Skip to main content

Molecular Methods for the Identification and Enumeration of Bioleaching Microorganisms

  • Chapter
Biomining

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Microbial ecology requires that the microorganisms of a given ecosystem be identified in situ, and that their spatial and temporal distribution be known. The classical approach to enumerate the microorganisms in environmental samples has been the plating technique combined with a simultaneous or subsequent differentiation of the isolates based on physiological and biochemical properties. However, all techniques relying on cultivation are time-consuming. In addition, the failure of many bacteria to form colonies is a widely acknowledged problem when using plate counting procedures. Often the number of colony forming units is only a minor fraction of the cell counts determined by direct microscopic procedures. Therefore, only a small percentage (less than 20%) of the microorganisms within autochtonous communities is known.1–5 Additional problems are found with the determination of the population dynamics since most microbial communities include not only planktonic or free-living microorganisms, but also biofilms, sediments and particulates.1 ,4 ,5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995; 59: 143–169.

    Google Scholar 

  2. McFeters GA, Yu FP, Pyle BH et al. Physiological assessment of bacteria using fluorochromes. J Microbiol Meth 1995; 21: 1–13.

    Google Scholar 

  3. Pickup RW. Development of molecular methods for the detection of specific bacteria in the environment. J Gen Microbiol 1991; 137: 1009–1019.

    Article  CAS  Google Scholar 

  4. Busse, HJ, Denner, EBM, Lubitz W. Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. J Biotechnol 1996; 47: 3–38.

    Article  PubMed  CAS  Google Scholar 

  5. Gürtler V, Stanisich VA. New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiol 1996; 142: 3–16.

    Article  Google Scholar 

  6. Tuovinen OH, Kelly BC, Groudev SN. Mixed cultures in biological leaching processes and mineral biotechnology. In: Zeikus JG, Johnson EA, eds. Mixed Cultures in Biotechnology. New York: McGraw-Hill, 1991: 373–427.

    Google Scholar 

  7. Harrison AP Jr. The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol 1984; 38: 265–292.

    Article  PubMed  CAS  Google Scholar 

  8. Hutchins SR, Davidson MS, Brierley JS et al. Microorganisms in reclamation of metals. Annu Rev Microbiol 1986; 40: 311–336.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson DB, Macvicar JHM, Rolfe S. A new solid medium for the isolation and enumeration of Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria. J Microbiol Methods 1987; 7:98–99.

    Google Scholar 

  10. Goebel BM, Stackebrand E. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Envir Microbiol 1994; 60: 1614–1621.

    Google Scholar 

  11. Southam G, Beveridge TJ. Enumeration of Thiobacilli within pH-neutral and acidic mine tailings and their role in the development of secondary mineral soil. Appl Environ Microbiol 1992; 58: 1904–1912.

    PubMed  CAS  Google Scholar 

  12. Manning HL. New medium for isolating iron oxidizing and heterotrophic acido- philic bacteria from acid mine drainage. Appl Microbiol 1975; 30: 1010–1016.

    Google Scholar 

  13. Mishra AK, Roy P, Mahapatra SSR. Isolation of Thiobacillus ferrooxidans from various habitats and their growth pattern on solid medium. Curr Microbiol 1983; 8: 147–152.

    Article  Google Scholar 

  14. Peng JB, Yan WM, Bao XZ. Solid medium for the genetic manipulation of Thiobacillus ferrooxidans. J Gen Appl Microbiol 1994; 40:243–253.

    Google Scholar 

  15. Lindström EB, Sehlin HM. High efficiency of plating of the termophilic sulfur-dependent archaebacterium Sulfolobus acidocaldarius. Appl. Environ Microbiol 1989; 55:3020–3021.

    Google Scholar 

  16. Bagdigian RM, Myerson AS. The adsorption of Thiobacillus ferrooxidans on coal surfaces. Biotechnol Bioeng 1986; 28: 467–479.

    Article  PubMed  CAS  Google Scholar 

  17. Yeh TY, Godshall(JR, Olson GJ et al. Use of epifluorescence microscopy for characterizing the activity of Thiobacillus ferrooxidans on iron pyrite. Biotechnol Bioeng 1987; 30: 138–146.

    Article  PubMed  CAS  Google Scholar 

  18. Sand W, Rohde K, Sobotke B et al. Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 1992; 58: 85–92.

    PubMed  CAS  Google Scholar 

  19. Monroy FM, Mustin C, de Donato P et al. Occurrences at mineral-bacteria interface during oxidation of arsenopyrite by Thiobacillus ferrooxidans. Biotechnol Bioengn 1995; 46: 13–21.

    Google Scholar 

  20. Arredondo R, Garcia A, Jerez CA. The partial removal of lipopolysaccharide from Thiobacillus ferrooxidans affects its attachment to solids. Appl Environ Microbiol 1994; 60: 2846–2851.

    PubMed  CAS  Google Scholar 

  21. Karamanev DG. Model of the biofilm structure of Thiobacillus ferrooxidans. J Biotechnol 1991; 20: 51–64.

    Article  CAS  Google Scholar 

  22. Sand W, Gehrke T, Hallmann R et al. Sulfur chemistry, biofilm, and the (in)direct attack mechanism-a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 1995; 43: 961–966.

    Google Scholar 

  23. Page S, Burns RG. Flow cytometry as a means of enumerating bacteria introduced into soil. Soil Biol Biochem 1991; 23: 1024–1028.

    Article  Google Scholar 

  24. Tebbe CC, Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and yeast. Appl Environ Microbiol 1993; 59: 2657–2665.

    Google Scholar 

  25. Lindahl V, Bakken LR. Evaluation of methods for extraction of bacteria from soil. FEMS Microb Ecol 1995; 16: 135–142.

    Article  CAS  Google Scholar 

  26. Pronk JT, deBruyn JC, Bos P et al. Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 1992; 58: 2227–2230.

    PubMed  CAS  Google Scholar 

  27. Arredondo R, Jerez CA. A specific dot-immunobinding assay for detection and enumeration of Thiobacillus ferrooxidans. Appl Environ Microbiol 1989; 55: 2025–2029.

    PubMed  CAS  Google Scholar 

  28. Apel WA, Dugan PR, Filppi JA et al. Detection of Thiobacillus ferrooxidans in acid mine environments by indirect fluorescent antibody technique. Appl Environ Microbiol 1976; 32: 159–165.

    PubMed  CAS  Google Scholar 

  29. Baker KH, Mills AL. Determination of the number of respiring Thiobacillus ferrooxidans cells in water samples by using combined fluorescent antibody 2-(piodophenyl)-3-) p-nitrophenyl)-5-phenyltetrazolium chloride staining. Appl Environ Microbiol 1982; 43:338-344.

    Google Scholar 

  30. Gates, JE, Pham KD. An indirect fluorescent antibody staining technique for determining population levels of Thiobacillus ferrooxidans in acid mine drainage waters. Microb Ecol 1979; 5: 121–127.

    Article  Google Scholar 

  31. Jerez CA, Peirano I, Chamorro D et al. Immunological and electrophoretic differentiation of Thiobacillus ferrooxidans strains. In: Lawrence RW, Branion RMR, Ebner, HG, eds. Fundamental and Applied Biohydrometallurgy. Proceedings of the sixth international symposium on biohydrometallurgy, Vancouver, British Columbia, Canada. Elsevier, Amsterdam, 1986:443–456.

    Google Scholar 

  32. Muyzer G, DeBruyn AC, Schmedding DJM et al. A combined immunofluorescenceDNA-fluorescence staining technique for enumeration of Thiobacillus ferrooxidans in a population of acidophilic bacteria. Appl Environ Microbiol 1987; 53: 660–664.

    Google Scholar 

  33. Jerez CA, Arredondo R. A sensitive immunological method to enumerate Leptospirillum ferrooxidans in the presence of Thiobacillus ferrooxidans. FEMS Microbiol Lett 1991; 78: 99–102.

    Article  Google Scholar 

  34. Amaro AM, Hallberg KB, Lindström EB et al. An immunological assay for the detection and enumeration of thermophilic biomining microorganisms. Appl Environ Microbiol 1994; 60:3470-3473.

    Google Scholar 

  35. Koppe B and Harms H. Antigenic determinants and specificity of antisera against acidophilic bacteria. World J Microbiol 1994; 10: 154–158.

    Google Scholar 

  36. Hallberg KB, Lindström EB. Multiple serotypes of the moderate thermophile Thiobacillus caldus,a limitation of immunological assays for biomining microorganisms. Appl Environ Microbiol 1996; 62:4243-4246.

    Google Scholar 

  37. Garcia A, Jerez CA. Changes of the solid-adhered populations of Thiobacillus ferrooxidans, Leptospirillum ferrooxidans and Thiobacillus thiooxidans in leaching ores as determined by immunological analysis. In: Jerez CA, Vargas T, Toledo H, Wiertz JV eds. Biohydrometallurgical Processing. Vol II. Santiago:University of Chile, 1995:19-30.

    Google Scholar 

  38. Ohmura N, Tsugita K, Koizumi JI et al. Sulfur-binding protein of flagella of Thiobacillus ferrooxidans. J Bacteriol 1996; 178: 5776–5780.

    PubMed  CAS  Google Scholar 

  39. Mustin C, Donato P, Berthelin J. Quantification of the intragranular porosity formed in bioleaching of pyrite by Thiobacillus ferrooxidans. Biotechnol Bioeng 1992; 39: 1121–1127.

    Google Scholar 

  40. Yates JR, Lobos JH, Holmes DS. The use of genetic probes to detect micro-organisms in biomining operations. J Int Microbiol 1986; 1: 129–135.

    CAS  Google Scholar 

  41. Rawlings DE, Woods DR, Mjoli NP. The cloning and structure of genes from the autotrophic biomining bacterium Thiobacillus ferrooxidans. In: Advances in Gene Technology. Vol 2. London:JAI Press Ltd., 1991; 215-237.

    Google Scholar 

  42. Irazabal N, Moreira D, Amils R et al. Comparative genomic organization of Thiobacilli using pulsed field gel electrophoresis. In: Jerez CA, Vargas T, Toledo H, Wiertz JV eds. Biohydrometallurgical Processing. Vol II. Santiago:University of Chile, 1995:31–42.

    Google Scholar 

  43. Pace NR, Stahl DA, Lane DJ et al. The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microbiol Ecol 1986; 9:1–55.

    Google Scholar 

  44. Lane DJ, Harrison AP, Stahl D et al. Evolutionary relationships among sulfur-and iron-oxidizing eubacteria. J Bacteriol 1992; 174: 269–278.

    PubMed  CAS  Google Scholar 

  45. Woese CR. Bacterial evolution. Microbiol Rev 1987; 51: 221–271.

    PubMed  CAS  Google Scholar 

  46. Rawlings DE. Restriction enzyme analysis of 16S rDNA for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments. In: Jerez CA, Vargas T, Toledo H, Wiertz JV eds. Biohydrometallurgical Processing. Vol II. Santiago: University of Chile, 1995: 9–17.

    Google Scholar 

  47. DeLong EF, Wickham GS Pace NR. Phylogenetic stains: ribosomal RNA-based probes for the identification of single microbial cells. Science 1989; 243: 1360–1363.

    Google Scholar 

  48. Muyzer G, Hottentrager S, Teske A et al. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA-a new molecular approach to analyze the genetic diversity of mixed microbial communities. In: Akkermans ADL, van Elsas JD, de Bruijn FJ eds. Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996; 1–23.

    Google Scholar 

  49. Pizarro J, Jedlicki E, Orellana O et al. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation. Appl Environ Microbiol 1996; 62: 1323–1328.

    PubMed  CAS  Google Scholar 

  50. Jensen MA, Webster JA, Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 1993; 59:945–952.

    Google Scholar 

  51. Amann RI, Binder BJ, Olson RJ et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 1990; 56: 1919–1925.

    PubMed  CAS  Google Scholar 

  52. Seeger M, Jerez CA. Phosphate limitation affects global gene expression in Thiobacillus ferrooxidans. Geomicrobiol J 1992; 10: 227–237.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jerez, C.A. (1997). Molecular Methods for the Identification and Enumeration of Bioleaching Microorganisms. In: Rawlings, D.E. (eds) Biomining. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06111-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06111-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06113-8

  • Online ISBN: 978-3-662-06111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics