Skip to main content

Heterotrophic Acidophiles and Their Roles in the Bioleaching of Sulfide Minerals

  • Chapter
Biomining

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

The most familiar and well-studied microorganisms indigenous to acidic mineral leaching environments are autotrophic sulfur- and iron-oxidizing bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans. Some photoautotrophs, such as the thermophilic rhodophyte Cyanidium caldarium, may also be present in extremely acidic environments that receive light. Other microorganisms which require pre-fixed (organic) carbon have been isolated from mineral leach dumps and acid mine drainage (AMD) waters. These heterotrophic microorganisms include eukaryotes, such as some fungi and yeasts1 and protozoa,2 as well as prokaryotic bacteria and archaea. It is somewhat paradoxical, given that heterotrophy is the most widespread form of metabolism among bacteria, that the first acidophilic heterotrophic bacterium which is indigenous and active in mineral leaching environments was isolated and characterized some 40 years after the iron/sulfur-oxidizing chemolithotroph T. ferrooxidans and 70 years after the sulfur-oxidizing acidophile T. thiooxidans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lopez-Archilla AI, Marin I, Amils R. Microbial ecology of an acidic river: biotechnological applications. In: Vargas T, Jerez CA, Wiertz JV et al, eds. Biohydrometallurgical Processing II. Santiago: University of Chile, 1995:63–74.

    Google Scholar 

  2. Johnson DB, Rang L. Effects of acidophilic protozoa on populations of metal-mobilising bacteria during the leaching of pyritic coal. J Gen Microbiol 1993; 139: 1417–1423.

    Article  CAS  Google Scholar 

  3. Dugan PR, Macmillan CB, Pfister RM. Aerobic heterotrophic bacteria indigenous to pH 2.8 acid mine water: predominant slime-producing bacteria in acid streamers. J Bacteriol 1970; 101: 282–288.

    Google Scholar 

  4. Wakao N, Tachibana H, Tanaka Y et al. Morphological and physiological characteristics of streamers in acid mine drainage water from a pyritic mine. J Appl Microbiol 1985; 31: 17–28.

    CAS  Google Scholar 

  5. Johnson DB. Diversity of microbial life in highly acidic, mesophilic environments. In: Berthelin J, ed. Diversity of Environmental Biogeochemistry. Amsterdam: Elsevier, 1991: 225–238.

    Google Scholar 

  6. Johnson DB, Ghauri MA, Said MF. Isolation and characterization of an acidophilic hetero trophic bacterium capable of oxidizing ferrous iron. Appl Environ Microbiol 1992; 58: 1423–1428.

    Google Scholar 

  7. Johnson DB, Bacelar-Nicolau P, Bruhn DF et al. Iron-oxidizing heterotrophic acidophiles: ubiquitous novel bacteria in leaching environments. In: Vargas T, Jerez CA, Wiertz JV et al, eds. Biohydrometallurgical Processing I. Santiago: University of Chile,1995:47–46.

    Google Scholar 

  8. Johnson DB, McGinness S, Ghauri MA. Biogeochemical cycling of iron and sulfur in leaching environments. FEMS Microbiol Rev 1993; 11: 63–70.

    Article  CAS  Google Scholar 

  9. Wichlacz PL, Unz RF. Acidophilic, heterotrophic bacteria of acidic mine waters. Appl Environ Microbiol 1981; 41a254–1261.

    Google Scholar 

  10. Harrison AP Jr. Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacte- rium from acidic mineral environments. Int J Syst Bacteriol 1981; 31: 327–332.

    Article  Google Scholar 

  11. Johnson DB, Kelso WI. Detection of heterotrophic contaminants in cultures of Thiobacillus ferrooxidans and their elimination by subculturing in media containing copper sulfate. J Gen Microbiol 1983; 123: 2969–2972.

    Google Scholar 

  12. Tabita R, Lundgren DG. Utilization of glucose and the effect of organic compounds on the chemolithotroph Thibacillus ferrooxidans. J Bacteriol 1971; 108:328–333.

    Google Scholar 

  13. Guay R, Silver M. 1974. Thiobacillus acidophilus sp. nov.: isolation and some physiological characteristics. Can J Microbiol 1974; 21: 281–288.

    Article  Google Scholar 

  14. Kishimoto N, Kosako Y, Wakao N et al. Transfer of Acidiphilium facilis and Acidiphilium aminolytica to the genus Acidocella gen. nov., and emendation of the genus Acidiphilium. Syst Appl Microbiol 1995; 18: 85–91.

    Google Scholar 

  15. Urakami T, Tamaoko J, Suzuki K et al. Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int J Syst Bacteriol 1989; 39:50-55.

    Google Scholar 

  16. Kishimoto N, Kosako Y, Tano T. Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 1991; 22: 1–7.

    Article  CAS  Google Scholar 

  17. Pronk JT, Johnson DB. Oxidation and reduction of iron by acidophilic bacteria. Geomicrobiol J 1992; 10: 153–171.

    Article  CAS  Google Scholar 

  18. Norris PR. Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich HL, Brierley CL, eds. Microbial Mineral Recovery. New York: McGraw-Hill, 1990:3-27.

    Google Scholar 

  19. Ghauri MA, Johnson DB. Physiological diversity amongst some moderately thermophilic iron-oxidizing bacteria. FEMS Microbiol Ecol 1991; 85: 327–334.

    Google Scholar 

  20. Wisotzkey JD, Jurtshuk P Jr, Fox GE et al. Comparative sequence analysis on the 16S RNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Appl J Syst Bacteriol 1992; 42: 263–269.

    Google Scholar 

  21. Johnson DB, Body DA, Bridge TAM et al. Biodiversity of acidophlic moderate thermophiles isolated from two sites in Yellowstone National Park, and their roles in the dissimilatory oxido-reduction of iron. In: Mancinelli R, Reysenbach A-L, eds. Biodiversity, Ecology and Evolution of Thermophiles in Yellowstone National Park. Washington D.C: American Society for Microbiology, 1996: ( In press ).

    Google Scholar 

  22. Darland G, Brock TD, Samsonoff W et al. A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 1970; 170: 1416–1418.

    Article  PubMed  CAS  Google Scholar 

  23. Bohlool BB, BrockTD. Immunofluorescence approach to the study of the ecology of Thermoplasma acidophilum in coal refuse material. Appl Microbiol 974;11–16.

    Google Scholar 

  24. Yasuda M, Oyaizu H, Yamagishi A et al. Morphological variation of new Thermoplasma acidophilum isolates from Japanese hot springs. Appl Environ Microbiol 1995; 61: 3482–3485.

    Google Scholar 

  25. Segerer A, Langworthy TA, Stetter KO. Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. System Appl Microbiol 1988; 10: 161–171.

    Article  Google Scholar 

  26. Schleper C, Puehler G, Holz I et al. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH o. J Bacteriol 1995; 177: 7050–7059.

    Google Scholar 

  27. Lane DJ, Harrison AP Jr, Stahl D et al. Evolutionary relationships among sulfur-and iron-oxidizing eubacteria. J Bacteriol 1992; 174: 269–278.

    PubMed  CAS  Google Scholar 

  28. Johnson DB, Bacelar-Nicolau P, Bruhn D et al. Ferromicrobium acidophilus, gen. nov., sp. nov.; obligately heterotrophic and acidophilic iron-oxidizing bacteria isolated from acid mine drainage and related environments. Microbiol 1997; (submitted).

    Google Scholar 

  29. Olsen GJ, Woese CR Ribosomal RNA: a key to phylogeny. FASEB J 1993; 7: 113–123.

    Google Scholar 

  30. Belly RT, Brock TD. Ecology of iron-oxidizing bacteria inpyritic materials associated with coal. J Bacteriol 1974; 117: 726–732.

    PubMed  CAS  Google Scholar 

  31. Johnson DB. Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Meth 1995; 23: 205–218.

    Google Scholar 

  32. Sand W, Rohde K, Sobotke B et al. Evaluation of Leptospirillum ferrooxidans for leaching. App Environ Microbiol 1992; 58: 85–92.

    CAS  Google Scholar 

  33. Schippers A, Hohmann R, Wentzien S et al. Microbial diversity in uranium mine waste heaps. App Environ Microbiol 1995; 61:2930-2935.

    Google Scholar 

  34. Johnson DB. Biological desulfurization of coal using mixed populations of mesophilic and moderately thermophilic acidophilic bacteria. In: Dugan PR, Quigley DR, Attia YA, eds. Processing and Utilization of High-Sulfur Coals. Amsterdam: Elsevier, 1991: 567–580.

    Google Scholar 

  35. Walton KC, Johnson DB. Microbiological and chemical characteristics of an acidic stream draining a disused copper mine. Environ Pollut 1992; 76: 169–175.

    Google Scholar 

  36. Goebel BM, Stackebrandt E. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 1994; 60: 1614–1621.

    Google Scholar 

  37. Goebel BM, Stackebrandt E. Molecular analysis of the microbial biodiversity in a natural acidic environment. In: Vargas T, Jerez CA, Wiertz JV et al, eds. Biohydrometallurgical Processing II. Santiago: University of Chile, 1995: 43–52.

    Google Scholar 

  38. Pizarro J, Jedlicki E, Orellana O et al. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA before and after cultivation. Appl Environ Microbiol 1996; 62: 1323–1328.

    PubMed  CAS  Google Scholar 

  39. Rawlings DE. Restriction enzyme analysis of 16S rDNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments. In: Vargas T, Jerez CA, Wiertz JV et al, eds. Biohydrometallurgical Processing II. Santiago: University of Chile, 1995:9–18.

    Google Scholar 

  40. Tuovinen OH, Kelley BC, Groudev SN. 1991. Mixed cultures in biological leaching processes and mineral biotechnology. In: Zeikus G, Johnson EA, eds. Mixed cultures in Biotechnology. New York: McGraw-Hill, 1991:373–427.

    Google Scholar 

  41. Berthelot D, Leduc LG, Ferroni GD. Temperature studies of iron-oxidizing autotrophs and acidophilic heterotrophs isolated from uranium mines. Can J Microbiol 1993; 39:384–388.

    Google Scholar 

  42. Wakao N, Nagasawa N, Matsuura T et al. Acidiphilium multivorum sp. nov., an acidophilic chemoorganotrophic bacterium from pyritic acid mine drainage. J Gen Appl Microbiol 1994; 40143–159.

    Google Scholar 

  43. Norris PR, Ingledew WJ. 1992. Acidophilic bacteria: adaptations and applications. In: Herbert RA, Sharp RJ, eds. Molecular Biology and Biotechnology of Thermophiles. Glasgow: Blackie, 1992: 115–142.

    Chapter  Google Scholar 

  44. Pronk JT, Meijer WM, Hazeu W et al. Growth of Thiobacillus ferrooxidans on formic acid. Appl Environ Microbiol 1991; 57: 2057–2062.

    PubMed  CAS  Google Scholar 

  45. Norris PR, Johnson DB. Acidophilic Microorganisms. In: Horikoshi K, Grant WD, eds. Extremophiles:Microbial Life in Extreme Environments. New York: John Wiley, 1996: ( In press ).

    Google Scholar 

  46. Johnson DB, McGinness S. Ferric iron reduction by acidophilic heterotrophic bacteria. Appl Environ Microbiol 1991; 57: 207–211.

    PubMed  CAS  Google Scholar 

  47. Said MF. The tolerance of acidophilic bacteria to high concentrations of some metals. Ph.D. Thesis, University of Wales, 1990.

    Google Scholar 

  48. Johnson DB, Said MF, Ghauri MF et al. Isolation of novel acidophiles and their potential use in bioleaching operations. In: Salley J, McCready RGL, Wichlacz PL, eds. Biohydrometallurgy 1989. Ottawa: Canada. 1990:403–414.

    Google Scholar 

  49. Hallmann R, Friedrich A, Koops H-P et al. Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching. Geomicrobiol J 1992; 10: 193–206.

    Article  CAS  Google Scholar 

  50. Harrison AP Jr. The acidiphilic Thiobacilli and other acidophilic bacteria that share their habitat. Ann Rev Microbiol 1984; 38: 265–292.

    Article  CAS  Google Scholar 

  51. Rawlings DE, Kusano T. Molecular genetics of Thiobacillus ferrooxidans. Microbiol Rev 1994; 58: 39–55.

    Google Scholar 

  52. Inagaki K, Hikita T, Yanagidani S et al. Restriction endonuclease Aon3HI from Acidiphilium organovorum 13H, a new isoschizomer of BspMII: purification and characterization. Biosci Biotechnol Biochem 1993; 57: 1716–1721.

    Google Scholar 

  53. Dou K, Inagaki K, Oshima A et al. Restriction endonuclease Afal from Acidiphilium facilis, a new isoschizomer of Rsal: purification and properties. Biochim Biophys Acta 1989; 1009: 83–86.

    Article  PubMed  CAS  Google Scholar 

  54. Inagaki K, Tomono J, Kishimoto N et al. Cloning and sequencing of the recA gene of Acidiphilium facilis. Nucl Acids Res 1993; 21:41–49

    Google Scholar 

  55. Ward TE, Bruhn DF, Shean ML et al. Characterization of a new bacteriophage which infects baceria of the genus Acidiphilium. J Gen Virol 1993; 74:2419–2425.

    Google Scholar 

  56. Roberto FF, Glenn AW, Bulmer D et al. Genetic transfer in acidophilic bacteria which are potentially applicable in coal beneficiation. Fuel 1991; 70: 595–598.

    Google Scholar 

  57. Glenn AW, Roberto FF, Ward TE. Transformation of Acidiphilium by electroporation and conjugation. Can J Bacteriol 1992; 38: 387–393.

    Google Scholar 

  58. Inagaki K, Tomono J, Kishimoto N et al. Transformation of the acidophilic heterotroph Acidiphilium facilis by electroporation. Biosci Biotechnol Biochem 1993; 571: 770–1771.

    Google Scholar 

  59. Quentmeier A, Friedrich CG. Transfer and expression of degradative and antibiotic resistance plasmids in acidophilic bacteria. Appl Environ Microbiol 1994; 60:973–978.

    Google Scholar 

  60. 60Bruhn DF, Roberto FF. Maintenance and expression of enteric arsenic resistance genes in Acidiphilium. In: Torma AE, Wey JE, Lakshmanan VI, eds. Biohydrometallurgical Technologies I. Warrendale PA: The Minerals, Metals and Materials Society, 1993: 745–754.

    Google Scholar 

  61. Koivula TT, Hemila H, Pakkanen R et al. Cloning and sequencing of a gene encoding acidophilic amylase from Bacillus acidocaldarius. J Gen Microbiol 1993; 139: 2399–2407.

    Google Scholar 

  62. Schwermann B, Pfau K, Liliensiek B et al. Purification, properties and structural aspects of a thermoacidophilic a-amylase from Alicyclobacillus acidocaldarius ATCC 27009. Eur J Biochem 1994; 226: 981–991.

    Google Scholar 

  63. Ree HK, Zimmermann RA. Organization and expression of the 16S, 23S and 5S ribosomal RNA genes from the archaebacterium Thermoplasma acidophilum. Nucl Acids Res 1990; 18: 4471–4478.

    Article  PubMed  CAS  Google Scholar 

  64. Rivett AI, Mason GG, Thomson S et al. Catalytic components of proteasomes and the regulation of proteinase activity. Mol Biol Rep 1995; 21: 35–41.

    Article  PubMed  CAS  Google Scholar 

  65. Zwicki P, Lottspeich F, Dahlmann B et al. Cloning and sequencing of the gene encoding the large (a-) subunit of the proteasome from Thermplasma acidophilum. FEBS Lett 1991; 278:217–221.

    Google Scholar 

  66. McConnell DJ, Searcy DG, Sutcliffe JG. A restriction enzyme Thal from the thermophilic mycoplasma Thermoplasma acidophilum. Nucl Acids Res 1978; 5:1729–1739.

    Google Scholar 

  67. Prangishvilli D, Zillig W, Gierl A et al. DNA-dependent RNA polymerase of the thermoacidophilic archaebacteria. Eur J Biochem 1982; 122: 471–477.

    Article  PubMed  CAS  Google Scholar 

  68. Kilpatrick MW, Walker RT. A nucleotide sequence of the tRNA Met from the archaebacterium Thermoplasma acidophilum. Nucl Acids Res 19$1; 9: 4387–4390.

    Google Scholar 

  69. Tesch A, Klink F. Cloning and sequencing of thegene coding for the elongation factor la from the archaebacterium Thermoplasma acidophilum. FEMS Microbiol Lett 1990; 59: 293–297.

    PubMed  CAS  Google Scholar 

  70. Londei P, Altamura S, Cammarano P et al. Differential features of ribosomes and poly (U)-programmed cell-free systems derived from sulfur-dependent archaebacterial systems. Eur J Biochem 1986; 157:455–462.

    Google Scholar 

  71. Norris PR, Kelly DP. The use of mixed microbial cultures in metal recovery. In: Bull AT, Slater JH, eds. Microbial Interactions and Communities I. London: Academic Press, 192:443–474.

    Google Scholar 

  72. Wichlacz PL, Thompson, DL. The effect of acidophilic heterotrophic bacteria on the leaching of cobalt by Thiobacillus ferrooxidans. In; Norris PR, Kelly DP, eds. Biohydrometallurgy: Proceedings of the International Symposium, Warwick 1987. Kew ( U.K. ): Science and Technology Letters, 1982: 77–88.

    Google Scholar 

  73. Sand W, Gehrke T, Hallmann R et al. Sulfur chemistry, biofilm, and the (in)direct attack mechanism—a critical evaluation of bacterial leaching. Appl Microbial Biotechnol 1995; 43: 961–966.

    Article  CAS  Google Scholar 

  74. Bridge TAM. Iron reduction by acidophilic bacteria. Ph.D. Thesis, University of Wales, 1995.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnson, D.B., Roberto, F.F. (1997). Heterotrophic Acidophiles and Their Roles in the Bioleaching of Sulfide Minerals. In: Rawlings, D.E. (eds) Biomining. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06111-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06111-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06113-8

  • Online ISBN: 978-3-662-06111-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics