Ultradian Rhythms

  • M. P. Gerkema


A biological rhythm is called ultradian if its period is shorter than 24 hour. Ultradian rhythms have been observed in physiological functions, like cellular processes, respiraton, circulation, hormonal release and sleep stages, as well as in behavioral functions, often related to feeding patterns. Ultradian rhythms are characterized by diversity not only in period length (from hours to milliseconds) but also in mechanisms and functions. Besides homeostatic feedback loops at the behavioral level, several independent central nervous system (CNS) based ultradian pacemakers have been demonstrated. Attempts have been made to relate ultradian oscillations to each other. The Basic rest-activity Cycle (Brac) hypothesis supposes that the rhythm of rapid eye movement (REM) sleep episodes continues over the 24 hours of the day and is reflected in other physical and mental functions. Notwithstanding the resemblance of periodicity of REM cycles and some performances, the Brac concept cannot explain the diversity in frequency and mechanisms. The period length of many ultradian rhythms scale with body mass very similarly. Such allometry, without clarifying causal principles, indicates the potentials of synchronization and tuning of ultradian patterns. In general, functions of ultradian rhythms have been described in terms of energetic optimization and internal coordination. This may apply also to the example of ultradian feeding rhythms in voles. To obtain crucial savings in energy expenditure, however, voles furthermore have to synchronize their individual rhythms. Body contact is here essential, both in the entrainment mechanism and in the functional consequence of the synchronization process. In the absence of relevant geophysical cycles in the environment, synchronization with a biological external factor, i.e. with conspecifics, is characteristic of ultradian patterns in behavior and physiology.


Period Length Suprachiasmatic Nucleus Biological Rhythm Common Vole Sleep Episode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcantara, F., Monk, M. (1974) Signal propagation during aggregation in the slime mould Dictyostelium discoideum. J. Gen. Microbiol. 85: 321–324.PubMedGoogle Scholar
  2. Aschoff, J., Weyer, R. (1962) Biologische Rhythmen and Regelung. In: Delius, L., Koepchen, H.P., Witzleb, E. (eds.) Probleme der zentralnervösen Regulation. Springer, Berlin, pp. 1–15.CrossRefGoogle Scholar
  3. Aschoff, J., Gerkema, M.P. (1985) On diversity and uniformity of ultradian rhythms In. Schulz, H., Lavie, P. (eds.) Ultradian Rhythms in Physiology and Behavior. Springer, Berlin, pp. 321–334.CrossRefGoogle Scholar
  4. Aserinsky, E., Kleitman, N. (1953) Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science 118: 273.PubMedCrossRefGoogle Scholar
  5. Boiteux, A., Hess, B., Sel’kov, E.E. (1980) Creative function of instability and oscillations in metabolic systems. Current topics in cellular regulation 17: 1171–2031.Google Scholar
  6. Bornemann, H., Mohr, E., Ploetz, J., Krause, G. (1998) The tide as zeitgeber for Weddal seals. Polar Biol. 20: 396–403.CrossRefGoogle Scholar
  7. Bramble, D.M., Carrier, D.R. (1983) Running and breathing in mammals. Science 219: 251–256.Google Scholar
  8. Brody, S. (1945) Bioenergetics and growth. Hafner, New York.Google Scholar
  9. Calder, W.A. (1984) Size, Function and Life History, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  10. Cowcroft, P. (1954) The daily cycle in British shrews. Proc. Zool. Soc. London 123: 715–729.CrossRefGoogle Scholar
  11. Daan, S. (1981) Adaptive daily strategies in behavior. In Aschoff, J. (ed.) Handbook of Behavioral Neurobiology, Plenum, New York, pp. 275–298.Google Scholar
  12. Daan, S. (1987). Clocks and hour glass timers in behavioural cycles. In Hiroshige, T. and Hinama, K. (eds.) Comparative aspects of circadian clocks. Hokkaido University Press, Sapporo.Google Scholar
  13. Daan, S., Aschoff, J. (1981) Short-term rhythms in activity. In: Aschoff, J. (ed.) Handbook of Behavioral Neurobiology, Plenum, New York, pp. 491–498.Google Scholar
  14. Daan, S., Aschoff, J. (1982) Circadian contributions to survival. In: Aschoff, J., Daan, S., Groos, G.A. (eds.) Vertebrate circadian systems: structure and physiology. Springer, Berlin, pp. 305–321.CrossRefGoogle Scholar
  15. Daan, S., Tinbergen, J.M. (1999) Adaptation of Life Histories. In: Krebs, J.R., Davies, N.B. (eds.) Behavioural Ecology, An Evolutionary Approach. Blackwell Science, Oxford, pp. 311–333.Google Scholar
  16. Delgado-Garcia, J.M., Grau, C., DeFeudis, P., Belpozo, F., Jeminez, M., Delgado, J.M.R. (1976) Ultradian rhythms in mobility and behavior of rhesus monkeys. Exp. Brain Res. 25: 79–91.PubMedCrossRefGoogle Scholar
  17. D’Olimpio, F., Renzi, P. (1998) Ultradian rhythms in young and adult mice: further support for the basic rest-activity cycle. Physiol. Behay. 64: 697–701.CrossRefGoogle Scholar
  18. Gerkema, M.P. (1992) Biological rhythms: Mechanisms and adaptive values. In: Ali, M.A. (ed.) Rhythms in Fishes. Plenum Press, New York, 27–37.CrossRefGoogle Scholar
  19. Gerkema, M.P. and Daan, S. (1985) Ultradian rhythms in behavior: the case of the common vole (Microtus arvalis). In: Schulz, H., Lavie, P. (eds.) Ultradian rhythms in physiology and Behavior. Springer, Berlin, pp. 11–31CrossRefGoogle Scholar
  20. Gerkema, M.P., Groos, G.A., Daan, S. (1990) Differential elimination of circadian and ultradian rhythmicity by hypothalamic lesions in the common vole Microtus arvalis. J. Biol. Rhythms 5: 81–95.PubMedCrossRefGoogle Scholar
  21. Gerkema, M.P., Verhulst, S. (1990) Warning against unseen predators: an experimental study in the common vole Microtus arvalis. Anim. Behay. 40: 1169–1178.CrossRefGoogle Scholar
  22. Gerkema, M.P., Leest, E. van der (1991) Ultradian rhythms in the common vole Microtus arvalis during short deprivations of food, water and rest. J. Comp. Physiol. A 168: 591–597.PubMedCrossRefGoogle Scholar
  23. Gerkema, M.P., Daan, S., Wilbrink, M., Hop, M.W., Leest, F. van der (1993) Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): the roles of light and the circadian system. J. Biol. Rhythms 7: 151–171.CrossRefGoogle Scholar
  24. Gerkema, M.P., Van der Zee, E.A., Feitsma, L.E. (1994) Expression of circadian rhythmicity correlates with the number of arginine-vasopressin-immunoreactive cells in the suprachiasmatic nucleus of the common vole, Microtus arvalis. Brain Res. 639: 93–101.PubMedCrossRefGoogle Scholar
  25. Gerkema, M.P., Shinohara, K., Kimura, F. (1999) Lack of circadian patterns in vasoactive intestinal polypeptide release and variability in vasopressin release in vole suprachiasmatic nuclei in vitro. Neursci. Lett. 259: 107–110.CrossRefGoogle Scholar
  26. Godfrey, G.K. (1955) A field study of the activity of the mole (T. europaea L.). Ecology 36: 678–685.CrossRefGoogle Scholar
  27. Grau, C., Escera, C., Cilveti, D., Garcia, R., Mojon, M., Fernandez, A., Hermida, R.C. (1995). Ultradian rhythms in gross motor activity of adult humans. Physiol. Behay. 57: 411–419.CrossRefGoogle Scholar
  28. Halberg, F., Engeli, M., Hamburger, C., Hillmann, V.D. (1965) Spectral resolution of low-frequency, small amplitude rhythms in excreted 17-ketoseroids: probably androgen-induced circaseptan desynchronization. Acta Endocrinologica 103: 1–54.Google Scholar
  29. Hatyashi, M., Sato, K., Hori, T. (1994) Ultradian rhythms in task performance, self evaluation, and EEG activity. Percept. Mot. Skills 79: 791–800.CrossRefGoogle Scholar
  30. Heusner, A.A. (1987) What does the power function reveal about structure and function in animals of different size? Am. Rev. Physiol. 49: 121–133.CrossRefGoogle Scholar
  31. Holst, E.V. (1949) Zur Funktion des Statolitischenapparates im Wirbeltierlabyrinth. Naturwissenschaften 36: 127–128.CrossRefGoogle Scholar
  32. Hughes, G.P., Reid, D. (1951) Studies on the behaviour of cattle and sheep in relation to the utilization of grass. J. Agr. Sci. 41: 360–366.Google Scholar
  33. Jansen, K., Van der Zee, E.A., Gerkema, M.P. (1999) Organotypic suprachiasmatic nuclei cultures of adult voles reflect locomotor behavior: differences in number of vasopressin cells. Chronobiol. Int. 16: 745–750.PubMedCrossRefGoogle Scholar
  34. Kleiber, M. (1932) Body size and metabolism. Hilgardia 6: 315–353.Google Scholar
  35. Kleitmann (1961) The nature of dreaming. In Wolstenholme, G.E.W., O’Connor, M. (eds.). The nature of sleep. Churchill, London, p. 349.Google Scholar
  36. Kupferman, I. (1985) Hypothalamus and lymbic system I: peptidergic neurons, homeostasis, and emotional behavior. In: Kandel, E.C., Schwartz, J.H. (eds.) Principles of neural science. Elsevier, New York, pp. 611–625.Google Scholar
  37. Lindstedt, S.L., Calder, W.A. (1981) Body size, physiological time, and longevity of homeothermic animals. Quart. Rev. Biol. 56: 1–16.CrossRefGoogle Scholar
  38. Lisman, J.E., Goldring, M.A. (1988) Feasibility of long-term storage of graded information by the Ca2+/calmodulidependent protein kinase molecules of the postsynaptic density. Proc. Nat. Acad. Sci. USA 85: 5320–5324.PubMedCrossRefGoogle Scholar
  39. Lloyd, D., Stupfel, M. (1991) The occurrence and functions of ultradian rhythms. Biol. Rev. 66: 275–299.PubMedCrossRefGoogle Scholar
  40. Meiske, W., Glende, M., Nurnberg, G., Reich, J.G. (1978) On the influence of rapid periodic parameter oscillations on the long-term behaviour of cell metabolism. J. Theor. Biol. 71: 11–19.PubMedCrossRefGoogle Scholar
  41. Neubauer, A.C., Freudenthaler, H.H. (1995) Ultradian rhythms in cognitive performance: no evidence for a 1.5h rhythm. Biol. Psychol. 40: 281–298.PubMedCrossRefGoogle Scholar
  42. Notili, L., Ferrilo, F., Besset, A., Rosadini, G., Schiavi, G., Billiard, M. (1996) Ultradian aspects of sleep in narcolepsy. Neurophysiol. Clin. 26: 51–59.CrossRefGoogle Scholar
  43. Okudaira, N., Kripke, D.F., Webster, J.B. (1984) No basic rest-activity cycle in head, wrist or ankle. Physiol. Behay. 32: 843–845.CrossRefGoogle Scholar
  44. Peters, R.H. (1983) The ecological implications of body size. Cambridge University Press.Google Scholar
  45. Poon, A.M.S., Wu, B.M., Poon, P.W.F., Cheung, E.P.W., Chan, F.H.Y. (1997) Effect of cage size on ultradian locomotor rhythms of laboratory mice. Physiol. Behay. 62: 1253–1258.CrossRefGoogle Scholar
  46. Prop, J., Loonen, H.J.J.E. (1986) Goose flocks and food exploitation: the importance of being first, XIX Int. Ornith. Congr. Ottawa, pp. 1878–1887.Google Scholar
  47. Rapp, P.E., Mees, A.I., Sparrow, C.T. (1981) Frequency encoded biochemical regulations is more accurate than amplitude dependent control. J. Theor. Biol. 90: 531–544.PubMedCrossRefGoogle Scholar
  48. Raptorgroup RUG/RIJP (1982) Timing of vole hunting in aerial predator. Mammol. Rev. 12: 169–181.Google Scholar
  49. Refinetti, R. (1996) Ultradian rhythms of body temperature and locomotor activity in wild-type and tau mutant hamsters. Anim. Biol. 5: 111–115.Google Scholar
  50. Ricard, J., Saolie, J.M. (1982) Self organization and dynamics of an open futile cycle. J. Theor. Biol. 95: 105–121.PubMedCrossRefGoogle Scholar
  51. Richter, P.H., Ross, J. (1981) Concentration oscillations and efficiency: glycolysis. Science 211: 715–717.PubMedCrossRefGoogle Scholar
  52. Schulz, H., Lavie, P. (1985) Ultradian rhythms in Physiology and Behavior. Springer, Berlin.CrossRefGoogle Scholar
  53. Simon, C. (1998) Ultradian pulsatility of plasma glucose and insulin secretion rate: circadian and sleep modulation. Horm. Res. 49: 185–190.PubMedCrossRefGoogle Scholar
  54. Sinha, M.K., Sturis, J., Ohannesian, J., Magosin, S., Stephens, T., Polonsky, K.S., Caro, J.F., (1996) Ultradian oscillations of leptin secretion in humans. Biochem. Biophys. Res. Commun. 228: 733–738.PubMedCrossRefGoogle Scholar
  55. Stupfel, M., Gourlet, V., Peramon, A., Merat, P., Putet, G., Court, L. (1995) Comparison of ultradian and circadian oscillations of carbon dioxide production by various endotherms. J. Am. Physiol. 268: R253–265.Google Scholar
  56. Van Cauter, E., Honinckx, E. (1985) Pulsatility in pituitary hormones. In: Schulz, H., Lavie, P. (eds.) Ultradian Rhythms in Physiology and Behavior. Springer, Berlin, pp. 41–61.CrossRefGoogle Scholar
  57. Wollnik, E. (1989) Physiology and regulation of biological rhythms in laboratory animals: an overview. Lab. Animal 23: 107–125.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • M. P. Gerkema
    • 1
  1. 1.Zoological LaboratoryUniversity of GroningenHarenThe Netherlands

Personalised recommendations