Skip to main content

Therapeutic Effects of Electromagnetic Fields

  • Chapter
Biological Effects of Electromagnetic Fields

Abstract

Biological studies suggest that extremely low frequency-electromagnetic fields (ELF-EMF) operate by modulating normal control mechanisms available to the cell. There is an abundance of experimental and clinical data which indicate that exposure to exogenous electromagnetic fields of surprisingly low levels can have a profound effect on a large variety of biological systems, including the abovementioned bone disorders such as bone fracture and osteoporosis. The data obtained from in vitro systems suggest that the current biological activity of a cell (e.g., division or differentiation) can be modulated. As the number of experiments on EMF effects increases it is becoming increasingly evident, as will be shown below, that more cursory consideration must be given. Many EMF experiments employ transformed rather than normal cells. One must question whether cells that are abnormal represent the best model systems for elucidating EMF interaction mechanisms. A better approach might be to use simpler, well-studied normal cells such as yeast or bacteria. The obvious advantage of employing these organisms to elucidate the transduction pathway(s) is that they are well characterized and, more importantly, an endless array of mutants is available to the investigator. Historically, the use of mutants has proved to be an essential tool for elucidation of cellular pathways. The approved therapeutic effects of weak EMF result from devices which were designed to modulate (not initiate) tissue growth and repair. It is quite clear from all of the dosimetry data available that the amount of energy deposited in the cell or tissue target is negligible compared to the energy required by the affected biochemical pathway. Thus, the capability of weak EMF to have a bioeffect appears to reside in the informational content of the waveform. This may provide part of the explanation for the sensitivity of living systems to weak electromagnetic and magnetic fields. Finally, the site(s) and mechanisms of interaction between ELF-EMF and biological systems remain to be elaborated. Although there are numerous studies and hypotheses that suggest the membrane represents the primary site of interaction, there are also several different studies showing that in vitro systems, including cell-free systems, are responsive to EMF. The debate about potential hazards or therapeutic value of weak electromagnetic fields will continue until the mechanism has been clarified. The problem of how weak fields perturb cell function will be understood when the techniques of molecular biology, genetics, biochemistry, and biophysics are directed together to answer the question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarden EM. Burger EH. Nijweide PJ. Function of osteocytes in bone. Journal of Cellular Biochemistry. 55 (3): 287–99, 1994.

    Article  Google Scholar 

  2. Adey WR. Electromagnetic fields, cell membrane amplication, and cancer promotion. In: Extremely Low Frequency Electromagnetic Fields: The Question of Cancer. Wilson BW. Stevens RG. Anderson LE. eds. p. 211–49, Battelle Press, Columbus, Ohio, 1990.

    Google Scholar 

  3. Adey WR. Bawin SM. Lawrence AF. Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex. Bioelectromagnetics. 3 (3): 295–307, 1982.

    Article  Google Scholar 

  4. Adey WR. Sheppard A. Cell surface ionic phenomena in transmembrane signaling to intracellular enzyme systems. In: Mechanistic Approaches to Interactions of Electromagnetic Fields with Living Systems. Blank M. Find E. eds. p. 365–87, Plenum Press, New York, 1987.

    Google Scholar 

  5. Amagai Y. Kasai S. A voltage-dependent calcium current in mouse MC3T3E1 osteogenic cells. Japanese Journal of Physiology. 39 (5): 773–7, 1989.

    Article  Google Scholar 

  6. Anonymous. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. American Journal of Medicine. 94 (6): 646–50, 1993.

    Article  Google Scholar 

  7. Astumian RD. Chock PB. Tsong TY. Chen YD. Westerhoff HV. Can free energy be transduced from electric noise?. Proceedings of the National Academy of Sciences of the United States of America. 84 (2): 434–8, 1987.

    Article  Google Scholar 

  8. Auer JA. Burch GE. Hall P. Review of pulsing electromagnetic field therapy and its possible application to horses. Equine Veterinary Journal. 15 (4): 354–60, 1983.

    Article  Google Scholar 

  9. Balcavage WX. Alvager T. Swez J. Goff CW. Fox MT. Abdullyava S. King MW. A mechanism for action of extremely low frequency electromagnetic fields on biological systems. Biochemical & Biophysical Research Communications. 222 (2): 374–8, 1996.

    Article  Google Scholar 

  10. Barth LG. Barth U. The sodium dependence of embryonic induction. Developmental Biology. 20 (3): 236–62, 1969.

    Article  MathSciNet  Google Scholar 

  11. Barth U. Barth LG. Effect of the potassium ion on induction of notochord from gastrula ectoderm of Rana pipiens. Biological Bulletin. 146 (3): 313–25, 1974a.

    Article  Google Scholar 

  12. Barth LG. Barth U. Ionic regulation of embryonic induction and cell differentiation in Rana pipiens. Developmental Biology. 39 (1): 1–22, 1974b.

    Article  MathSciNet  Google Scholar 

  13. Bassett CAL. Biologic significance of piezoelectricity. Calcified Tissue Research. 1 (4): 252–72, 1968.

    Google Scholar 

  14. Bassett CAL. Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). CRC Critical Reviews in Biomedical Engineering. 17 (5): 451–529, 1989.

    Google Scholar 

  15. Bassett CAL. Chokshi HR. Hernandez E. Pawluk RJ. Strop M. The effect of pulsing electromagnetic fields on cellular calcium and calcification of non-unions. In: Electrical Properties of Bone and Cartilage: Experimental Effects and Clinical Applications. Brighton CT. Black J. Pollack SR. eds. p. 427–41, Grune & Stratton, New York, 1979a.

    Google Scholar 

  16. Bassett CAL. Herrmann I. The effect of electrostatic fields on macromolecular synthesis by fibroblasts in vitro. Journal of Cell Biology. 39: 92, 1968.

    Google Scholar 

  17. Bassett CAL. Pawluk RJ. Noninvasive methods for stimulating osteogenesis. Journal of Biomedical Materials Research. 9 (3): 371–4, 1975.

    Article  Google Scholar 

  18. Bassett CAL. Pawluk RJ. Becker RO. Effects of electric currents on bone formation in vivo. Nature. 204: 652, 1964.

    Article  Google Scholar 

  19. Bassett CAL. Schink-Ascani M. Long-term pulsed electromagnetic field (PEMF) results in congenital pseudarthrosis. Calcified Tissue International. 49 (3): 216–20, 1991.

    Article  Google Scholar 

  20. Bassett CAL. Schink M. Mitchell SN. Pulsing electromagnetic field effects in avascular necrosis-A preliminary clinical report. Trans Bioelectr Growth Repair Soc. 1: 38, 1981.

    Google Scholar 

  21. Bassett LS. Tzitzikalakis G. Pawluk RJ. Bassett CAL. Prevention of disuse osteoporosis in the rats by means of pulsing electromagnetic fields. In: Electrical Properties of Bone and Cartilage: Experimental Effects and Clinical Applications. Brighton CT. Black J. Pollack SR. eds. p. 311–31, Grune & Stratton, New York, 1979b.

    Google Scholar 

  22. Bawin SM. Adey WR. Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proceedings of the National Academy of Sciences of the United States of America. 73(6):19992003, 1976.

    Google Scholar 

  23. Bawin SM. Adey WR. Sabbot IM. Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. Proceedings of the National Academy of Sciences of the United States of America. 75 (12): 6314–8, 1978.

    Article  Google Scholar 

  24. Bawin SM. Kaczmarek LK. Adey WR. Effects of modulated VHF fields on the central nervous system. Annals of the New York Academy of Sciences. 247: 74–81, 1975.

    Article  Google Scholar 

  25. Beckor RO. Pilla AA. In “Modern Aspects of Electrochemistry”. Bockris JOM. ed. vol. 10, Plenum Press, New York, 1975.

    Google Scholar 

  26. Bianco B. Chiabrera A. From the Langevin-Lorentz to Zeeman model of electromagnetic effect on ligand-receptor binding. Bioelectrochemistry and Bioenergetics. 28: 355–65, 1992.

    Article  Google Scholar 

  27. Bigliani LU. Rosenwasser MP. Caulo N. Schink MM. Bassett CA. The use of pulsing electromagnetic fields to achieve arthrodesis of the knee following failed total knee arthroplasty. A preliminary report. Journal of Bone & Joint Surgery.–American Volume. 65 (4): 480–5, 1983.

    Google Scholar 

  28. Binder A. Parr G. Hazleman B. Fitton-Jackson S. Pulsed electromagnetic field therapy of persistent rotator cuff tendinitis. A double-blind controlled assessment. Lancet. 1 (8379): 695–8, 1984.

    Article  Google Scholar 

  29. Black J. Electrical stimulation. Greenwood Press. Westport. CT., 1987.

    Google Scholar 

  30. Blackman CF. Benane SG. Kinney LS. Joines WT. House DE. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiation Research. 92 (3): 510–20, 1982.

    Article  Google Scholar 

  31. Blackman CF. Benane SG. Rabinowitz JR. House DE. Joines WT. A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics. 6 (4): 327–37, 1985.

    Article  Google Scholar 

  32. Blackman CF. Kinney LS. House DE. Joines WT. Multiple power-density windows and their possible origin. Bioelectromagnetics. 10 (2): 115–28, 1989.

    Article  Google Scholar 

  33. Blank M. Recent developments in the theory of ion flow across membranes under imposed electric fields. In: Modern Bioelectricity. Marino AA. ed. p. 34564, Marcel Dekker, New York, 1988.

    Google Scholar 

  34. Blank M. Na,K-ATPase function in alternating electric fields. FASEB Journal. 6 (7): 2434–8, 1992.

    Google Scholar 

  35. Blank M. Soo L. Temperature dependence of electric field effects on the Na,K-ATPase. Bioelectrochemistry and Bioenergetics. 28: 291–99, 1992.

    Article  Google Scholar 

  36. Blank M. Soo L. Papstein V. Effects of low frequency magnetic fields on Na,K-ATPase activity. Bioelectrochemistry and Bioenergetics. 38: 267–73, 1995.

    Article  Google Scholar 

  37. Bolander ME. Balian G. The use of demineralized bone matrix in the repair of segmental defects. Augmentation with extracted matrix proteins and a comparison with autologous grafts. Journal of Bone & Joint Surgery–American Volume. 68 (8): 1264–74, 1986.

    Google Scholar 

  38. Boonstra J. Skaper SD. Varon S. Regulation of Na+,K+ pump activity by nerve growth factor in chick embryo dorsal root ganglion cells. Journal of Cellular Physiology. 113 (1): 28–34, 1982.

    Article  Google Scholar 

  39. Boonstra J. Van der Saag PT. Moolenaar WH. de Laat SW. Rapid effects of nerve growth factor on the Na+, K+-pump in rat pheochromocytoma cells. Experimental Cell Research. 131 (2): 452–5, 1981.

    Article  Google Scholar 

  40. Bosma MM. Hille B. Electrophysiological properties of a cell line of the gonadotrope lineage. Endocrinology. 130 (6): 3411–20, 1992.

    Article  Google Scholar 

  41. Bourguignon GJ. Jy W. Bourguignon LY. Electric stimulation of human fibroblasts causes an increase in Ca2+ influx and the exposure of additional insulin receptors. Journal of Cellular Physiology. 140 (2): 379–85, 1989.

    Article  Google Scholar 

  42. Boynton AL. McKechan WL. Whitfield JF. “Ions, Cell Proliferation and Cancer”. eds. Academic Press, New York, 1982.

    Google Scholar 

  43. Boynton AL. Whitfield JF. Isaacs RJ. Tremblay RG. Different extracellular calcium requirements for proliferation of nonneoplastic, preneoplastic, and neoplastic mouse cells. Cancer Research. 37 (8 Pt 1): 2657–61, 1977.

    Google Scholar 

  44. Braun KA. Lemons JD. Effects of electromagnetic fields on the recovery of circulation in mature rabbit femoral heads. Transactions of Orthopedic Research Society. 7: 313, 1982.

    Google Scholar 

  45. Brighton CT. Black J. Friedenberg ZB. Esterhai JL. Day U. Connolly JF. A multicenter study of the treatment of non-union with constant direct current. Journal of Bone & Joint Surgery–American Volume. 63 (1): 2–13, 1981a.

    Google Scholar 

  46. Brighton CT. Friedenberg ZB. Black J. Esterhai JL Jr. Mitchell JE. Montique F Jr. Electrically induced osteogenesis: relationship between charge, current density, and the amount of bone formed: introduction of a new cathode concept. Clinical Orthopaedics & Related Research. 161: 122–32, 1981b.

    Google Scholar 

  47. Brighton CT. Pollack SR. Treatment of recalcitrant non-union with a capacitively coupled electrical field. A preliminary report. Journal of Bone & Joint Surgery–American Volume. 67 (4): 577–85, 1985.

    Google Scholar 

  48. Burchardt H. The biology of bone graft repair. Clinical Orthopaedics & Related Research. (174): 28–42, 1983.

    Google Scholar 

  49. Cadossi R. Emilia G. Ceccherelli G. Torelli G. Lymphocytes and pulsing electromagnetic fields. In: Modern Bioelectricity. Marino A. ed. p. 451, Marcel Dekker, New York, 1989.

    Google Scholar 

  50. Cain CD. Ph.D Thesis. University of California, Riverside, 1986.

    Google Scholar 

  51. Cain CD. Adey WR. Luben RA. Evidence that pulsed electromagnetic fields inhibit coupling of adenylate cyclase by parathyroid hormone in bone cells. Journal of Bone & Mineral Research. 2 (5): 437–41, 1987.

    Article  Google Scholar 

  52. Cain CD. Luben RA. Pulsed electromagnetic field effects on PTH-stimulated camp accumulation and bone resorption in mouse calvaria. Anderson LE. Kelman BJ. Weige RJ. eds. p. 269–77, Pacific Northwest Laboratory, Wash, 1987.

    Google Scholar 

  53. Cairo P. Greenebaum B. Goodman E. Magnetic field exposure enhances mRNA expression of sigma 32 in E. coli. Journal of Cellular Biochemistry. 68 (1): 1–7, 1998.

    Article  Google Scholar 

  54. Cann CE. Genant HK. Ettinger B. Gordan GS. Spinal mineral loss in oophorectomized women. Determination by quantitative computed tomography. JAMA. 244 (18): 2056–9, 1980.

    Article  Google Scholar 

  55. Carson JJ. Prato FS. Drost DJ. Diesbourg LD. Dixon SJ. Time-varying magnetic fields increase cytosolic free Ca2+ in HL-60 cells. American Journal of Physiology. 259 (4 Pt 1): C687–92, 1990.

    Google Scholar 

  56. Chafouleas JG. Bolton WE. Hidaka H. Boyd AE 3rd. Means AR. Calmodulin and the cell cycle: involvement in regulation of cell-cycle progression. Cell. 28 (1): 41–50, 1982.

    Article  Google Scholar 

  57. Chauvin F. Astumian RD. Tsong TY. Biophysical Journal 51(2):243a, 1987.

    Google Scholar 

  58. Chesnut CH 3d. Bone mass and exercise. American Journal of Medicine. 95(5A):34S–36S, 1993.

    Google Scholar 

  59. Chiabrera A. Grattarola M. Viviani R. Interaction between electromagnetic fields and cells: microelectrophoretic effect on ligands and surface receptors. Bioelectromagnetics. 5 (2): 173–91, 1984.

    Article  Google Scholar 

  60. Chiabrera A. Hinsenkamp M. Pilla AA. Nicolini C. In “Chromatin Structure and Function”. Nicolini C. ed. p. 811, Plenum Press, New York, 1979.

    Chapter  Google Scholar 

  61. Chiabrera A. Viviani R. Parodi G. Vernazza G. Hinsenkamp M. Pilla M. Ryaby J. Beltrame F. Grattarola M. Nicolini C. Automated absorption image cytometry of electromagnetically exposed frog erythrocytes. Cytometry. 1 (1): 42–8, 1980.

    Article  Google Scholar 

  62. Colacicco G. Pilla AA. Electromagnetic modulation of biological processes: influence of culture media and significance of methodology in the Ca-uptake by embryonal chick tibia in vitro. Calcified Tissue International. 36 (2): 167–74, 1984.

    Article  Google Scholar 

  63. Cole KS. The advance of electrical models for cells and axon. Biophysical Journal. 2: 101–19, 1962.

    Article  Google Scholar 

  64. Compston JE. Structural mechanisms of trabecular bone loss. In: Osteoporosis. Smith R. ed. p. 35–43, Royal College of Physicians, London, 1990.

    Google Scholar 

  65. Connolly J. Guse R. Lippiello L. Dehne R. Development of an osteogenic bone-marrow preparation. Journal of Bone & Joint Surgery — American Volume. 71 (5): 684–91, 1989.

    Google Scholar 

  66. Conti P. Gigante GE. Alesse E. Cifone MG. Fieschi C. Reale M. Angeletti PU. A role for Ca2+ in the effect of very low frequency electromagnetic field on the blastogenesis of human lymphocytes. FEBS Letters. 181 (1): 28–32, 1985.

    Article  Google Scholar 

  67. Cruess RL. Kan K. Bassett CA. The effect of pulsing electromagnetic fields upon bone metabolism in an experimental model of disuse osteoporosis. Clinical Orthopaedics & Related Research. (173): 245–50, 1983.

    Google Scholar 

  68. Czech MP. Signal transmission by the insulin-like growth factors. Cell. 59 (2): 235–8, 1989.

    Article  Google Scholar 

  69. Devereaux MD. Hazleman BL. Thomas PP. Chronic lateral humeral epicondylitis-a double-blind controlled assessment of pulsed electromagnetic field therapy. Clinical & Experimental Rheumatology. 3 (4): 333–6, 1985.

    Google Scholar 

  70. Dohlman HG. Caron MG. Lefkowitz RJ. A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry. 26 (10): 2657–64, 1987.

    Article  Google Scholar 

  71. Doida Y. Miller MW. Brayman M. Carstensen EL. A test of the hypothesis that ELF magnetic fields affect calcium uptake in rat thymocytes in vitro. Biochemical & Biophysical Research Communications. 227 (3): 834–8, 1996.

    Article  Google Scholar 

  72. Drago GP. Marchesi M. Ridella S. The frequency dependence of an analytical model of an electrically stimulated biological structure. Bioelectromagnetics. 5 (1): 47–62, 1984.

    Article  Google Scholar 

  73. Einhorn TA. Enhancement of fracture-healing. Journal of Bone & Joint Surgery–American Volume. 77 (6): 940–56, 1995.

    Google Scholar 

  74. Einhorn TA. Lane JM. Burstein AH. Kopman CR. Vigorita VJ. The healing of segmental bone defects induced by demineralized bone matrix. A radiographic and biomechanical study. Journal of Bone & Joint Surgery–American Volume. 66 (2): 274–9, 1984.

    Google Scholar 

  75. El Messiery MA. Hastings GW. Rakowski S. Ferroelectricity of dry cortical bone. Journal of Biomedical Engineering. 1 (1): 63–5, 1979.

    Article  Google Scholar 

  76. Ferrier J. Ross SM. Kanehisa J. Aubin JE. Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field. Journal of Cellular Physiology. 129 (3): 283–8, 1986.

    Article  Google Scholar 

  77. Fitzsimmons RJ. Baylink DJ. Growth factors and electromagnetic fields in bone. Clinics in Plastic Surgery. 21 (3): 401–6, 1994.

    Google Scholar 

  78. Fitzsimmons RJ. Farley J. Adey WR. Baylink DJ. Embryonic bone matrix formation is increased after exposure to a low-amplitude capacitively coupled electric field, in vitro. Biochimica et Biophysica Acta. 882 (1): 51–6, 1986.

    Article  Google Scholar 

  79. Fitzsimmons RJ. Ryaby JT. Magee FP. Baylink DJ. Combined magnetic fields increased net calcium flux in bone cells. Calcified Tissue International. 55 (5): 376–80, 1994.

    Article  Google Scholar 

  80. Fitzsimmons RJ. Ryaby JT. Magee FP. Baylink DJ. IGF-II receptor number is increased in TE-85 osteosarcoma cells by combined magnetic fields. Journal of Bone & Mineral Research. 10 (5): 812–9, 1995.

    Article  Google Scholar 

  81. Fitzsimmons RJ. Strong DD. Mohan S. Baylink DJ. Low-amplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-II release. Journal of Cellular Physiology. 150 (1): 84–9, 1992.

    Article  Google Scholar 

  82. Friedenberg ZB. Andrews ET. Smolenski BI. Pearl BW. Brighton CT. Bone reaction to varying amounts of direct current. Surgery, Gynecology & Obstetrics. 131 (5): 894–9, 1970.

    Google Scholar 

  83. Friedenberg ZB. Zemsky LM. Pollis RP. Brighton CT. The response of non-traumatized bone to direct current. Journal of Bone & Joint Surgery–American Volume. 56 (5): 1023–30, 1974.

    Google Scholar 

  84. Friedlaender GE. Bone grafts. The basic science rationale for clinical applications. Journal of Bone & Joint Surgery - American Volume. 69 (5): 78690, 1987.

    Google Scholar 

  85. Fukada E. Yasuda I. On the piezoelectric effect of bone. Journal of the Physical Society of Japan 12 (10): 1158–62, 1957.

    Article  Google Scholar 

  86. Galvanovskis J. Sandblom J. Bergqvist B. Galt S. Hamnerius Y. Cytoplasmic Ca2+ oscillations in human leukemia T-cells are reduced by 50 Hz magnetic fields. Bioelectromagnetics. 20 (5): 269–76, 1999.

    Article  Google Scholar 

  87. Garg NK. Gaur S. Sharma S. Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthopaedica Scandinavica. 64 (6): 671–2, 1993.

    Article  Google Scholar 

  88. Gemsa D. Seitz M. Kramer W. Grimm W. Till G. Resch K. lonophore A23187 raises cyclic AMP levels in macrophages by stimulating prostaglandin E formation. Experimental Cell Research. 118 (1): 55–62, 1979.

    Article  Google Scholar 

  89. Glowacki J. Kaban LB. Murray JE. Folkman J. Mulliken JB. Application of the biological principle of induced osteogenesis for craniofacial defects. Lancet. 1 (8227): 959–62, 1981.

    Article  Google Scholar 

  90. Goodman R. Chizmadzhev Y. Shirley-Henderson A. Electromagnetic fields and cells. Journal of Cellular Biochemistry. 51 (4): 436–41, 1993.

    Google Scholar 

  91. Goodship AE. Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. Journal of Bone & Joint Surgery — British Volume. 67 (4): 650–5, 1985.

    Google Scholar 

  92. Halle B. On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity. Bioelectromagnetics. 9 (4): 381–5, 1988.

    Article  Google Scholar 

  93. Hamill OP. Marty A. Neher E. Sakmann B. Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv–European Journal of Physiology. 391 (2): 85–100, 1981.

    Article  Google Scholar 

  94. Hartshorne AM. On the causes and treatment of pseudoarthrosis and especially of that form of it sometimes called supernumerary joint. American Journal of the Medical Sciences 1: 143, 1840.

    Google Scholar 

  95. Hasling C. Charles P. Jensen FT. Mosekilde L. A comparison of the effects of oestrogen/progestogen, high-dose oral calcium, intermittent cyclic etidronate and an ADFR regime on calcium kinetics and bone mass in postmenopausal women with spinal osteoporosis. Osteoporosis International. 4 (4): 191–203, 1994.

    Article  Google Scholar 

  96. Hastings GW. El Messiery MA. Rakowski S. Mechanoelectrical properties of bone. Biomaterials. 2 (4): 225–33, 1981.

    Article  Google Scholar 

  97. Hazelton B. Mitchell B. Tupper J. Calcium, magnesium, and growth control in the WI-38 human fibroblast cell. Journal of Cell Biology. 83 (2 Pt 1): 487–98, 1979.

    Article  Google Scholar 

  98. Hendee SP. Faour FA. Christensen DA. Patrick B. Durney CH. Blumenthal DK. The effects of weak extremely low frequency magnetic fields on calcium/calmodulin interactions. Biophysical Journal. 70 (6): 2915–23, 1996.

    Article  Google Scholar 

  99. Hilgemann DW. Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. Science. 263 (5152): 1429–32, 1994.

    Article  Google Scholar 

  100. Hojevik P. Sandblom J. Galt S. Hamnerius Y. Ca2+ ion transport through patch-clamped cells exposed to magnetic fields. Bioelectromagnetics. 16 (1): 33–40, 1995.

    Article  Google Scholar 

  101. Horn R. Korn SJ. Ion channels. In: Methods in Enzymology. Rudy B. Iverson LE. eds. 207:149–54, Academic Press, Orlando, Florida, 1992.

    Google Scholar 

  102. Huang C. Ye H. Xu J. Liu J. Qu A. Effects of extremely low frequency weak magnetic fields on the intracellular free calcium concentration in PC-12 tumor cells. [Chinese] Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering. 17(1): 63–5, 94, 2000.

    Google Scholar 

  103. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clinical Orthopaedics & Related Research. (238): 249–81, 1989a.

    Google Scholar 

  104. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clinical Orthopaedics & Related Research. (239): 263–85, 1989b.

    Google Scholar 

  105. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clinical Orthopaedics & Related Research. (157): 259–78, 1981.

    Google Scholar 

  106. Jolley WB. Hinshaw DB. Knierim K. Hinshaw DB. Magnetic field effects on calcium efflux and insulin secretion in isolated rabbit islets of Langerhans. Bioelectromagnetics. 4 (1): 103–6, 1983.

    Article  Google Scholar 

  107. Jones DB. Pedley RB. Ryaby JT. Journal of Bioelectricity. 5: 145, 1986.

    Google Scholar 

  108. Jones DB. Ryaby JT. Trans. Eighth Bioelectromagnetics Society Meeting. 8: 45, 1986.

    Google Scholar 

  109. Kaban LB. Mulliken JB. Glowacki J. Treatment of jaw defects with demineralized bone implants. Journal of Oral & Maxillofacial Surgery. 40 (10): 623–6, 1982.

    Article  Google Scholar 

  110. Kaczmarek LK. Frequency sensitive biochemical reactions. Biophysical Chemistry. 4 (3): 249–51, 1976.

    Article  Google Scholar 

  111. Kenwright J. Richardson JB. Cunningham JL. White SH. Goodship AE. Adams MA. Magnussen PA. Newman JH. Axial movement and tibial fractures. A controlled randomised trial of treatment. Journal of Bone & Joint Surgery–British Volume. 73 (4): 654–9, 1991.

    Google Scholar 

  112. Keynes RD. Lewis PR. Journal of Physiology. 114: 152–82, 1951.

    Google Scholar 

  113. Khosla S. Riggs BL. Melton LJ 3d. Clinical spectrum. In: Osteoporosis: Etiology, diagnosis, and management (2nd ed.). Riggs BL. Melton LJ 3d. eds. p. 206, Lippincott-Raven, Philadelphia, 1995.

    Google Scholar 

  114. Krueger BK. Toward an understanding of structure and function of ion channels. FASEB Journal. 3 (8): 1906–14, 1989.

    Google Scholar 

  115. Lauger P. Electrogenic Ion Pumps, p. 221–223, Sinauer Associates, Sunderland, Massachusetts, 1994.

    Google Scholar 

  116. Lednev VV. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics. 12 (2): 71–5, 1991.

    Article  Google Scholar 

  117. Lee JH. McLeod KJ. Morphologic responses of osteoblast-like cells in monolayer culture to ELF electromagnetic fields. Bioelectromagnetics. 21 (2): 129–36, 2000.

    Article  Google Scholar 

  118. Liboff AR. Cyclotron resonance in membrane transport. In: Interactions Between Electromagnetic Fields and Cells Chiabrera A. Nicolini C. Schwan HP. eds. p. 281–96, Plenum Press, London, 1985.

    Google Scholar 

  119. Liboff AR. McLeod BR. Kinetics of channelized membrane ions in magnetic fields. Bioelectromagnetics. 9: 39–51, 1987.

    Article  Google Scholar 

  120. Liboff AR. Rozek RJ. Sherman ML. MacLeod BR. Smith SD. Ca2+-45 cyclotron resonance in human lymphocytes. Journal of Bioelectricity. 6: 13–22, 1987a.

    Google Scholar 

  121. Liboff AR. Smith SD. McLeod BR. Experimental evidence for ion cyclotron resonance mediation of membrane transport. In: Mechanistic approaches to interactions of electric and electromagnetic fields with living systems. Blank M. Findl E. eds. p. 109, Plenum Press, New York, 1987b.

    Google Scholar 

  122. Liburdy RP. Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Letters. 301 (1): 53–9, 1992.

    Article  Google Scholar 

  123. Lindsay R. Osteoporosis: A guide to diagnosis, prevention, and treatment. Raven Press, New York, 1992.

    Google Scholar 

  124. Lindsay R. Estrogen deficiency. In: Osteoporosis: Etiology, diagnosis, and management (2nd ed.). Riggs BL. Melton LJ 3d. eds. p. 140, Lippincott-Raven, Philadelphia, 1995.

    Google Scholar 

  125. Lindstrom E. Lindstrom P. Berglund A. Lundgren E. Mild KH. Intracellular calcium oscillations in a T-cell line after exposure to extremelylow-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics. 16 (1): 41–7, 1995.

    Article  Google Scholar 

  126. Lips P. Graafmans WC. Ooms ME. Bezemer PD. Bouter LM. Vitamin D supplementation and fracture incidence in elderly persons. A randomized, placebo-controlled clinical trial. Annals of Internal Medicine. 124 (4): 400–6, 1996.

    Google Scholar 

  127. Litovitz TA. Krause D. Montrose CJ. Mullins JM. Temporally incoherent magnetic fields mitigate the response of biological systems to temporally coherent magnetic fields. Bioelectromagnetics. 15 (5): 399–409, 1994.

    Article  Google Scholar 

  128. Litovitz TA. Krause D. Mullins JM. Effect of coherence time of the applied magnetic field on ornithine decarboxylase activity. Biochemical & Biophysical Research Communications. 178 (3): 862–5, 1991.

    Article  Google Scholar 

  129. Lopez-Rivas A. Adelberg EA. Rozengurt E. Intracellular K+ and the mitogenic response of 3T3 cells to peptide factors in serum-free medium. Proceedings of the National Academy of Sciences of the United States of America. 79 (20): 6275–9, 1982.

    Article  Google Scholar 

  130. Lorich DG. Brighton CT. Gupta R. Corsetti JR. Levine SE. Gelb ID. Seldes R. Pollack SR. Biochemical pathway mediating the response of bone cells to capacitive coupling. Clinical Orthopaedics & Related Research. (350): 246–56, 1998.

    Google Scholar 

  131. Luben RA. Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems. Health Physics. 61 (1): 15–28, 1991.

    Article  Google Scholar 

  132. Luben RA. Cain CD. Use of bone cell hormone responses to investigate bioelectromagnetic effects on membranes in vitro. In: Nonlinear electrodynamics in biological systems. Adey WR. Lawrence AF. eds. p. 2333, Plenum Press, New York, 1984.

    Google Scholar 

  133. Luben RA. Cain CD. Chen MC. Rosen DM. Adey WR. Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy low-frequency fields. Proceedings of the National Academy of Sciences of the United States of America. 79 (13): 4180–4, 1982.

    Article  Google Scholar 

  134. Lyle DB. Wang XH. Ayotte RD. Sheppard AR. Adey WR. Calcium uptake by leukemic and normal T-lymphocytes exposed to low frequency magnetic fields. Bioelectromagnetics. 12 (3): 145–56, 1991.

    Article  Google Scholar 

  135. Lyle DB. Doshi J. Fuchs TA. Casamento JP. Sei Y. Swicord ML. Intracellular calcium signalling by human human T-leukemic cells exposed to an induced 1 my/cm 60Hz, sinusoidal electric field. World Congress Electromagnetic Biological Medicine 1st, p. 13, Orlando, Florida, 1992.

    Google Scholar 

  136. Mahmud FA. Hastings GW. Martini M. Model to characterize strain generated potentials in bone. Journal of Biomedical Engineering. 10 (1): 54–6, 1988.

    Article  Google Scholar 

  137. Marron MT. Goodman EM. Sharpe PT. Greenebaum B. Low frequency electric and magnetic fields have different effects on the cell surface. FEBS Letters. 230 (1–2): 13–6, 1988.

    Article  Google Scholar 

  138. Mayo-Smith W. Rosenthal DI. Radiographic appearance of osteopenia. Radiologic Clinics of North America. 29 (1): 37–47, 1991.

    Google Scholar 

  139. McElhaney JH. The charge distribution on the human femur due to load. Journal of Bone & Joint Surgery–American Volume. 49 (8): 1561–71, 1967.

    Google Scholar 

  140. McKibbin B. The biology of fracture healing in long bones. Journal of Bone & Joint Surgery–British Volume. 60-B(2): 150–62, 1978.

    Google Scholar 

  141. McLeod KJ. Lee RC. Ehrlich HP. Frequency dependence of electric field modulation of fibroblast protein synthesis. Science. 236 (4807): 1465–9, 1987.

    Article  Google Scholar 

  142. McLeod KJ. Rubin CT. Otter MW. Qin YX. Skeletal cell stresses and bone adaptation. American Journal of the Medical Sciences. 316 (3): 176–83, 1998.

    Article  Google Scholar 

  143. Meldolesi J. Clementi E. Fasolato C. Zacchetti D. Pozzan T. Ca2+ influx following receptor activation. Trends in Pharmacological Sciences. 12 (8): 289–92, 1991.

    Article  Google Scholar 

  144. Mendoza SA. Wigglesworth NM. Pohjanpelto P. Rozengurt E. Na entry and Na-K pump activity in murine, hamster, and human cells-effect of monensin, serum, platelet extract, and viral transformation. Journal of Cellular Physiology. 103 (1): 17–27, 1980.

    Article  Google Scholar 

  145. Misakian M. Sheppard AR. Krause D. Frazier ME. Miller DL. Biological, physical, and electrical parameters for in vitro studies with ELF magnetic and electric fields: a primer. Bioelectromagnetics. Suppl 2: 1–73, 1993.

    Google Scholar 

  146. Moolenaar WH. Tsien RY. van der Saag PT. de Laat SW. Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature. 304 (5927): 645–8, 1983.

    Article  Google Scholar 

  147. Mullins JM. Litovitz TA. Montrose CJ. The role of coherence in electromagnetic field-induced bioeffects: The signal-to-noise dilemma. In: Electromagnetic Fields Biological Interactions and Mechanisms. Blank M. ed. p. 319–38, American Chemical Society, Washington, D.C., 1995.

    Chapter  Google Scholar 

  148. Neher E. Cell physiology. Controls on calcium influx. Nature. 355 (6358): 298–9, 1992.

    Article  Google Scholar 

  149. Niedergerke R. Page S. A new method for the determination of calcium fluxes in the frog heart by means of high precision measurement of 45 calcium concentrations. Pflugers Archiv–European Journal of Physiology. 306 (4): 354–6, 1969.

    Article  Google Scholar 

  150. Otter MW. McLeod KJ. Rubin CT. Effects of electromagnetic fields in experimental fracture repair. Clinical Orthopaedics & Related Research. (355 Suppl): S90–104, 1998.

    Google Scholar 

  151. Otter MW. Qin YX. Rubin CT. McLeod KJ. Does bone perfusion/reperfusion initiate bone remodeling and the stress fracture syndrome?. Medical Hypotheses. 53 (5): 363–8, 1999.

    Article  Google Scholar 

  152. Parfitt AM. Trabecular bone architecture in the pathogenesis and prevention of fracture. American Journal of Medicine. 82 (1B): 68–72, 1987.

    Article  Google Scholar 

  153. Peskin CS. Odell GM. Oster GF. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophysical Journal. 65 (1): 316–24, 1993.

    Article  Google Scholar 

  154. Pilla AA. Electrochemical information and energy transfer in vivo. Proceedings 7th Intersociety Energy Conversion and Engineering Conference. p. 761–764, American Chemistry Society, Washington D.C., 1972.

    Google Scholar 

  155. Pilla AA. Electrochemical information transfer at living cell membranes. Annals of the New York Academy of Sciences. 238: 149–70, 1974a.

    Article  Google Scholar 

  156. Pilla AA. Bioelectrochemistry and Bioenergetics 1: 227, 1974b.

    Article  Google Scholar 

  157. Pilla AA. In “Bioelectrochemistry”. In: Keyzer H. Gutman F. eds. p. 353, Plenum Press, New York, 1980.

    Google Scholar 

  158. Pollack SR. Korostoff E. Starkebaum W. lannicone W. Microelectrode studies of stress generated potentials in bone. In: Electrical Properties of Bone and Cartilage. Brighton CT. Black J. Pollack SR. eds. p. 69–81, Grune and Stratton, New York, 1979.

    Google Scholar 

  159. Reese JA. Frazier ME. Morris JE. Buschbom RL. Miller DL. Evaluation of changes in diatom mobility after exposure to 16-Hz electromagnetic fields. Bioelectromagnetics. 12 (1): 21–5, 1991.

    Article  Google Scholar 

  160. Reinbold KA. Pollack SR. Serum plays a critical role in modulating [Ca2+]c of primary culture bone cells exposed to weak ion-resonance magnetic fields. Bioelectromagnetics. 18 (3): 203–14, 1997.

    Article  Google Scholar 

  161. Riggs BL. Melton LJ 3d. The prevention and treatment of osteoporosis. New England Journal of Medicine. 327 (9): 620–7, 1992.

    Article  Google Scholar 

  162. Rijal KP. Kashimoto O. Sakurai M. Effect of capacitively coupled electric fields on an experimental model of delayed union of fracture. Journal of Orthopaedic Research. 12 (2): 262–7, 1994.

    Article  Google Scholar 

  163. Rink TJ. Tsien RY. Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. Journal of Cell Biology. 95 (1): 189–96, 1982.

    Article  Google Scholar 

  164. Rinsky LA. Halpern A. Schurman DB. Bassett CAL. Electrical stimulation of experimentally produced avascular necrosis of the femoral head. Orthopedic Transactions Journal and Bone Joint Surgery. 4: 238, 1980.

    Google Scholar 

  165. Rodan GA. Perspectives. Mechanical loading, estrogen deficiency, and the coupling of bone formation to bone resorption. Journal of Bone & Mineral Research. 6 (6): 527–30, 1991.

    Article  Google Scholar 

  166. Rodan GA. Rodan SB. The cells of bone. In: Osteoporosis: Etiology, diagnosis, and management (2nd ed.). Riggs BL. Melton LJ 3d. eds. p. 2–11, Lippincott-Raven, Philadelphia, 1995.

    Google Scholar 

  167. Rosen DM. Luben RA. Multiple hormonal mechanisms for the control of collagen synthesis in an osteoblast-like cell line, MMB-1. Endocrinology. 112 (3): 992–9, 1983.

    Article  Google Scholar 

  168. Rozek RJ. Sherman ML. Liboff AR. McLeod BR. Smith SD. Nifedipine is an antagonist to cyclotron resonance enhancement of 45Ca incorporation in human lymphocytes. Cell Calcium. 8 (6): 413–27, 1987.

    Article  Google Scholar 

  169. Rubin CT. McLeod KJ. Lanyon LE. Prevention of osteoporosis by pulsed electromagnetic fields. Journal of Bone & Joint Surgery–American Volume. 71 (3): 411–7, 1989.

    Google Scholar 

  170. Russell RGG. Bone cell biology: The role of cytokines and other mediators. In: Osteoporosis. Smith R. ed. p. 9–33, Royal College of Physicians, London, 1990.

    Google Scholar 

  171. Ryaby JT. Jones DB. Pedley B. Pilla AA. Trans. Fifth Bioelectrical Repair and Growth Society. 6: 32, 1986.

    Google Scholar 

  172. Ryaby JT. Jones DB. Pilla AA. Trans. Sixth Bioelectrical Repair and Growth Society. 5: 37, 1985.

    Google Scholar 

  173. Schlessinger J. The epidermal growth factor receptor as a multifunctional allosteric protein. Biochemistry. 27 (9): 3119–23, 1988.

    Article  Google Scholar 

  174. Schwan HP. Electrical properties of cells: principles, some recent results and some unresolved problems. In: The biophysical approach to excitable systems. Honoring KS Cole’s 80th Birthday. New York, Plenum Publishing Corpoation, 1981.

    Google Scholar 

  175. Schwartz JL. House DE. Mealing GA. Exposure of frog hearts to CW or amplitude-modulated VHF fields: selective efflux of calcium ions at 16 Hz. Bioelectromagnetics. 11 (4): 349–58, 1990.

    Article  Google Scholar 

  176. Seeman E. Wahner HW. Offord KP. Kumar R. Johnson WJ. Riggs BL. Differential effects of endocrine dysfunction on the axial and the appendicular skeleton. Journal of Clinical Investigation. 69 (6): 1302–9, 1982.

    Article  Google Scholar 

  177. Serpersu EH. Tsong TY. Stimulation of a ouabain-sensitive Rb+ uptake in human erthrocytes with an external electric field. Journal of Membrane Biology. 74 (3): 191–201, 1983.

    Article  Google Scholar 

  178. Serpersu EH. Tsong TY. Activation of electrogenic Rb+ transport of (Na,K)-ATPase by an electric field. Journal of Biological Chemistry. 259 (11): 7155–62, 1984.

    Google Scholar 

  179. Sharma S. Garg NK. Veliath AJ. Subramanian S. Srivastava KK. Percutaneous bone-marrow grafting of osteotomies and bony defects in rabbits. Acta Orthopaedica Scandinavica. 63 (2): 166–9, 1992.

    Article  Google Scholar 

  180. Skou JC. Biochimica et Biophysica Acta. 23: 394–401, 1957.

    Article  Google Scholar 

  181. Smith SD. McLeod BR. Liboff AR. Cooksey K. Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics. 8 (3): 215–27, 1987.

    Article  Google Scholar 

  182. Stagg RB. Hardy PT. MacMurray A. Adey WR. Electric and magnetic field interactions with microsomal membrane: A novel system for studying calcium flux across membrane. World Congress Electromagnetic Biological Medicine 1st, p. 12, Orlando, Florida, 1992.

    Google Scholar 

  183. Stoy RD. Foster KR. Schwan HP. Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data. Physics in Medicine & Biology. 27 (4): 501–13, 1982.

    Article  Google Scholar 

  184. Teissie J. Knox BE. Tsong TY. Wehrle J. Synthesis of adenosine triphosphate in respiration-inhibited submitochondrial particles induced by microsecond electric pulses. Proceedings of the National Academy of Sciences of the United States of America. 78 (12): 7473–7, 1981.

    Article  Google Scholar 

  185. Tenforde TS. Kaune WT. Interaction of extremely low frequency electric and magnetic fields with humans. Health Physics. 53 (6): 585–606, 1987.

    Article  Google Scholar 

  186. Tsong TY. Astumian RD. Bioelectrochemistry and Bioenergetics. 15: 457–476, 1986.

    Article  Google Scholar 

  187. Tsong TY. Astumian RD. Electroconformational coupling and membrane protein function. Progress in Biophysics & Molecular Biology. 50 (1): 1–45, 1987.

    Article  Google Scholar 

  188. Tsong TY. Astumian RD. Electroconformational coupling: how membrane-bound ATPase transduces energy from dynamic electric fields. Annual Review of Physiology. 50: 273–90, 1988.

    Article  Google Scholar 

  189. Tsong TY. Liu DS. Chauvin F. Gaigalas A. Astumian RD. Electroconformational coupling (ECC): an electric field induced enzyme oscillation for cellular energy and signal transductions. Bioelectrochemistry and Bioenergetics. 21: 319–31, 1989.

    Article  Google Scholar 

  190. Upton J. Boyajian M. Mulliken JB. Glowacki J. The use of demineralized xenogeneic bone implants to correct phalangeal defects: a case report. Journal of Hand Surgery–American Volume. 9 (3): 388–91, 1984.

    Google Scholar 

  191. Urist MR. Bone: formation by autoinduction. Science. 150 (698): 893–9, 1965.

    Article  Google Scholar 

  192. Walleczek J. Budinger TF. Pulsed magnetic field effects on calcium signaling in lymphocytes: dependence on cell status and field intensity. FEBS Letters. 314 (3): 351–5, 1992.

    Article  Google Scholar 

  193. Walleczek J. Liburdy RP. Nonthermal 60 Hz sinusoidal magnetic-field exposure enhances 45Ca2+ uptake in rat thymocytes: dependence on mitogen activation. FEBS Letters. 271 (1–2): 157–60, 1990.

    Article  Google Scholar 

  194. Wang Z. Estacion M. Mordan LJ. Ca2+ influx via T-type channels modulates PDGF-induced replication of mouse fibroblasts. American Journal of Physiology. 265 (5 Pt 1): C1239–46, 1993.

    Google Scholar 

  195. Wark JD. Osteoporosis: pathogenesis, diagnosis, prevention and management. Baillieres Clinical Endocrinology & Metabolism. 7 (1): 151–81, 1993.

    Article  Google Scholar 

  196. Weaver JC. Langer R. Potts RO. Tissue electroporation for localized drug delivery. In: Electromagnetic Fields Biological Interactions and Mechanisms. Blank M. ed. p. 301–16, American Chemical Society, Washington, D.C., 1995.

    Chapter  Google Scholar 

  197. Westerhoff HV. Chen Y. Stochastic free energy transduction. Proceedings of the National Academy of Sciences of the United States of America. 82 (10): 3222–6, 1985.

    Article  Google Scholar 

  198. Whitfield JF. Boynton AL. MacManus JP. Rixon RH. Silorska M. Tsong B. Waler PR. Swierenga SH. Annals of the New York Academy of Sciences. 339: 216, 1981.

    Article  Google Scholar 

  199. Yarden Y. Ullrich A. Growth factor receptor tyrosine kinases. Annual Review of Biochemistry. 57: 443–78, 1988.

    Article  Google Scholar 

  200. Yost MG. Liburdy RP. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Letters. 296 (2): 117–22, 1992.

    Article  Google Scholar 

  201. Zengo AN. Bassett CA. Prountzos G. Pawluk RJ. Pilla A. In vivo effects of direct current in the mandible. Journal of Dental Research. 55(3):383–90, 1976.

    Google Scholar 

  202. Aaron RK. Lennox D. Bunce GE. Ebert T. The conservative treatment of osteonecrosis of the femoral head. A comparison of core decompression and pulsing electromagnetic fields. Clinical Orthopaedics & Related Research. (249): 209–18, 1989.

    Google Scholar 

  203. Adey WR. Evidence for cooperative mechanisms in the susceptibility of cerebral tissue to environmental and intrinsic electric fields. In: Functional Linkage in Biomolecular Systems. Schmitt FO. Schneider DM. Crothers DM. eds. p. 325–42, Raven Press, New York, 1975.

    Google Scholar 

  204. Adey WR. Frequency and power windowing in tissue interactions with weak electromagnetic fields. Proceedings IEEE. 68: 119–25, 1980.

    Article  Google Scholar 

  205. Adey WR. Tissue interactions with nonionizing electromagnetic fields. Physiological Reviews. 61 (2): 435–514, 1981.

    Google Scholar 

  206. Adey WR. Biological models of electromagnetic field interactions with tissues: A review and synthesis of recent findings. In: Interaction of Biological Systems with Static and ELF Electric and Magnetic Fields. Proceedings of the 23rd Annual Hanford Life Sciences Symposium. DOE Symposium Series CONF-841041. Andersen LE. Weigel RJ. Kelman BJ. eds. p. 237–48, National Technical Information Service, Springfield, Virgina, 1987.

    Google Scholar 

  207. Albertini A. Zucchini P. Noera G. Cadossi R. Napoleone CP. Pierangeli A. Protective effect of low frequency low energy pulsing electromagnetic fields on acute experimental myocardial infarcts in rats. Bioelectromagnetics. 20 (6): 372–7, 1999.

    Article  Google Scholar 

  208. Amassian VE. Quirk GJ. Stewart M. A comparison of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex. Electroencephalography & Clinical Neurophysiology. 77 (5): 390–401, 1990.

    Article  Google Scholar 

  209. Anonymous. Diagnostic and therapeutic technology assessment (DATTA). Noninvasive electrical stimulation for nonunited bone fracture. JAMA. 261 (6): 917–9, 1989.

    Google Scholar 

  210. Anninos PA. Tsagas N. Sandyk R. Derpapas K. Magnetic stimulation in the treatment of partial seizures. International Journal of Neuroscience. 60 (3–4): 141–71, 1991.

    Article  Google Scholar 

  211. Balldin J. Eden S. Granerus AK. Modigh K. Svanborg A. Walinder J. Wallin L. Electroconvulsive therapy in Parkinson’s syndrome with “on-off’ phenomenon. Journal of Neural Transmission. 47 (1): 11–21, 1980.

    Article  Google Scholar 

  212. Baranowski TJ Jr. Black J. Brighton CT. Friedenberg ZB. Electrical osteogenesis by low direct current. Journal of Orthopaedic Research. 1 (2): 120–8, 1983.

    Article  Google Scholar 

  213. Barker AT. An introduction to the basic principles of magnetic nerve stimulation. Journal of Clinical Neurophysiology. 8 (1): 26–37, 1991.

    Article  MathSciNet  Google Scholar 

  214. Barker AT. Dixon RA. Sharrard WJ. Sutcliffe ML. Pulsed magnetic field therapy for tibial non-union. Interim results of a double-blind trial. Lancet. 1 (8384): 994–6, 1984.

    Article  Google Scholar 

  215. Bassett CA. The development and application of pulsed electromagnetic fields (PEMFs) for ununited fractures and arthrodeses. Orthopedic Clinics of North America. 15 (1): 61–87, 1984.

    Google Scholar 

  216. Bassett CA. Mitchell SN. Gaston SR. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. Journal of Bone & Joint Surgery–American Volume. 63 (4): 511–23, 1981.

    Google Scholar 

  217. Bassett CA. Mitchell SN. Gaston SR. Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses. JAMA. 247 (5): 623–8, 1982.

    Article  Google Scholar 

  218. Bassett CA. Pilla AA. Pawluk RJ. A non-operative salvage of surgically-resistant pseudarthroses and non-unions by pulsing electromagnetic fields. A preliminary report. Clinical Orthopaedics & Related Research. (124): 128–43, 1977.

    Google Scholar 

  219. Bassett CA. Pawluk RJ. Pilla AA. Augmentation of bone repair by inductively coupled electromagnetic fields. Science. 184 (136): 575–7, 1974.

    Article  Google Scholar 

  220. Bassett LS. Tzitzikalakis G. Pawluk RJ. Bassett CAL. Prevention of disuse osteoporosis in the rats by means of pulsing electromagnetic fields. In: Electrical Properties of Bone and Cartilage: Experimental Effects and Clinical Applications. Brighton CT. Black J. Pollack SR. eds. p. 311–31, Grune & Stratton, New York, 1979.

    Google Scholar 

  221. Bauer HJ. Problems of symptomatic therapy in multiple sclerosis. Neurology. 28 (9 Pt 2): 8–20, 1978.

    Article  Google Scholar 

  222. Bawin SM. Adey WR. Sabbot IM. Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. Proceedings of the National Academy of Sciences of the United States of America. 75 (12): 63148, 1978a.

    Article  Google Scholar 

  223. Bawin SM Sheppard AR. Adey WR. Possible mechanisms of weak electromagnetic field coupling in brain tissue. Bioelectrochemistry and Bioenergetics. 5: 67–76, 1978b.

    Article  Google Scholar 

  224. Beatty WW. Goodkin DE. Beatty PA. Monson N. Frontal lobe dysfunction and memory impairment in patients with chronic progressive multiple sclerosis. Brain & Cognition. 11 (1): 73–86, 1989.

    Article  Google Scholar 

  225. Becker RO. The control system governing bone growth in response to mechanical stress. Journal of the Arkansas Medical Society. 62 (10): 404–6, 1966.

    Google Scholar 

  226. Becker RO. Bachman CH. Bioelectric effects in tissue. Clinical Orthopaedics & Related Research. 43: 251–3, 1965.

    Google Scholar 

  227. Becker RO. Brown FM. Photoelectric effects in human bone. Nature. 206 (991): 1325–8, 1965.

    Article  Google Scholar 

  228. Binderman I. Shimshoni Z. Somjen D. Biochemical pathways involved in the translation of physical stimulus into biological message. Calcified Tissue International. 36 Suppl 1: S82–5, 1984.

    Google Scholar 

  229. Binderman I. Somjen D. Shimshoni Z. Levy J. Fischler H. Korenstein R. Stimulation of skeletal-derived cell cultures by different electric field intensities is cell-specific. Biochimica et Biophysica Acta. 844 (3): 273–9, 1985.

    Article  Google Scholar 

  230. Birnbaumer L. Pohl SL. Rodbell M. Adenyl cyclase in fat cells. 1. Properties and the effects of adrenocorticotropin and fluoride. Journal of Biological Chemistry. 244 (13): 3468–76, 1969.

    Google Scholar 

  231. Blackman CF. Benane SG. House DE. Joines WT. Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics. 6 (1): 1–11, 1985.

    Article  Google Scholar 

  232. Blackman CF. Benane SG. Kinney LS. Joines WT. House DE. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiation Research. 92 (3): 510–20, 1982.

    Article  Google Scholar 

  233. Bonewald LF. Mundy GR. Role of transforming growth factor beta in bone remodeling: a review. Connective Tissue Research. 23 (2–3): 201–8, 1989.

    Article  Google Scholar 

  234. Bonewald LF. Mundy GR. Role of transforming growth factor-beta in bone remodeling. Clinical Orthopaedics & Related Research. (250): 261–76, 1990.

    Google Scholar 

  235. Borgens RB. Endogenous ionic currents traverse intact and damaged bone. Science. 225 (4661): 478–82, 1984.

    Article  Google Scholar 

  236. Borsalino G. Bagnacani M. Bettati E. Fornaciari F. Rocchi R. Uluhogian S. Ceccherelli G. Cadossi R. Traina GC. Electrical stimulation of human femoral intertrochanteric osteotomies. Double-blind study. Clinical Orthopaedics & Related Research. (237): 256–63, 1988.

    Google Scholar 

  237. Brighton CT. The treatment of non-unions with electricity. Journal of Bone & Joint Surgery–American Volume. 63 (5): 847–51, 1981.

    Google Scholar 

  238. Brighton CT. Breakout session. 4: Biophysical enhancement. Clinical Orthopaedics & Related Research. (355 Suppl): S357–8, 1998.

    Google Scholar 

  239. Brighton CT. Katz MJ. Goll SR. Nichols CE 3d. Pollack SR. Prevention and treatment of sciatic denervation disuse osteoporosis in the rat tibia with capacitively coupled electrical stimulation. Bone. 6 (2): 87–97, 1985.

    Article  Google Scholar 

  240. Brighton CT. Luessenhop CP. Pollack SR. Steinberg DR. Petrik ME. Kaplan FS. Treatment of castration-induced osteoporosis by a capacitively coupled electrical signal in rat vertebrae. Journal of Bone & Joint Surgery–American Volume. 71 (2): 228–36, 1989.

    Google Scholar 

  241. Brighton CT. McCluskey WP. Cellular response and mechanisms of action of electrically induced osteogenesis. In: Bone and Mineral Research. Peck WA. ed. p. 213–54, Elsevier, New York, 1986.

    Google Scholar 

  242. Brighton CT. Okereke E. Pollack SR. Clark CC. In vitro bone-cell response to a capacitively coupled electrical field. The role of field strength, pulse pattern, and duty cycle. Clinical Orthopaedics & Related Research. 285:255–62, 1992.

    Google Scholar 

  243. Brighton CT. Pollack SR. Treatment of recalcitrant non-union with a capacitively coupled electrical field. A preliminary report. Journal of Bone & Joint Surgery — American Volume. 67 (4): 577–85, 1985a.

    Google Scholar 

  244. Brighton CT. Tadduni GT. Goll SR. Pollack SR. Treatment of denervation/disuse osteoporosis in the rat with a capacitively coupled electrical signal: effects on bone formation and bone resorption. Journal of Orthopaedic Research. 6 (5): 676–84, 1988.

    Article  Google Scholar 

  245. Brighton CT. Tadduni GT. Pollack SR. Treatment of sciatic denervation disuse osteoporosis in the rat tibia with capacitively coupled electrical stimulation. Dose response and duty cycle. Journal of Bone & Joint Surgery–American Volume. 67 (7): 1022–8, 1985b.

    Google Scholar 

  246. Brighton CT. Wang W. Seldes R. Zhang G. Pollack S. Signal transduction in electrically stimulated bone cells. Journal of Bone & Mineral Research-American Volume. 83 (10): 1514–23, 2001.

    Google Scholar 

  247. Budinger TF. Lauterbur PC. Nuclear magnetic resonance technology for medical studies. Science. 226 (4672): 288–98, 1984.

    Article  Google Scholar 

  248. Centrella M. McCarthy TL. Canalis E. Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblastenriched cell cultures from fetal rat bone. Journal of Biological Chemistry. 262 (6): 2869–74, 1987.

    Google Scholar 

  249. Chang WH. Hwang IM. Liu HC. Enhancement of fracture healing by specific pulsed capacitively-coupled electric field stimulation. Frontiers Med. Biol. Engng. 3 (1): 57–64, 1991.

    Article  Google Scholar 

  250. Chenu C. Kurihara N. Mundy GR. Roodman GD. Prostaglandin E2 inhibits formation of osteoclastlike cells in long-term human marrow cultures but is not a mediator of the inhibitory effects of transforming growth factor beta. Journal of Bone & Mineral Research. 5 (7): 677–81, 1990.

    Article  Google Scholar 

  251. Chiabrera A. Bianco B. Moggia E. Kaufman JJ. Zeeman-Stark modeling of the RF EMF interaction with ligand binding. Bioelectromagnetics. 21 (4): 312–24, 2000.

    Article  Google Scholar 

  252. Chiricolo M. Minelli L. Licastro F. Tabacchi P. Zannotti M. Franceschi C. Alterations of the capping phenomenon on lymphocytes from aged and Down’s syndrome subjects. Gerontology. 30 (3): 145–52, 1984.

    Article  Google Scholar 

  253. Chyun YS. Raisz LG. Stimulation of bone formation by prostaglandin E2. Prostaglandins. 27 (1): 97–103, 1984.

    Google Scholar 

  254. Cochran GV. Pawluk RJ. Bassett CA. Electromechanical characteristics of bone under physiologic moisture conditions. Clinical Orthopaedics & Related Research. 58: 249–70, 1968.

    Google Scholar 

  255. Colacicco G. Pilla AA. Chemical, physical and biological correlations in the Ca-uptake by embryonal chick tibia in vitro. Biochemistry and Bioenergetics. 10: 119–31, 1983.

    Article  Google Scholar 

  256. Collins DA. Chambers TJ. Effect of prostaglandins El, E2, and F2 alpha on osteoclast formation in mouse bone marrow cultures. Journal of Bone & Mineral Research. 6 (2): 157–64, 1991.

    Article  Google Scholar 

  257. Collins DA. Chambers TJ. Prostaglandin E2 promotes osteoclast formation in murine hematopoietic cultures through an action on hematopoietic cells. Journal of Bone & Mineral Research. 7 (5): 555–61, 1992.

    Article  Google Scholar 

  258. Davidovitch Z. Shanfeld JL. Montgomery PC. Lally E. Laster L. Furst L. Korostoff E. Biochemical mediators of the effects of mechanical forces and electric currents on mineralized tissues. Calcified Tissue International. 36 (Suppl 1): S86–97, 1984.

    Article  Google Scholar 

  259. Day BL. Dressler D. Maertens de Noordhout A. Marsden CD. Nakashima K. Rothwell JC. Thompson PD. Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. Journal of Physiology. 412: 449–73, 1989.

    Google Scholar 

  260. De Haas WG. Beaupre A. Cameron H. English E. The Canadian experience with pulsed magnetic fields in the treatment of ununited tibial fractures. Clinical Orthopaedics & Related Research. (208): 55–8, 1986.

    Google Scholar 

  261. De Mattei M. Caruso A. Traina GC. Pezzetti F. Baroni T. Sollazzo V. Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics. 20 (3): 177–82, 1999.

    Article  Google Scholar 

  262. Dealler SF. Electrical phenomena associated with bones and fractures and the therapeutic use of electricity in fracture healing. Journal of Medical Engineering & Technology. 5 (2): 73–9, 1981.

    Article  Google Scholar 

  263. Desimone DP. Greene VS. Hannon KS. Turner RT. Bell NH. Prostaglandin E2 administered by subcutaneous pellets causes local inflammation and systemic bone loss: a model for inflammation-induced bone disease. Journal of Bone & Mineral Research. 8 (5): 625–34, 1993.

    Article  Google Scholar 

  264. Downes EM. Watson J. Development of the iron-cored electromagnet for the treatment of non-union and delayed union. Journal of Bone & Joint Surgery–British Volume. 66 (5): 754–9, 1984.

    Google Scholar 

  265. Drevets WC. Raichle ME. Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmacology Bulletin. 28 (3): 261–74, 1992.

    Google Scholar 

  266. Duman RS. Heninger GR. Nestler EJ. A molecular and cellular theory of depression. Archives of General Psychiatry. 54 (7): 597–606, 1997.

    Article  Google Scholar 

  267. Edgley SA. Eyre JA. Lemon RN. Miller S. Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey. Brain. 120 (5): 839–53, 1997.

    Article  Google Scholar 

  268. Ellison GW. Myers LW. Leake BD. Mickey MR. Ke D. Syndulko K. Tourtellotte WW. Design strategies in multiple sclerosis clinical trials. The Cyclosporine Multiple Sclerosis Study Group. Annals of Neurology. 36 Suppl: S108–12, 1994.

    Google Scholar 

  269. Esterhai JL Jr. Brighton CT. Heppenstall RB. Thrower A. Nonunion of the humerus. Clinical, roentgenographic, scintigraphic, and response characteristics to treatment with constant direct current stimulation of osteogenesis. Clinical Orthopaedics & Related Research. (211): 228–34, 1986.

    Google Scholar 

  270. Esterhai JL. Friedenberg ZB. Brighton CT. Black J. Temporal course of bone formation in response to constant direct current stimulation. Journal of Orthopaedic Research. 3 (2): 137–9, 1985.

    Article  Google Scholar 

  271. Eyres KS. Saleh M. Kanis JA. Effect of pulsed electromagnetic fields on bone formation and bone loss during limb lengthening. Bone. 18 (6): 505–9, 1996.

    Article  Google Scholar 

  272. Faber R. Trimble MR. Electroconvulsive therapy in Parkinson’s disease and other movement disorders. Movement Disorders. 6 (4): 293–303, 1991

    Article  Google Scholar 

  273. Fitton-Jakson S. Bassett CAL. The response of skeletal tissue to pulsed magnetic fields. In: Use of Tissue Culture in Medical Research. Richards RJ. Rajan KT. eds. p. 21–46, Pergamon, Oxyford, 1980.

    Google Scholar 

  274. Fitton-Jakson S. Jones DB. Murray J. Farndale R. The response of connective and skeletal tissues to pulsed magnetic fields. Trans. 1st Annual Meeting, Bioelectrical Repair and Growth Society 1: 85, 1981.

    Google Scholar 

  275. Fitzsimmons RJ. Farley JR. Adey WR. Baylink DJ. Frequency dependence of increased cell proliferation, in vitro, in exposures to a low-amplitude, low-frequency electric field: evidence for dependence on increased mitogen activity released into culture medium. Journal of Cellular Physiology. 139 (3): 586–91, 1989.

    Article  Google Scholar 

  276. Fleischmann A. Prolov K. Abarbanel J. Belmaker RH. The effect of transcranial magnetic stimulation of rat brain on behavioral models of depression. Brain Research. 699 (1): 130–2, 1995.

    Article  Google Scholar 

  277. Franklin GM. Nelson LM. Filley CM. Heaton RK. Cognitive loss in multiple sclerosis. Case reports and review of the literature. Archives of Neurology. 46 (2): 162–7, 1989.

    Article  Google Scholar 

  278. Friedenberg ZB. Brighton CT. Bioelectric potentials in bone. Journal of Bone & Joint Surgery–American Volume. 48 (5): 915–23, 1966.

    Google Scholar 

  279. Friedenberg ZB. Brighton CT. Bioelectricity and fracture healing. Plastic & Reconstructive Surgery. 68 (3): 435–43, 1981.

    Google Scholar 

  280. Friedenberg ZB. Harlow MC. Brighton CT. Healing of nonunion of the medial malleolus by means of direct current: a case report. Journal of Trauma-Injury Infection & Critical Care. 11 (10): 883–5, 1971.

    Article  Google Scholar 

  281. Garland DE. Adkins RH. Matsuno NN. Stewart CA. The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury. Journal of Spinal Cord Medicine. 22 (4): 239–45, 1999.

    Google Scholar 

  282. Geller V. Grisaru N. Abarbanel JM. Lemberg T. Belmaker RH. Slow magnetic stimulation of prefrontal cortex in depression and schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 21 (1): 10510, 1997.

    Article  Google Scholar 

  283. George MS. Wassermann EM. Kimbrell TA. Little JT. Williams WE. Danielson AL. Greenberg BD. Hallett M. Post RM. Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo-controlled crossover trial. American Journal of Psychiatry. 154 (12): 1752–6, 1997.

    Google Scholar 

  284. George MS. Wassermann EM. Post RM. Transcranial magnetic stimulation: a neuropsychiatric tool for the 21st century. Journal of Neuropsychiatry & Clinical Neurosciences. 8 (4): 373–82, 1996.

    Google Scholar 

  285. George MS. Wassermann EM. Williams WA. Callahan A. Ketter TA. Basser P. Hallett M. Post RM. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport. 6 (14): 1853–6, 1995.

    Article  Google Scholar 

  286. Giesser B. Multiple sclerosis. Current concepts in management. Drugs. 29 (1): 88–95, 1985.

    Article  Google Scholar 

  287. Glassman LS. McGrath MH. Bassett CA. Effect of external pulsing electromagnetic fields on the healing of soft tissue. Annals of Plastic Surgery. 16 (4): 287–95, 1986.

    Article  Google Scholar 

  288. Glazer PA. Heilmann MR. Lotz JC. Bradford DS. Use of electromagnetic fields in a spinal fusion. A rabbit model. Spine. 22 (20): 23516, 1997.

    Article  Google Scholar 

  289. Goldenberg DM. Hansen HJ. Electric enhancement of bone healing. Science. 175 (26): 1118–20, 1972.

    Article  Google Scholar 

  290. Goodman R. Bassett CA. Henderson AS. Pulsing electromagnetic fields induce cellular transcription. Science. 220 (4603): 1283–5, 1983.

    Article  Google Scholar 

  291. Goodman EM. Greenebaum B. Marron MT. Effects of electromagnetic fields on molecules and cells. International Review of Cytology. 158: 279–338, 1995.

    Article  Google Scholar 

  292. Greenberg BD. George MS. Martin JD. Benjamin J. Schlaepfer TE. Altemus M. Wassermann EM. Post RM. Murphy DL. Effect of prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: a preliminary study. American Journal of Psychiatry. 154 (6): 867–9, 1997.

    Google Scholar 

  293. Harrington DB. Becker RO. Electrical stimulation of RNA and protein synthesis in the frog erythrocyte. Experimental Cell Research. 76 (1): 95–8, 1973.

    Article  Google Scholar 

  294. Hartig M. Joos U. Wiesmann HP. Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. European Biophysics Journal. 29 (7): 499–506, 2000.

    Article  Google Scholar 

  295. Heaton RK. Nelson LM. Thompson DS. Burks JS. Franklin GM. Neuropsychological findings in relapsing-remitting and chronic-progressive multiple sclerosis. Journal of Consulting & Clinical Psychology. 53 (1): 103–10, 1985.

    Article  Google Scholar 

  296. Heermeier K. Spanner M. Trager J. Gradinger R. Strauss PG. Kraus W. Schmidt J. Effects of extremely low frequency electromagnetic field (EMF) on collagen type I mRNA expression and extracellular matrix synthesis of human osteoblastic cells. Bioelectromagnetics. 19 (4): 222–31, 1998.

    Article  Google Scholar 

  297. High WB. Effects of orally administered prostaglandin E-2 on cortical bone turnover in adult dogs: a histomorphometric study. Bone. 8 (6): 363–73, 1987.

    Article  Google Scholar 

  298. Hinsenkamp M. Chiabrera A. Ryaby J. Pilla AA. Bassett CA. Cell behaviour and DNA modification in pulsing electromagnetic fields. Acta Orthopaedica Belgica. 44 (5): 636–50, 1978.

    Google Scholar 

  299. Hughes RA. Prospects for the treatment of multiple sclerosis. Journal of the Royal Society of Medicine. 84 (2): 63–5, 1991.

    Google Scholar 

  300. leran M. Zaffuto S. Bagnacani M. Annovi M. Moratti A. Cadossi R. Effect of low frequency pulsing electromagnetic fields on skin ulcers of venous origin in humans: a double-blind study. Journal of Orthopaedic Research. 8 (2): 276–82, 1990.

    Article  Google Scholar 

  301. Jee WS. Mori S. Li XJ. Chan S. Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Bone. 11 (4): 253–66, 1990.

    Article  Google Scholar 

  302. Jee WS. Ueno K. Deng YP. Woodbury DM. The effects of prostaglandin E2 in growing rats: increased metaphyseal hard tissue and cortico-endosteal bone formation. Calcified Tissue International. 37 (2): 14857, 1985.

    Article  Google Scholar 

  303. Ji RR. Schlaepfer TE. Aizenman CD. Epstein CM. Qiu D. Huang JC. Rupp F. Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proceedings of the National Academy of Sciences of the United States of America. 95 (26): 15635–40, 1998.

    Article  Google Scholar 

  304. Johnson MW. Chakkalakal DA. Harper RA. Katz JL. Rouhana SW. Fluid flow in bone in vitro. Journal of Biomechanics. 15 (11): 881–5, 1982.

    Article  Google Scholar 

  305. Keck ME. Pijnappels M. Schubert M. Colombo G. Curt A. Dietz V. Stumbling reactions in man: influence of corticospinal input. Electroencephalography & Clinical Neurophysiology. 109 (3): 215–23, 1998.

    Article  Google Scholar 

  306. Kellner CH. Beale MD. Pritchett JT. Bernstein HJ. Burns CM. Electroconvulsive therapy and Parkinson’s disease: the case for further study. Psychopharmacology Bulletin. 30 (3): 495–500, 1994.

    Google Scholar 

  307. Kirkcaldie MT. Pridmore SA. Pascual-Leone A. Transcranial magnetic stimulation as therapy for depression and other disorders. Australian & New Zealand Journal of Psychiatry. 31 (2): 264–72, 1997.

    Article  Google Scholar 

  308. Klein DC. Raisz LG. Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology 86 (6): 1436–1440, 1970.

    Article  Google Scholar 

  309. Korenstein R. Somjen D. Fischler H. Binderman I. Capacitative pulsed electric stimulation of bone cells. Induction of cyclic-AMP changes and DNA synthesis. Biochimica et Biophysica Acta. 803 (4): 302–7, 1984.

    Article  Google Scholar 

  310. Kraft GH. Freal JE. Coryell JK. Hanan CL. Chitnis N. Multiple sclerosis: early prognostic guidelines. Archives of Physical Medicine & Rehabilitation. 62 (2): 54–8, 1981.

    Google Scholar 

  311. Kurtzke JF. Beebe GW. Nagler B. Kurland LT. Auth TL. Studies on the natural history of multiple sclerosis-8. Early prognostic features of the later course of the illness. Journal of Chronic Diseases. 30 (12): 819–30, 1977.

    Article  Google Scholar 

  312. Lavine LS. Grodzinsky AJ. Electrical stimulation of repair of bone. Journal of Bone & Joint Surgery–American Volume. 69 (4): 626–30, 1987.

    Google Scholar 

  313. Lee EW. Maffulli N. Li CK. Chan KM. Pulsed magnetic and electromagnetic fields in experimental achilles tendonitis in the rat: a prospective randomized study. Archives of Physical Medicine & Rehabilitation. 78 (4): 399–404, 1997.

    Article  Google Scholar 

  314. Leibowitz U. Kahana E. Alter M. Multiple sclerosis in immigrant and native populations of Israel. Lancet. 2 (7634): 1323–5, 1969.

    Article  Google Scholar 

  315. Lerner UH. Ransjo M. Ljunggren O. Prostaglandin E2 causes a transient inhibition of mineral mobilization, matrix degradation, and lysosomal enzyme release from mouse calvarial bones in vitro. Calcified Tissue International. 40 (6): 323–31, 1987.

    Article  Google Scholar 

  316. Li XJ, Jee WS, Li YL, Patterson-Buckendahl P. Transient effects of subcutaneously administered prostaglandin E2 on cancellous and cortical bone in young adult dogs. Bone 11 (5): 353–64, 1990.

    Article  Google Scholar 

  317. Liboff AR. Electric-field ion cyclotron resonance. Bioelectromagnetics. 18 (1): 85–7, 1997.

    Article  MathSciNet  Google Scholar 

  318. Liboff AR. McLeod BR. (Abstract) Cyclotron resonance in ion channel proteins with 3-fold cylindrical symmetry. Bioelectromagnetics Tenth Annual Meeting Abstracts. p. 31, 1988.

    Google Scholar 

  319. Lipinski B. Biological significance of piezoelectricity in relation to acupuncture, Hatha Yoga, osteopathic medicine and action of air ions. Medical Hypotheses. 3 (1): 9–12, 1977.

    Article  Google Scholar 

  320. Maccabee PJ. Amassian VE. Eberle LP. Cracco RQ. Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation. Journal of Physiology. 460: 201–19, 1993.

    Google Scholar 

  321. Mammi GI. Rocchi R. Cadossi R. Massari L. Traina GC. The electrical stimulation of tibial osteotomies. Double-blind study. Clinical Orthopaedics & Related Research. (288): 246–53, 1993.

    Google Scholar 

  322. Matsunaga S. Sakou T. Ijiri K. Osteogenesis by pulsing electromagnetic fields (PEMFs): optimum stimulation setting. In Vivo. 10(3):351–6, 1996.

    Google Scholar 

  323. McCann UD. Kimbrell TA. Morgan CM. Anderson T. Geraci M. Benson BE. Wassermann EM. Willis MW. Post RM. Repetitive transcranial magnetic stimulation for posttraumatic stress disorder. Archives of General Psychiatry. 55 (3): 276–9, 1998.

    Article  Google Scholar 

  324. McElhaney JH. Stalnaker R. Electric fields and bone loss of disuse. Journal of Biomechanics. 1: 47–52, 1968.

    Article  Google Scholar 

  325. McLean BN. Zeman AZ. Barnes D. Thompson EJ. Patterns of blood-brain barrier impairment and clinical features in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 56 (4): 356–60, 1993.

    Article  Google Scholar 

  326. McLeod KJ. Donahue HJ. Levin PE. Fontaine MA. Rubin CT. Electric fields modulate bone cell function in a density-dependent manner. Journal of Bone & Mineral Research. 8 (8): 977–84, 1993.

    Article  Google Scholar 

  327. McLeod KJ. Liboff AR. (Abstract) Electromagnetically induced osteogenesis: Cyclotron resonance as a testable hypothesis. Fifth Annual Meeting of the Bioelectrical Repair and Growth Society. p. 16, 1985.

    Google Scholar 

  328. McLeod BR. Liboff AR. Dynamic characteristics of membrane ions in multifield configurations of low-frequency electromagnetic radiation. Bioelectromagnetics. 7 (2): 177–89, 1986.

    Article  Google Scholar 

  329. McLeod BR. Liboff AR. Cyclotron resonance in cell membranes; The theory of the mechanism. In: Mechanistic Approaches to Interactions of Electromagnetic Fields with Living Systems. Blank M. Findl E. eds. Plenum Press, New York, 1987.

    Google Scholar 

  330. McLeod BR. Liboff AR. Smith SD. Cooksey K. (Abstract) Harmonic response patterns of biosystems exposed to weak EM fields. Bioelectromagnetics Ninth Annual Meeting Abstracts. p. 23, 1987.

    Google Scholar 

  331. Miller RA. Jacobson B. Weil G. Simons ER. Diminished calcium influx in lectin-stimulated T cells from old mice. Journal of Cellular Physiology. 132 (2): 337–42, 1987.

    Article  Google Scholar 

  332. Minderhoud JM. van der Hoeven JH. Prange AJ. Course and prognosis of chronic progressive multiple sclerosis. Results of an epidemiological study. Acta Neurologica Scandinavica. 78 (1): 10–5, 1988.

    Article  Google Scholar 

  333. Mishima S. The effect of long-term pulsing electromagnetic field stimulation on experimental osteoporosis of rats. Sangyo Ika Daigaku Zasshi. 10 (1): 31–45, 1988.

    Google Scholar 

  334. Mooney V. A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions. Spine. 15 (7): 708–12, 1990.

    Article  Google Scholar 

  335. Muller JC. Spaas F. Out-patient treatment of surgically resistant non- unions by induced pulsing current–clinical results. Archives of Orthopaedic & Traumatic Surgery. 97 (4): 293–7, 1980.

    Article  Google Scholar 

  336. Murray JC. Ferndale RW. Modulation of collagen production in cultured fibroblasts by a low-frequency, pulsed magnetic field. Biochimica et Biophysica Acta. 838 (1): 98–105, 1985.

    Article  Google Scholar 

  337. Nagai M. Suzuki Y. Ota M. Systematic assessment of bone resorption, collagen synthesis, and calcification in chick embryonic calvaria in vitro: effects of prostaglandin E2. Bone. 14 (4): 655–659, 1993.

    Article  Google Scholar 

  338. Nagata T. Kaho K. Nishikawa S. Shinohara H. Wakano Y. Ishida H. Effect of prostaglandin E2 on mineralization of bone nodules formed by fetal rat calvarial cells. Calcified Tissue International. 55 (6): 451–7, 1994.

    Article  Google Scholar 

  339. Nicolini C. Cavazza B. Trefiletti V. Pioli F. Beltrame F. Brambilla G. Maraldi N. Patrone E. Higher-order structure of chromatin from resting cells. Il. High-resolution computer analysis of native chromatin fibres and freeze-etching of nuclei from rat liver cells. Journal of Cell Science. 62: 103–15, 1983.

    Google Scholar 

  340. Norton LA. Rodan GA. Bourret LA. Epiphyseal cartilage cAMP changes produced by electrical and mechanical perturbations. Clinical Orthopaedics & Related Research. (124): 59–68, 1977.

    Google Scholar 

  341. Noseworthy J. Paty D. Wonnacott T. Feasby T. Ebers G. Multiple sclerosis after age 50. Neurology. 33 (12): 1537–44, 1983.

    Article  Google Scholar 

  342. O’Connor BT. Treatment of surgically resistant non-unions with pulsed electromagnetic fields. Reconstruction Surgery & Traumatology. 19: 123–32, 1985.

    Google Scholar 

  343. Onuma EK. Hui SW. Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. Journal of Cell Biology. 106 (6): 2067–75, 1988.

    Article  Google Scholar 

  344. Ozawa H. Abe E. Shibasaki Y. Fukuhara T. Suda T. Electric fields stimulate DNA synthesis of mouse osteoblast-like cells (MC3T3–E1) by a mechanism involving calcium ions. Journal of Cellular Physiology. 138 (3): 477–83, 1989.

    Article  Google Scholar 

  345. Pascual-Leone A. Rubio B. Pallardo F. Catala MD. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet. 348 (9022): 233–7, 1996.

    Article  Google Scholar 

  346. Pfeilschifter J. Pignat W. Vosbeck K. Marki F. Interleukin 1 and tumor necrosis factor synergistically stimulate prostaglandin synthesis and phospholipase A2 release from rat renal mesangial cells. Biochemical & Biophysical Research Communications. 159 (2): 385–94, 1989.

    Article  Google Scholar 

  347. Pilla AA. Electrochemical information transfer at living cell membranes. Annals of the New York Academy of Sciences. 238: 149–70, 1974.

    Article  Google Scholar 

  348. Reid PD. Shajahan PM. Glabus MF. Ebmeier KP. Transcranial magnetic stimulation in depression. British Journal of Psychiatry. 173: 449–52, 1998.

    Article  Google Scholar 

  349. Robinson KR. The responses of cells to electrical fields: a review. Journal of Cell Biology. 101 (6): 2023–7, 1985.

    Article  Google Scholar 

  350. Rosen DM. Stempien SA. Thompson AY. Seyedin SM. Transforming growth factor-beta modulates the expression of osteoblast and chondroblast phenotypes in vitro. Journal of Cellular Physiology. 134 (3): 337–46, 1988.

    Article  Google Scholar 

  351. Rossini PM. Rossi S. Clinical applications of motor evoked potentials. Electroencephalography & Clinical Neurophysiology. 106 (3): 180–94, 1998.

    Article  Google Scholar 

  352. Roth BJ. Saypol JM. Hallett M. Cohen LG. A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroencephalography & Clinical Neurophysiology. 81 (1): 47–56, 1991.

    Article  Google Scholar 

  353. Rubin J. McLeod KJ. Titus L. Nanes MS. Catherwood BD. Rubin CT. Formation of osteoclast-like cells is suppressed by low frequency, low intensity electric fields. Journal of Orthopaedic Research. 14 (1): 7–15, 1996.

    Article  Google Scholar 

  354. Rudick RA. Goodkin DE. Ransohoff RM. Pharmacotherapy of multiple sclerosis: current status. Cleveland Clinic Journal of Medicine. 59 (3): 267–77, 1992.

    Google Scholar 

  355. Rundles RW. Moore JO. Chronic lymphocytic leukemia. Cancer. 42 (2 Suppl): 941–5, 1978.

    Article  Google Scholar 

  356. Saffar JL. Leroux P. Role of prostaglandins in bone resorption in a synchronized remodeling sequence in the rat. Bone 9 (3): 141–145, 1988.

    Article  Google Scholar 

  357. Salzstein RA. Pollack SR. Electromechanical potentials in cortical bone-II. Experimental analysis. Journal of Biomechanics. 20 (3): 271–80, 1987.

    Article  Google Scholar 

  358. Sandyk R. Long term beneficial effects of weak electromagnetic fields in multiple sclerosis. International Journal of Neuroscience. 83 (1–2): 45–57, 1995a.

    Article  Google Scholar 

  359. Sandyk R. Premenstrual exacerbation of symptoms in multiple sclerosis is attenuated by treatment with weak electromagnetic fields. International Journal of Neuroscience. 83 (3–4): 187–98, 1995b.

    Article  Google Scholar 

  360. Sandyk R. Treatment with electromagnetic field alters the clinical course of chronic progressive multiple sclerosis-a case report. International Journal of Neuroscience. 88 (1–2): 75–82, 1996.

    Article  Google Scholar 

  361. Sandyk R. Impairment of depth perception in multiple sclerosis is improved by treatment with AC pulsed electromagnetic fields. International Journal of Neuroscience. 98 (1–2): 83–94, 1999.

    Article  Google Scholar 

  362. Sandyk R. Awerbuch GI. Nocturnal plasma melatonin and alpha- melanocyte stimulating hormone levels during exacerbation of multiple sclerosis. International Journal of Neuroscience. 67 (1–4): 173–86, 1992.

    Article  Google Scholar 

  363. Sandyk R. Awerbuch GI. Nocturnal melatonin secretion in multiple sclerosis patients with affective disorders. International Journal of Neuroscience. 68 (3–4): 227–40, 1993.

    Article  Google Scholar 

  364. Sandyk R. Dann LC. Weak electromagnetic fields attenuate tremor in multiple sclerosis. International Journal of Neuroscience. 79 (3–4): 199–212, 1994.

    Article  Google Scholar 

  365. Sandyk R. Dann LC. Resolution of Lhermitte’s sign in multiple sclerosis by treatment with weak electromagnetic fields. International Journal of Neuroscience. 81 (3–4): 215–24, 1995.

    Article  Google Scholar 

  366. Sandyk R. Iacono RP. Resolution of longstanding symptoms of multiple sclerosis by application of picoTesla range magnetic fields. International Journal of Neuroscience. 70 (3–4): 255–69, 1993.

    Article  Google Scholar 

  367. Santoro MG. Jaffe BM. Simmons DJ. Bone resorption in vitro and in vivo in PGE-treated mice. Experimental Biology & Medicine. 156 (2): 373–7, 1977.

    Google Scholar 

  368. Saypol JM. Roth BJ. Cohen LG. Hallett M. A theoretical comparison of electric and magnetic stimulation of the brain [published erratum appears in Ann Biomed Eng 1992;20(4):495]. Annals of Biomedical Engineering. 19 (3): 317–28, 1991.

    Google Scholar 

  369. Schelling SH. Wolfe HJ. Tashjian AH Jr. Role of the osteoclast in prostaglandin E2-stimulated bone resorption: a correlative morphometric and biochemical analysis. Laboratory Investigation. 42 (3): 290–5, 1980.

    Google Scholar 

  370. Shankar VS. Simon BJ. Bax CM. Pazianas M. Moonga BS. Adebanjo OA. Zaidi M. Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoclasts. Journal of Cellular Physiology. 176 (3): 537–44, 1998.

    Article  Google Scholar 

  371. Sharrard WJ. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. Journal of Bone & Joint Surgery–British Volume. 72 (3): 347–55, 1990.

    Google Scholar 

  372. Sharrard WJ. Sutcliffe ML. Robson MJ. MacEachern AG. The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. Journal of Bone & Joint Surgery–British Volume. 64 (2): 189–93, 1982.

    Google Scholar 

  373. Sheppard AR. Adey WR. The role of cell surface polarization in biological effects of extremely low frequency fields. In: Biological Effects of Extremely-Low-Frequency Electromagnetic Fields. Proceedings of the 18th Annual Hanford Life Sciences Symposium. NTIS CONF-781016. Phillips RD. et al. eds. p. 147–58, National Technical Information Service, Springfield, Virginia, 1979.

    Google Scholar 

  374. Shih MS. Norrdin RW. Effect of prostaglandin E2 on rib fracture healing in beagles: histomorphometric study on periosteum adjacent to the fracture site. American Journal of Veterinary Research. 47 (7): 1561–4, 1986a.

    Google Scholar 

  375. Shih MS. Norridin RW. Effects of prostaglandins on regional remodeling changes during tibial healing in beagles: a histomorphometric study. Calcified Tissue International. 39 (3): 191–7, 1986b.

    Article  Google Scholar 

  376. Shinar DM. Sato M. Rodan GA. The effect of hemopoietic growth factors on the generation of osteoclast-like cells in mouse bone marrow cultures. Endocrinology. 126 (3): 1728–35, 1990.

    Article  Google Scholar 

  377. Smith SD. McLeod BR. Liboff AR. Cyclotron resonance control of explanted chick femurs. Eighth Annual Meeting of the Bioelectrical Repair and Growth Society, p. 6, 1988.

    Google Scholar 

  378. Sollazzo V. Traina GC. DeMattei M. Pellati A. Pezzetti F. Caruso A. Responses of human MG-63 osteosarcoma cell line and human osteoblastlike cells to pulsed electromagnetic fields. Bioelectromagnetics. 18 (8): 541–7, 1997.

    Article  Google Scholar 

  379. Somjen D. Binderman I. Berger E. Harell A. Bone remodelling induced by physical stress is prostaglandin E2 mediated. Biochimica et Biophysica Acta. 627 (1): 91–100, 1980.

    Article  Google Scholar 

  380. Sporn MB. Roberts AB. Transforming growth factor-beta. Multiple actions and potential clinical applications. JAMA. 262 (7): 938–41, 1989.

    Article  Google Scholar 

  381. Stashenko P. Dewhirst FE. Peros WJ. Kent RL. Ago JM. Synergistic interactions between interleukin 1, tumor necrosis factor, and lymphotoxin in bone resorption. Journal of Immunology. 138 (5): 1464–8, 1987.

    Google Scholar 

  382. Steinberg ME. Brighton CT. Bands RE. Hartman KM. Capacitive coupling as an adjunctive treatment for avascular necrosis. Clinical Orthopaedics & Related Research. (261): 11–8, 1990.

    Google Scholar 

  383. Suzuki HK. Mathews A. Two-color fluorescent labeling of mineralizing tissues with tetracycline and 2,4-bis[N,N’-di-(carbomethyl)aminomethyl] fluorescein. Stain Technology. 41 (1): 57–60, 1966.

    Google Scholar 

  384. Tabrah F. Hoffmeier M. Gilbert F Jr. Batkin S. Bassett CA. Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs). Journal of Bone & Mineral Research. 5 (5): 437–42, 1990.

    Article  Google Scholar 

  385. Tabrah FL. Ross P. Hoffmeier M. Gilbert F Jr. Clinical report on long- term bone density after short-term EMF application. Bioelectromagnetics. 19 (2): 75–8, 1998.

    Article  Google Scholar 

  386. Takahashi N. Akatsu T. Sasaki T. Nicholson GC. Moseley JM. Martin TJ. Suda T. Induction of calcitonin receptors by 1 alpha, 25-dihydroxyvitamin D3 in osteoclast-like multinucleated cells formed from mouse bone marrow cells. Endocrinology. 123 (3): 1504–10, 1988.

    Article  Google Scholar 

  387. Tashjian AH Jr. Voelkel EF. Lazzaro M. Goad D. Bosma T. Levine L. Tumor necrosis factor-alpha (cachectin) stimulates bone resorption in mouse calvaria via a prostaglandin-mediated mechanism. Endocrinology 120 (5): 2029–2036, 1987.

    Article  Google Scholar 

  388. Tsai CL. Chang WH. Liu TK. Wu KH. Additive effects of prostaglandin E2 and pulsed electromagnetic fields on fracture healing. Chinese Journal of Physiology. 34 (2): 201–11, 1991.

    Google Scholar 

  389. Wahlstrom O. Stimulation of fracture healing with electromagnetic fields of extremely low frequency (EMF of ELF). Clinical Orthopaedics & Related Research. (186): 293–301, 1984.

    Google Scholar 

  390. Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalography & Clinical Neurophysiology. 108 (1): 1–16, 1998.

    MathSciNet  Google Scholar 

  391. Watson J. The electrical stimulation of bone healing. Proceedings IEEE. 67: 1339–51, 1979.

    Article  Google Scholar 

  392. Welch RD. Johnston CE 2d. Waldron MJ. Poteet B. Intraosseous infusion of prostaglandin E2 in the caprine tibia. Journal of Orthopaedic Research. 11 (1): 110–21, 1993.

    Article  Google Scholar 

  393. Wiesmann H. Hartig M. Stratmann U. Meyer U. Joos U. Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochimica et Biophysica Acta. 1538 (1): 28–37, 2001.

    Article  Google Scholar 

  394. Wrana JL. Maeno M. Hawrylyshyn B. Yao KL. Domenicucci C. Sodek J. Differential effects of transforming growth factor-beta on the synthesis of extracellular matrix proteins by normal fetal rat calvarial bone cell populations. Journal of Cell Biology. 106 (3): 915–24, 1988.

    Article  Google Scholar 

  395. Yang RS. Chang WH. Liu TK. Liu HC. Clinical Evaluation of Nonunion and Delayed Union by a Specific Parameter Electrical Stimulation. JJBERS. 8: 117–25, 1994.

    Google Scholar 

  396. Yonemori K. Matsunaga S. Ishidou Y. Maeda S. Yoshida H. Early effects of electrical stimulation on osteogenesis. Bone. 19 (2): 173–80, 1996.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chang, W.H., Chang, K.T., Li, J. (2003). Therapeutic Effects of Electromagnetic Fields. In: Stavroulakis, P. (eds) Biological Effects of Electromagnetic Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06079-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06079-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07697-8

  • Online ISBN: 978-3-662-06079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics