Biol 25: 182–192Google Scholar
  13. Fok AK, Allen RD, Kaneshiro ES (1981b) Axenic Paramecium caudatum. III. Biochemical and physiological changes with culture age. Eur J Cell Biol 25: 193–201Google Scholar
  14. Freiburg M (1988) Organization and expression of the nuclear genome. In: Görtz H-D (ed) Paramecium. Springer-Verlag, Berlin, pp 141–154CrossRefGoogle Scholar
  15. Fujishima M (1988) Conjugation. In: Görtz H-D (ed) Paramecium. Springer-Verlag, Berlin, pp 70–84CrossRefGoogle Scholar
  16. Galadjieff MA, Metalnikow S (1933) L’immortalite de la cellule. Vingtdeux ans de culture d’infusoires sans conjugaison. Archs Zool Exp Gen 75: 331–352Google Scholar
  17. Gilley D, Blackburn EH (1994) Lack of telomere shortening during senescence in Paramecium. Proc Natl Acad Sci USA 91: 1955–1958PubMedCrossRefGoogle Scholar
  18. Grandchamp S, Beisson J (1981) Positional control of nuclear differentiation in Paramecium. Dev Biol 81: 336–341PubMedCrossRefGoogle Scholar
  19. Greider CW (1996) Telomere length regulation. Annu Rev Biochem 65: 337–365 Grell KG ( 1973 ) Protozoology. Springer-Verlag, BerlinGoogle Scholar
  20. Haga N, Hiwatashi K (1981) A protein called immaturin controlling sexual maturity in Paramecium. Nature 289: 177–179PubMedCrossRefGoogle Scholar
  21. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345: 458–460PubMedCrossRefGoogle Scholar
  22. Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256: 271–282 Harumoto T, Hiwatashi K (1982) Transplantation of synkaryon in Paramecium caudatum. Exp Cell Res 137: 476–481Google Scholar
  23. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585–621PubMedCrossRefGoogle Scholar
  24. Iizima S, Numata M, Miwa I. (1997) Carry-over effects on the immaturity of autogamy in Paramecium tetraurelia. Zool Sci 14 (Suppl.): 27Google Scholar
  25. Ishikawa Y, Suzuki A, Takagi Y (1998) Factors controlling the length of autogamy-immaturity in Paramecium tetraurelia. Zool Sci 15: 707–712Google Scholar
  26. Karino S, Hiwatashi K (1981) Analysis of germinal aging in Paramecium caudatum by micronuclear transplantation. Exp Cell Res 136: 407–415PubMedCrossRefGoogle Scholar
  27. Karino S, Hiwatashi K (1984) Resistance of germinal nucleus to aging in Paramecium: evidence obtained by micronuclear transplantation. Mech Ageing Dev 26: 51–66PubMedCrossRefGoogle Scholar
  28. Karrer KM (1986) The nuclear DNAs of holotrichous ciliates. In: Gall JG (ed) The molecular biology of ciliated protozoa. Academic Press, Orlando, pp 85–110Google Scholar
  29. Kennedy BK, Austriaco Jr NR, Zhang J, Guarente L (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80: 485–496PubMedCrossRefGoogle Scholar
  30. Klass MR, Smith-Sonneborn J (1976) Studies on DNA content, RNA synthesis, and DNA template activity in aging cells of Paramecium aurelia. Exp Cell Res 98: 63–72PubMedCrossRefGoogle Scholar
  31. Klobutchr LA, Prescott DM (1986) The special case in the hypotrichs. In: Gall JG (ed) The molecular biology of ciliated protozoa. Academic Press, Orlando, pp 111–154Google Scholar
  32. Kolter R, Losick R (1998) One for all and all for one. Science 280: 226–227PubMedCrossRefGoogle Scholar
  33. Kroll RJ, Barnett A (1968) The effect of different fission rates on the onset of maturity in Paramecium multimicronucleatum. J Protozool 15 (Suppl): 10Google Scholar
  34. Mikami K (1979) Internuclear control of DNA synthesis in exconjugant cells of Paramecium caudatum. Chromosoma 73: 131–142PubMedCrossRefGoogle Scholar
  35. Mikami K (1980) Differentiation of somatic and germinal nuclei correlated with intracellular localization in Paramecium caudatum exconjugants. Dev Biol 80: 46–55PubMedCrossRefGoogle Scholar
  36. Mikami K (1988) Nuclear dimorphism and function. In: Görtz H-D (ed) Paramecium. Springer-Verlag, Berlin, pp 85–96Google Scholar
  37. Mikami K (1996) Repetitive micronuclear divisions in the absence of macronucleus during conjugation of Paramecium caudatum. J Euk Microbiol 43: 43–48CrossRefGoogle Scholar
  38. Mikami K, Koizumi S (1983a) Microsurgical analysis of the clonal age and the cell-cycle stage required for the onset of autogamy in Paramecium tetraurelia. Dev Biol 100: 127–132PubMedCrossRefGoogle Scholar
  39. Mikami K, Ng SF (1983b) Nuclear differentiation in Paramecium tetraurelia. Transplantation of vegetative micronuclei into early exconjugants. Exp Cell Res 144: 25–30Google Scholar
  40. Miwa I (1984) Destruction of immaturin activity in early mature mutants of Paramecium caudatum. J Cell Sci 72: 111–120PubMedGoogle Scholar
  41. Miwa I, Hiwatashi K (1970) Effect of mitomycin C on the expression of mating ability in Paramecium caudatum. Jpn J Genet 45: 269–275CrossRefGoogle Scholar
  42. Miwa I, Haga N, Hiwatashi K (1975) Immaturity substances: material basis for immaturity in Paramecium. J Cell Sci 19: 369–378PubMedGoogle Scholar
  43. Miyake A, Rivola V, Harumoto T (1991) Double paths of macronucleus differentiation at conjugation in Blepharisma japonicum. Europ J Protistol 27: 178–200CrossRefGoogle Scholar
  44. Mpoke S, Wolfe J (1996) DNA digestion and chromatin condensation during nuclear death in Tetrahymena. Exp Cell Res 225: 3357–3365CrossRefGoogle Scholar
  45. Muggleton-Harris AL, De Simone DW (1980) Replicative potentials of various fusion products between WI-38 and SV 40 transformed WI-38 cells and their components. Somatic Cell Genet 6: 689–698PubMedCrossRefGoogle Scholar
  46. Myohara K, Hiwatashi K (1978) Mutants of sexual maturity in Paramecium caudatum selected by erythromycin resistance. Genetics 90; 227–241PubMedGoogle Scholar
  47. Nanney D (1974) Aging and long-term temporal regulation in ciliated protozoa: a critical review. Mech Ageing Dev 3: 81–105PubMedCrossRefGoogle Scholar
  48. Nanney D (1980) Experimental ciliatology. John Wiley & Sons, New YorkGoogle Scholar
  49. Nobili R (1960) The effect of macronuclear regeneration on vitality in Paramecium aurelia, syngen 4. J Protozool 7 (Suppl): 15Google Scholar
  50. Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41: 181–190PubMedCrossRefGoogle Scholar
  51. Orias E (1986) Ciliate conjugation. In: Gall JG (ed) The molecular biology of ciliated protozoa. Academic Press, Orlando, pp 45–84Google Scholar
  52. Orias E (1998) Mapping the germ-line and somatic genomes of a ciliated protozoan, Tetrahymena thermophila. Genome Res 8: 91–99PubMedGoogle Scholar
  53. Pereira-Smith OM, Smith JR (1983) Evidence for the recessive nature of cellular immortality. Science 221: 964–966PubMedCrossRefGoogle Scholar
  54. Raikov IB (1982) The protozoan nucleus: morphology and evolution. Springer-Verlag, New YorkGoogle Scholar
  55. Raikov IB (1995) Structure and genetic organization of the polyploid macronucleus of ciliates: a comparative review. Acta Protozool 34: 151–171Google Scholar
  56. Schwartz V, Meister H (1973) Eine Altersveränderung des Makronucleus von Paramecium. Z Naturforsch 28c: 232Google Scholar
  57. Schwartz V, Meister H (1975) Einige quantitative Daten zum Problem des Alterns bei Paramecium. Arch Protistenk Biol 117: 85–109Google Scholar
  58. Siegel RW (1961) Nuclear differentiation and transitional cellular phenotypes in the life cycle of Paramecium. Exp Cell Res 24: 6–20CrossRefGoogle Scholar
  59. Siegel RW (1967) Genetics of ageing and the life cycle in ciliates. Symp Soc Exp Biol 21: 127–148PubMedGoogle Scholar
  60. Smith-Sonneborn J (1971) Age correlated sensitivity to ultraviolet radiation in Paramecium. Radiat Res 46: 64–69PubMedCrossRefGoogle Scholar
  61. Smith-Sonneborn J (1979) DNA repair and longevity assurance in Paramecium tetraurelia. Science 203: 1115–1117PubMedCrossRefGoogle Scholar
  62. Smith-Sonneborn J (1981) Genetics and aging in protozoa. Int Rev Cytol 73: 319–354CrossRefGoogle Scholar
  63. Smith-Sonneborn J (1985) Aging in unicellular organisms. In: Finch CE, Schneider EL (eds) Handbook of the biology of aging, second edition. Van Nostrand Reinhold, New York, pp 79–104Google Scholar
  64. Smith-Sonneborn J, Klass M, Cotton D (1974) Parental age and life-span versus progeny life-span in Paramecium. J Cell Sci 14: 691–699PubMedCrossRefGoogle Scholar
  65. Smith-Sonneborn J, Reed JC (1976) Calendar life-span versus fission life-span of Paramecium aurelia. J Gerontol 331: 2–7CrossRefGoogle Scholar
  66. Sonneborn TM (1954) The relation of autogamy to senescence and rejuvenescence in Paramecium aurelia. J Protozool 1: 38–53Google Scholar
  67. Sonneborn TM (1974a) Tetrahymena pyriformis. In: Mayr E (ed) Handbook of genetics, vol 2. Plenum, New York London, pp 433–467Google Scholar
  68. Sonneborn TM (1974b) Paramecium aurelia. In: Mayr E (ed) Handbook of genetics, vol 2. Plenum, New York London, pp 469–594Google Scholar
  69. Sonneborn TM, Schneller MV (1960a) Physiological basis of aging in Paramecium. In: Strehler BL (ed) The biology of aging. Waverly Press, Baltimore, pp 283–284Google Scholar
  70. Sonneborn TM, Schneller MV (1960b) Age-induced mutations in Paramecium. In: Strehler BL (ed) The biology of aging. Waverly Press, Baltimore, pp 286–287Google Scholar
  71. Sonneborn TM, Schneller MV (1960c) Measures of the rate and amount of aging on the cellular level. In: Strehler BL (ed) The biology of aging. Waverly Press, Baltimore, pp 290–291Google Scholar
  72. Takagi Y (1970) Expression of the mating-type trait in the clonal life history after conjugation in Paramecium multimicronucleatum and Paramecium caudatum. Jpn J Genet 45: 11–21CrossRefGoogle Scholar
  73. Takagi Y (1988) Aging. In: Görtz H-D (ed) Paramecium. Springer-Verlag, Berlin, pp 131–140CrossRefGoogle Scholar
  74. Takagi Y (1993) The life-span of cells and of organisms: from a viewpoint of Paramecium (in Japanese), Heibonsya, TokyoGoogle Scholar
  75. Takagi Y, Yoshida M (1980) Clonal death associated with the number of fissions in Paramecium caudatum. J Cell Sci 41: 177–191PubMedGoogle Scholar
  76. Takagi Y, Kanazawa N (1982) Age-associated changes in macronuclear DNA content in Paramecium caudatum. J Cell Sci 54: 137–147PubMedGoogle Scholar
  77. Takagi Y, Nobuoka T, Doi M (1987a) Clonal lifespan of Paramecium tetraurelia: effect of selection on its extension and use of fissions for its determination. J Cell Sci 88: 129–138PubMedGoogle Scholar
  78. Takagi Y, Suzuki T, Shimada C (1987b) Isolation of a Paramecium tetraurelia mutant with short clonal life-span and with novel life-cycle features. Zool Sci 4: 73–80Google Scholar
  79. Takagi Y, Izumi K, Kinoshita H, Yamada T, Kaji K, Tanabe H (1989) Identification of a gene that shortens clonal life span of Paramecium tetraurelia. Genetics 123: 749–754PubMedGoogle Scholar
  80. Thomas J, Nyberg D (1988) Vitamin E supplementation and intense selection increase clonal life span in Paramecium tetraurelia. Exp Gerontol 23: 501–512PubMedCrossRefGoogle Scholar
  81. Vivier E (1974) Morphology, taxonomy and general biology of the genus Paramecium. In: Van Wagtendonk WJ (ed) Paramecium. A current survey. Elsevier, Amsterdam, pp 1–89Google Scholar
  82. Wichterman R (1986) The biology of paramecium, Second edition. Plenum Press, New YorkCrossRefGoogle Scholar
  83. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell HS (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810–813PubMedCrossRefGoogle Scholar
  84. Yamamoto N, Hayashihara, Takagi Y (1997) Changes in UV sensitivity with cell cycle, clonal age, and cultural age in Paramecium tetraurelia. Zool Sci 14: 747–752Google Scholar
  85. Zambrano MM, Kolter R (1996) GASPing for life in stationary phase. Cell 86: 181–184PubMedCrossRefGoogle Scholar
  86. Zambrano MM, Siegele DA, Almiron M, Tormo A, Kolter R (1993) Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259: 1757–1760PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Y. Takagi
    • 1
  1. 1.Department of BiologyNara Women’s University Kita-uoya NishiNaraJapan

Personalised recommendations