Skip to main content

Diversity in the Circadian Response to Melatonin in Mammals

  • Chapter
Biological Rhythms
  • 341 Accesses

Abstract

Early studies in rats showed that timed melatonin administration could entrain and phase advance free-running activity rhythms, and affect the rate and direction of reentrainment following light-dark cycle phase-shifts. Based on these studies, it was initially thought that the mammalian circadian system was responsive to melatonin only within a narrow window of sensitivity, near the late subjective day. More recent studies in mice, palm squirrels and humans suggest that there are other times of the day when the circadian system is sensitive to the hormone. There appears to be much diversity and complexity in the responses to melatonin across species. In view of this, it is surprising that melatonin phase response curves have been described for only four different mammals, and entrainment studies have been reported in only a handful of species. There are likely to be differences between diurnal and nocturnal species in response to melatonin, although this possibility has not been thoroughly investigated. Until such issues are resolved and the mechanisms of melatonin action are elucidated, application of the hormone in the clinical setting may be premature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arendt, J., Bojkowski, C., Folkard, S. (1985) Some effects of melatonin and the control of its secretion in humans. In: Evered, D., Clark, S. (eds.) Photoperiodism, Melatonin and the Pineal. Ciba Foundation Symposium. Pitman, London, pp. 266–283.

    Google Scholar 

  • Arendt, J., Skene, D.J., Middleton, B., (1997) Efficacy of melatonin treatment in jet lag, shift work, and blindness. J. Biol. Rhythms 12(6): 604–617.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, S.M. (1989a) Melatonin and circadian control in mammals. Experientia 45: 932–938.

    Google Scholar 

  • Armstrong, S.M. (1989b) Melatonin: The internal zeitgeber of mammals? Pineal Res. Rev. 7: 157–202.

    Google Scholar 

  • Armstrong, S.M., McNulty, O.M., Guardiola-Lemaitre, B. (1993) Successful use of S20098 and melatonin in an animal model of delayed sleep-phase syndrome (DSPS). Pharmacol. Biochem. Behay. 46: 45–49.

    Article  CAS  Google Scholar 

  • Benloucif, S, Dubocovich, M.L. (1996) Melatonin and light induce phase shifts f circadian activity rhythms in the C3H/HeN mouse. J. Biol. Rhythms 11(2): 113–125.

    Google Scholar 

  • Cassone, V.M., Chesworth, M.J., Armstrong, S.M. (1986a) Dose-dependent entrainment of rat circadian rhythms by daily injection of melatonin. J. Biol. Rhythms. 1(3): 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Cassone, V.M., Chesworth, M.J., Armstrong, S.M. (1986b) Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiol. Behay. 36: 1111–1121.

    Google Scholar 

  • Cassone, V.M., Roberts, M.H., Moore, R.Y. (1988) Effects of melatonin on 2-deoxy-[1–14C] glucose uptake, within rat suprachiasmatic nucleus. Am. J. Physiol. 255: R332–R337.

    PubMed  CAS  Google Scholar 

  • Chesworth, M.J., Cassone, V.M., Armstrong,. S.M. (1987), Effects of daily melatonin injections on activity rhythms of rats in constant light. Am. J. Physiol. 253: R101–R107.

    CAS  Google Scholar 

  • Dahlitz, M.J., Alvarez, B., Vignau, J. (1991) Delayed sleep-phase syndrome: response to melatonin. Lancet 337: 1121–1124.

    Article  PubMed  CAS  Google Scholar 

  • Davis, F.C., Mannion, J. (1988) Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. Am. J. Physiol. 255(3): R439–R448.

    PubMed  CAS  Google Scholar 

  • Drijfhout, W.J., de Vries, J.B., Homan, E.J. (1999) Novel non-indolic receptor agonists differentially entrain endogenous melatonin rhythm and increase its amplitude. Eur. J. Pharmacol. 382(3): 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich, M.L., Yun, K., Al-Ghoul, W.M. (1998) Selective MT2 melatonin receptor antagonists block melatoninmediated phase advance of circadian rhythm FASEB J. 12: 1211–1220.

    CAS  Google Scholar 

  • Gauer, F., Masson-Pévet, M., Skene, D.J. (1993) Daily rhythms of melatonin binding sites in the rat pars tuberalis and suprachiasmatic nuclei; evidence for a regulation of melatonin receptors by melatonin itself. Neuroendocrinol. 57: 120–127.

    Article  CAS  Google Scholar 

  • Grosse, J., Davis, F.C. (1998) Melatonin entrains the restored circadian activity rhythms of Syrian hamsters bearing fetal suprachiasmatic nucleus grafts. J. Neurosci. 18(19): 8032–8037.

    PubMed  CAS  Google Scholar 

  • Grosse, J., Velickovic, A., Davis, F.C. (1996) Entrainment of Syrian hamster circadian activity rhythms by neonatal melatonin injections. Am. J. Physiol. 270(3): R533 — R540.

    PubMed  CAS  Google Scholar 

  • Hastings, M.H., Mead, S.M., Vindlacheruvu, R.R. (1992) Non-photic phase shifting of the circadian activity rhythm of Syrian hamsters: the relative potency of arousal and melatonin. Brain Res. 591: 20–26.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, A.E., Al-Ghoul, W.M., Gillette, M.V., Dubocovich, M.L. (2001) Activation of MT (2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Cell Physiol, 280(1): C110–Cl18.

    CAS  Google Scholar 

  • Illnerovâ, H., Trentini, G.P., Maslova, L. (1989) Melatonin accelerates reentrainment of the circadian rhythm of its own production after an eight-hour advance of the light-dark cycle. J. Comp. Physiol. 166: 97–102.

    Article  Google Scholar 

  • Kilduff, T.S., Landel, H.B., Nagy, G.S. (1992) Melatonin influences fos expression in the rat suprachiasmatic nucleus. Mol. Brain Res. 16: 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch, R., Belgnaoui, S., Gourmelen, S. (1993) Daily melatonin infusion entrains free-running activity in Syrian and Siberian Hamsters. In: Wetterberg L (ed.) Light and Biological Rhythms in Man. Oxford/New York/Seoul/Tokyo, Pergamon Press, pp 107–120.

    Google Scholar 

  • Lewy, A.J., Sack, R.L. (1997) Exogenous melatonin’s phase-shifting effects on the endogenous melatonin profile in sighted humans: a brief review and critique of the literature. J. Biol. Rhythms 12: 588–594.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C., Weaver, D.R., Jin, X. (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19(1): 91–102.

    Article  PubMed  CAS  Google Scholar 

  • Lockley, S.W., Skene, D.J., James, K. (2000) Melatonin administration can entrain the free-running circadian system of blind subjects. J. Endocrinol. 164: R1–R6.

    Article  PubMed  CAS  Google Scholar 

  • Margraf, R.R., Lynch, G.R. (1993) Melatonin injections affect circadian behavior and SCN neurophysiology in Djungarian hamsters. Am. J. Physiol. 264(3): R615–R621.

    PubMed  CAS  Google Scholar 

  • Marumoto, N., Murakami, N., Katayama, T. (1996) Effects of daily injections of melatonin on locomotor activity rhythms in rats maintained under constant bright or dim light. Physiol. Behay. 60(3): 767–773.

    CAS  Google Scholar 

  • McArthur, A.J., Hunt, A.E., Gillette, M.U. (1997) Melatonin and signal transduction in the rat suprachiasmatic circadian clock: activation of protein kinase C at dawn and dusk. Endocrinol. 138: 627–634.

    Article  CAS  Google Scholar 

  • Mrosovsky, N. (1988) Phase response curves for social entrainment. J. Comp. Physiol. A 162: 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, N., Hayafuji, C., Sasaki, Y. (1983) Melatonin accelerates the reentrainment of the circadian adrenocortical rhythm in inverted illumination cycle. Neuroendocrinol. 36: 385–391.

    Article  CAS  Google Scholar 

  • Murakami, N, Marumoto, N., Nakahara, K. (1997) Daily injections of melatonin entrain the circadian activity rhythms of nocturnal rats but not diurnal chipmunks. Brain Res. 775(1–2): 240–243.

    Article  PubMed  CAS  Google Scholar 

  • Pitrosky, B., Kirsch, R., Malan, A. (1999) Organization of rat circadian rhythms during daily infusion of melatonin or S20098, a melatonin agonist. Am. J. Physiol. 277(3): R812–R828.

    PubMed  CAS  Google Scholar 

  • Puchalski, W., Lynch, G.R. (1988) Daily melatonin injections affect the expression of circadian rhythmicity in Djungarian hamsters kept under a long-day photoperiod. Neuroendocrinol. 48: 280–286.

    Article  CAS  Google Scholar 

  • Rajaratnam, S.M.W., Redman, J.R. (1997) Effects of daily melatonin administration on circadian activity rhythms in the diurnal Indian palm squirrel (Funambulus pennanti). J. Biol. Rhythms 12(4): 339–347.

    Article  PubMed  CAS  Google Scholar 

  • Redman, J., Armstrong, S., Ng, K.T. (1983) Free-running activity rhythms in the rat: entrainment by melatonin. Science 219: 1089–1091.

    Article  PubMed  CAS  Google Scholar 

  • Redman, J.R. (1993) Circadian effects of melatonin in rats: an update. In: Touitou, Y., Arendt, J., Pevet, P. (eds.) Melatonin and the pineal gland- From basic science to clinical application. Elsevier Science, pp. 143–150.

    Google Scholar 

  • Redman, J.R., Armstrong, S.M. (1988) Reentrainment of rat circadian activity rhythms: Effects of melatonin. J. Pineal Res. 5: 203–215.

    Article  PubMed  CAS  Google Scholar 

  • Redman, J.R., Roberts, C.M. (1991) Entrainment of rat activity rhythms by melatonin does not depend on wheel-running activity. Soc. Neurosci. Abstracts 17: 673.

    Google Scholar 

  • Reppert, S.M. (1997) Melatonin receptors: Molecular biology of a new family of G protein-coupled receptors. J. Biol. Rhythms 12(6): 528–531.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, V.K., Singaravel, M., Subbaraj, R. (1999a) Locomotor activity rhythm in the field mouse Mus booduga phase-shifts to melatonin injections in a dose-dependent manner. Biol. Rhythm Res. 30(3): 313–320.

    Article  CAS  Google Scholar 

  • Sharma, V.K., Singaravel, M., Subbaraj, R. (1999b) Timely administration of melatonin accelerates reentrainment to phase-shifted light-dark cycles in the field mouse Mus booduga. Chronobiol. Int. 16(2): 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Slotten, H.A., Pitrovsky, B., Pévet, P. (1999) Influence of the mode of daily melatonin administration on entrainment of rat circadian rhythms. J. Biol. Rhythms 14(5): 347–353.

    Article  PubMed  CAS  Google Scholar 

  • Spitzer, R.L., Terman, M., Williams, J.B. (1999) Jet lag: Clinical features, validation of a new syndrome-specific scale, and lack of response to melatonin in a randomized, double-blind trial. Am. J. Psychiat. 156(9): 1392–1396.

    PubMed  CAS  Google Scholar 

  • Sumovâ, A., Illnerovâ, H. (1996) Melatonin instantaneously resets intrinsic circadian rhythmicity in the rat suprachiasmatic nucleus. Neurosci. Lett. 218(3): 181–184.

    Article  PubMed  Google Scholar 

  • Thomas, E.M.V., Armstrong, S.M. (1988) Melatonin administration entrains female rat activity rhythms in constant darkness but not in constant light. Am. J. Physiol. 255: R237–R242.

    PubMed  CAS  Google Scholar 

  • Tzischinsky, O., Dagan, Y., Lavie, P. (1993) The effects of melatonin on the timing of sleep in patients with delayed sleep phase syndrome. In: Touitou, Y., Arendt, J., Pevet, P. (eds.) Melatonin and the pineal gland: From basic science to clinical application. Amsterdam, Elsevier Science Publishers, pp. 351–354.

    Google Scholar 

  • Van Reeth, O., Olivares, E., Turek, F.W. (1998) Resynchronisation of a diurnal rodent circadian clock accelerated by a melatonin agonist. Neuroreport 9(8): 1901–1905.

    Article  PubMed  Google Scholar 

  • Vanacek, J., Pavlik, A., Illnerovâ, H. (1987) Hypothalamic melatonin receptor sites revealed by autoradiography. Brain. Res. 435: 359–362.

    Article  Google Scholar 

  • Warren, W.S., Hodges, D.B., Cassone, V.M. (1993) Pinealectomized rats entrain and phase shift to melatonin injections in a dose-dependent manner. J. Biol. Rhythms 8(3): 233–245.

    Article  PubMed  CAS  Google Scholar 

  • Weibel, L., Rettori, M.C., Lesieur, D. (1999) A single oral dose of S22153, a melatonin antagonist, blocks the phase advancing effects of melatonin in C3H mice. Brain Res. 829: 160–166.

    Article  PubMed  CAS  Google Scholar 

  • Yellon, S.M. (1996) Daily melatonin treatments regulate the circadian melatonin rhythm in the adult Djungarian hamster. J. Biol. Rhythms 11(1): 4–13.

    Article  PubMed  CAS  Google Scholar 

  • Zaidan, R., Geoffriau, M., Brun, J. (1994) Melatonin is able to influence its secretion in humans: description of a phase-response curve. Neuroendocrinol. 60(1): 105–112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rajaratnam, S.M.W., Redman, J.R. (2002). Diversity in the Circadian Response to Melatonin in Mammals. In: Kumar, V. (eds) Biological Rhythms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06085-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06085-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06087-2

  • Online ISBN: 978-3-662-06085-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics