Biological Effects of EMFs

  • Kui Nie
  • Ana Micic-Vasovic
  • Ann S. Henderson
  • Martin Blank
  • Reba Goodman
  • Handan Tuncel
  • Dimitris J. Panagopoulos
  • Lukas H. Margaritis
  • Th. D. Xenos
  • I. N. Magras
  • Mehmet Ali Körpinar
  • Mustafa Tunaya Kalkan
Chapter

Abstract

People have always considered the exposure to non-ionising radiation with scepticism. The prospect that exposure to electromagnetic fields (EMF) can have a deleterious effect or any effect on cellular behaviour has been debated in scientific and journalistic circles for some years. The drive to determine whether EMFs were involved in cellular behavioural changes is critical since environmental proximity to high voltage power lines and electric stations or the routine use of household appliances and cellular phones is increasing exponentially. Support for a deleterious effect gained impetus with the report that children whose homes were close to power lines had a higher frequency of leukemia. If cell signalling is influenced by EMF exposure, it provides further impetus to determine whether EMF exposure can cause or alter the propensity to cancer or have other deleterious effects in cells. Numerous laboratory studies both in vitro and in vivo have provided evidence that exposure to EMF induces a wide range of responses in biological systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams PD, Parker PJ. 1991. TPA-induced activation of MAP kinase. FEBS Lett 290: 77–82.CrossRefGoogle Scholar
  2. 2.
    Agarwal S, Corbley MJ, Roberts TM. 1995. Reconstitution of signal transduction from the membrane to the nucleus in a baculovirus expression system: activation of Raf-1 leads to hypermodification of c-jun and c-fos via multiple pathways. Oncogene 11: 427–438.Google Scholar
  3. 3.
    Balcer-Kubiczek EK, Harrison GH. 1991. Neoplastic transformation of C3H/10T1/2 cells following exposure to 120-Hz modulated 2.45-GHz microwaves and phorbol ester tumor promoter. Radiat Res 126: 65–72.CrossRefGoogle Scholar
  4. 4.
    Blumberg PM, Pastic G, Lacal JC, Warren SB, Aaronson SA. 1986. Loss of mouse fibroblast cell response to phorbol esters restored by micro-injected protein kinase C. Nature 324: 375–377.CrossRefGoogle Scholar
  5. 5.
    Blumenthal NC, Ricci J, Breger L, Zychlinsky A, Solomon H, Chen GG, Kuznetsov D, Dorfman R. 1997. Effects of low-intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis. Bioelectromagnetics 18: 264–72.CrossRefGoogle Scholar
  6. 6.
    Cain CD, Thomas DL, Adey WR. 1993. 60 Hz magnetic field acts as co-promoter in focus formation of C3H/10T1/2 cells. Carcinogenesis 14: 955–960.Google Scholar
  7. 7.
    Campbell-Beachler M, Ishida-Jones T, Haggren W, Phillips JL. 1998. Effect of 60 Hz magnetic field exposure on c-fos expression in stimulated PC12 cells. Mol Cell Biochem 189: 107–111.CrossRefGoogle Scholar
  8. 8.
    Cho MR, Thatte HS, Lee RC, Golan DE. 1994. Induced redistribution of cell surface receptors by alternating current electric fields. FASEB J 8: 771–776.Google Scholar
  9. 9.
    Clejan S, Dotson RS, Ide CF, Beckman BS. 1995. Coordinated effects of electromagnetic field exposure on erythropoietin-induced activities of phosphatidylinositol-phospholipase C and phosphatidylinositol 3-kinase. Cell Biochem Biophys 27: 203–225.CrossRefGoogle Scholar
  10. 10.
    Clejan S, Ide C, Walker C, Wolf E, Corb M, Beckman B. 1996. Electromagnetic field induced changes in lipid second messengers. J Lipid Mediat Cell Signal 13: 301–324.CrossRefGoogle Scholar
  11. 11.
    Conti P, Reale M, Grilli A, Barbacane RC, Di Luzio S, Di Gioacchino M, De Lutiis MA, Felaco M. 1999. Effect of electromagnetic fields on several CD markers and transcription and expression of CD4. 201: 36–48.Google Scholar
  12. 12.
    Dertinger SD, Torous DK, Tometsko, AM (1995): Development of a sensitive in vitro method for identifying tumor promoters. Mutat. Res 334: 49–57.Google Scholar
  13. 13.
    Dibirdik I, Kristupaitis D, Kurosaki T, Tuel-Ahlgren L, Chu A, Pond D, Tuong D, Luben R, Uckun FM. 1998. Stimulation of Src family protein-tyrosine kinases as a proximal and mandatory step for SYK kinase-dependent phospholipase C_2 activation in lymphoma B cells exposed to low energy electromagnetic fields. J Biol Chem 273: 4035–4039.CrossRefGoogle Scholar
  14. 14.
    EI-Shemerly MY, Besser D, Nagasawa M, Nagamine Y. 1997. 12–0Tetradecanoylphorbol-13-acetate activates the Ras/extracellular signal -regulated kinase (ERK) signaling pathway upstream of SOS involving serinephosphorylation of Shc in NIH3T3 cells. J Biol Chem 272: 30599–30602.Google Scholar
  15. 15.
    Felaco M, Reale M, Grilli A, De Lutiis MA, Barbacane RC, Di Luzio S, Conti P. 1999. Impact of extremely low frequency electromagnetic fields on CD4 expression in peripheral blood mononuclear cells. Mol Cell Biochem 201: 49–55.CrossRefGoogle Scholar
  16. 16.
    Fitzsimmons RJ, Strong DD, Mohan S, Baylink DJ. 1992. Low-amplitude, low-frequency electric field stimulated bone cell proliferation may in part be mediated by increased IGF-II release. J Cell Physiol 150: 84–89.CrossRefGoogle Scholar
  17. 17.
    Flipo D, Fournier M, Benquet C, Roux P, Le Boulaire C, Pinsky C, LaBella FS, Krzystyniak K. 1998. Increased apoptosis, changes in intracellular Ca2+, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J Toxicol Environ Health A 54: 63–76.CrossRefGoogle Scholar
  18. 18.
    Galvanovskis J, Sandblom J. 1997. Amplification of electromagnetic signals by ion channels. Biophys J 73: 3056–3065.CrossRefGoogle Scholar
  19. 19.
    Goodman R, Henderson AS. 1991. Transcription in cells exposed to extremely low frequency electromagnetic fields: a review. Bioelectrochem Bioenerget 25: 335–355.CrossRefGoogle Scholar
  20. 20.
    Goodman R, Chizmandzhev Y, Henderson AS. 1993. Electromagnetic fields and cells. J Cell Biochem 51: 436–441.Google Scholar
  21. 21.
    Hiraki Y, Endo N, Takigawa M, Asada A, Takahashi H, Suzuki F. 1987. Enhanced responsiveness to parathyroid hormone and induction of functional differentiation of cultured rabbit costal chondrocytes by a pulsed electromagnetic field. Biochem Biophys Acta 931: 94–100.CrossRefGoogle Scholar
  22. 22.
    Huang W, Alessandrini A, Crews CM, Erikson RL. 1993. Raf-1 forms a stable complex with Mek1 and activates Mek1 by serine phosphorylation. Proc Natl Acad Sci 90: 10947–10951.CrossRefGoogle Scholar
  23. 23.
    Jelmert O, Hansteen I-L, Lang_rd S 1994. Chromosome damage in lymphocytes of stainless steel welders related to past and current exposure to manual metal arc welding fumes. Mutat Res 320: 223–233.CrossRefGoogle Scholar
  24. 24.
    Johnson MT, Vanscoy-Cornett A, Vesper DN, Swez JA, Chamberlain JK, Seaward MB, Nindl G. 2001. Electromagnetic fields used clinically to improve bone healing also impact lymphocyte proliferation in vitro. Biomed Sci Instrum 37: 215–20.Google Scholar
  25. 25.
    Karabakhtsian R, Broude N, Shalts N, Kolchlaty S, Goodman R, Henderson AS. 1994. Calcium is necessary in the cell response to EM fields. FEBS Lett 349: 1–4.CrossRefGoogle Scholar
  26. 26.
    Kharbanda S, Saleem A, Emoto Y, Stone R, Rapp U, Kufe D. 1994. Activation of Raf-1 and mitogen-activated protein kinases during monocyticdifferentiation of human myeloid leukemia cells. J Biol Chem 269: 872–878.Google Scholar
  27. 27.
    Kim YV, Conover DL, Lotz WG, Cleay SF. 1998. Electric field-induced changes in agonist-stimulated calcium fluxes of human HL-60 leukemia cells. Bioelectromagnetics 19: 366–376.CrossRefGoogle Scholar
  28. 28.
    Kristupaitis D, Dibirdik I, Vassilev A, Mahajan S, Kurosaki T, Chu A, Tuel-Ahlgren L, Tuong D, Pond D, Luben R, Uckun FM. 1998. Electromagnetic field-induced stimulation of Bruton=s tyrosine kinase. J Biol Chem 273: 12397–12401.CrossRefGoogle Scholar
  29. 29.
    Lagroye I, Poncy JL. 1998. Influences of 50-Hz magnetic fields and ionizing radiation on c-jun and c-fos oncoproteins. Bioelectromagnetics 19: 112–116.CrossRefGoogle Scholar
  30. 30.
    Li CM, Chiang H, Fu YD, Shao BJ, Shi JR, Yao GD. 1999. Effects of 50 Hz magnetic fields on gap junctional intercellular communication. Bioelectromagnetics 20: 290–294.CrossRefGoogle Scholar
  31. 31.
    Liboff AR, Williams T Jr, Strong DM, Wistar R Jr. 1984. Time-varying magnetic fields: effect on DNA synthesis. Science 223: 818–820.CrossRefGoogle Scholar
  32. 32.
    Liburdy R. 1992. Calcium signaling in lymphocytes and ELF fields: Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett 301: 53–59.CrossRefGoogle Scholar
  33. 33.
    Lin H, Blank M, Rossol-Haseroth K, Goodman R. 2001. Regulating genes with electromagnetic response elements. J Cell Biochem 81: 143–8.CrossRefGoogle Scholar
  34. 34.
    Lin H, Head M, Blank M, Han L, Jin M, Goodman R. 1998. Myc-mediated transactivation of HSP70 expression following exposure to magnetic fields. J Cell Biochem 69: 181–188.CrossRefGoogle Scholar
  35. 35.
    Lin H, Opler M, Head M, Blank M, Goodman R. 1997. Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells. J Cell Biochem 66: 482–488.CrossRefGoogle Scholar
  36. 36.
    Lindstrom E, Berglund A, Mild KH, Lindstrom P, Lundgren E. 1995. CD45 phosphatase in Jurkat cells is necessary for response to applied ELF magnetic fields. FEBS Lett 370: 118–122.CrossRefGoogle Scholar
  37. 37.
    Lindstrom E, Still M, Mattsson MO, Mild KH, Luben RA. 2001. ELF magnetic fields initiate protein tyrosine phosphorylation of the T cell receptor complex. Bioelectrochemistry 53: 73–78.CrossRefGoogle Scholar
  38. 38.
    Linet MS, Hatch EE, Kleinerman RA, Robinson LL, Kaune WT, Friedman DR, Severson RK, Haines CM, Hartsock CT, Niwa S, Wacholder S, Tarone RE 1997. Residential exposure to magnetic fields and acute lymphoblastic leukemia children. N Eng J Med 337: 1–7.CrossRefGoogle Scholar
  39. 39.
    London SJ, Thomas DC, Bowman JD, Sobel E, Cheng TC, Peters JM 1991. Exposure to residential electric and magnetic fields and risk of childhood leukemia. Am J Epidemiol 134: 923–937.Google Scholar
  40. 40.
    Loschinger M, Thumm S, Hammerle H, Rodemann HP. 1998. Stimulation of protein kinase A activity and induced terminal differentiation of human skinGoogle Scholar
  41. fibroblasts in culture by low-frequency electromagnetic fields. Toxicol Lett 9697:369–376.Google Scholar
  42. 41.
    Lu Z, Hornia A, Jiang Y, Zang Q, Ohno S, Foster DA. 1997. Tumor promotion by depleting cells of protein kinase CO. Mol Cell Biol. 17: 3418–3428.Google Scholar
  43. 42.
    Marquardt B, Frith D, Stabel S. 1994. Signaling from TPA to MAP kinase requires protein kinase C, raf and MEK: reconstitution of the signaling pathway in vitro. Oncogene 9: 3213–3218.Google Scholar
  44. 43.
    Marron MT, Goodman EM, Sharpe PT, Greenebaum B. 1988. Low frequency electric and magnetic fields have different effects on the cell surface. FEBS lett 230: 13–16.CrossRefGoogle Scholar
  45. 44.
    McLean JR, Stuchly MA, Mitchel RE, Wilkinson D, Yang H, Goddard M, Lecuyer DW, Schunk M, Callary E, Morrison D. 1991. Cancer promotion in a mouse-skin model by a 60-Hz magnetic field: II. Tumor development and immune response. Bioelectromagnetics 12: 273–287.Google Scholar
  46. 45.
    Monti MG, Pernecco L, Morussi MS, Battini R, Zaniol P, Barbiroli P. 1991. Effects of ELF pulse electromagnetic fields on protein kinase C activation process in HL-60 leukemia cells. J. Bioelectricity 10: 119–131.Google Scholar
  47. 46.
    Nie, K, Henderson AS. MAP kinase activation in cells exposed to a 60 Hz electromagnetic fields. Submitted to J. of Cellular Biochemistry.Google Scholar
  48. 47.
    Niedel JE, Kuhn LJ, Vandenbark GR. 1983. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci USA 80: 36–41.CrossRefGoogle Scholar
  49. 48.
    Nindl G, Swez JA, Miller JM, Balcavage WX. 1997. Growth stage dependent effects of electromagnetic fields on DNA synthesis of Jurkat cells. FEBS Lett 414: 501–6.CrossRefGoogle Scholar
  50. 49.
    Nishizuka Y. 1989. The family of protein kinase C for signal transduction. JAMA 262: 1826–1832.CrossRefGoogle Scholar
  51. 50.
    Nishizuka Y. 1986. Studies and perspectives of protein kinase C. Science 233: 305–312.CrossRefGoogle Scholar
  52. 51.
    Noda M, Johnson DE, Chiabrera A, Rodan GA. 1987. Effect of electric currents on DNA synthesis in rat osteosarcoma cells: dependence on conditions that influence cell growth. J Orthop Res 5: 253–60.CrossRefGoogle Scholar
  53. 52.
    Nordenson I, Mild KH, Jarventaus H, Hirvonen A, Sandstrom M, Wilen J, Blix N, Norppa H 2001. Chromosomal aberrations in peripheral lymphocytes of train engine drivers. Bioelectromagnetics 22: 306–15.CrossRefGoogle Scholar
  54. 53.
    Nordenson I, Mild KH, _stman U, Ljungberg H 1988. Chromosomal effects in lymphocytes of 400 kV-substation workers. Radiat Environ Biophys 27: 39–47.CrossRefGoogle Scholar
  55. 54.
    Phillips JL, Haggren W, Thomas WJ, Ishida-Jones T, Adey WR. 1992. Magnetic field-induced changes in specific gene transcription. Biochim Biophys Acta 1132: 140–144.Google Scholar
  56. 55.
    Rannug A, Ekstrom T, Mild KH, Holmberg B, Gimenez-Conti I, Slaga TJ. 1993. A study on skin tumour formation in mice with 50 Hz magnetic field exposure. Carcinogenesis 14: 573–578.CrossRefGoogle Scholar
  57. 56.
    Rao S, Henderson AS. 1996. Regulation of c-fos is affected by electromagnetic fields. J Cellular Biochem 63: 358–365.CrossRefGoogle Scholar
  58. 57.
    Repacholi MH, Basten A, Gebski V, Noonan D, Finnie J, Harris AW. 1997. Lymphomas in E mu-Pim1 transgenic mice exposed to pulsed 900 MHZ electromagnetic fields. Radiat Res 147: 631–640.Google Scholar
  59. 58.
    Rodemann HP, Bayreuther K, Pfleiderer G. 1989. The differentiation of normal and transformed human fibroblasts in vitro is influenced by electromagnetic fields. Exp Cell Res. 182: 610–21.CrossRefGoogle Scholar
  60. 59.
    Rosenthal M, Obe G. 1989. Effects of 50-hertz electromagnetic fields on proliferation and on chromosoma alterations in human peripheral lymphocytes untreated or pretreated with chemical mutagens. Mutat Res 210: 329–35.CrossRefGoogle Scholar
  61. 60.
    Rovera G, Santoli D, Dansky, C (1979): Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Nat Acad Sci. USA 76: 2779.Google Scholar
  62. 61.
    Rozengurt E, Rodriguez-Pena A. 1984. Disappearance of Cat+-sensitive, phospholipid-dependent protein kinase activity in phorbol ester-treated 3T3 cells. Biochemical and Biophysical Research Communications 120: 1053–1059.CrossRefGoogle Scholar
  63. 62.
    Ruiz Gomez MJ, De la Pena L, Pastor JM, Martinez Morillo M, Gil L. 2001. 25 Hz electromagnetic field exposure has no effect on cell cycle distribution and apoptosis in U-937 and HCA-2/lcch cells. Bioelectrochemistry 53: 137–40.Google Scholar
  64. 63.
    Savitz DA, Wachtel H, Barnes FA, John EM, Tvrdik JG 1988. Case control study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol 128: 21–38.Google Scholar
  65. 64.
    Shoji M, Girard PR, Mazzei GJ, Vogler WR, Kuo JF. 1986. Immunocytochemical evidence for phorbol ester-induced protein kinase C translocation in HL-60 cells. Biochemical and Biophysical Research Communication. 135: 1143–1149.CrossRefGoogle Scholar
  66. 65.
    Simko M, Kriehuber R, Weiss DG, Luben RA. 1998. Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics 19: 85–91.CrossRefGoogle Scholar
  67. 66.
    Stenlund C, Floderus B 1997. Occupational exposure to magnetic fields in relation to male breast cancer and testicular cancer: a Swedish case-control study. Cancer Causes Control 8: 184–191.CrossRefGoogle Scholar
  68. 67.
    Takahashi K, Kaneko I, Date M, Fukada E. 1986. Effect of pulsing electromagnetic fields on DNA synthesis in mammalian cells in culture. Experientia 42: 185–6.CrossRefGoogle Scholar
  69. 69.
    Thumm S, Loschinger M, Glock S, Hammerle H, Rodemann HP. 1999. Induction of cAMP-dependent protein kinase A activity in human skin fibroblasts and rat osteoblasts by extremely low-frequency electromagnetic fields. Radiat Environ Biophys 38: 195–199.CrossRefGoogle Scholar
  70. 70.
    Toler JC, Shelton WW, Frei MR, Merritt JH, Stedham MA. 1997. Long-term, low-level exposure of mice prone to mammary tumors to 435 MHz radiofrequency radiation. Radiat Res 148: 227–234.CrossRefGoogle Scholar
  71. 71.
    Troppnair J, Bruder JT, Munoz H, Lloyd PA, Kyriakis J, Banerjee P, Avruch J, Papp UR 1994. Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation by oncogenes, serum, and 12-O-tetradecanoylphorbol13-acetate requires Raf and is necessary for transformation. J Biol Chem 269: 7030–7035.Google Scholar
  72. 72.
    Tuinstra R, Goodman E, Greenebaum B. 1998. Protein kinase C activity following exposure to magnetic field and phorbol ester. Bioelectromagnetics 19: 469–476.CrossRefGoogle Scholar
  73. 73.
    Uckun FM, Kurosaki T, Jin J, Jun X, Morgan A, Takata M, Bolen J, Luben R. 1995. Exposure of B-lineage lymphoid cells to low energy electromagnetic fields stimulates Lyn kinase. J Biol Chem 270: 27666–27670.CrossRefGoogle Scholar
  74. 74.
    Valjus J, Norppa H, J_rventaus H 1993. Analysis of chromosomal aberrations, sister chromatid exchanges and micronuclei among power linesmen with longterm exposure to 50-Hz electromagnetic fields. Radiat Environ Biophys 32: 325336.Google Scholar
  75. 75.
    Wertheimer N, Leeper E. 1979. Electrical wiring configurations and childhood cancer. Am J Epidemiol 109: 273–284.Google Scholar
  76. 76.
    Wallaczek J. 1992. Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB 6: 3177–3283.Google Scholar
  77. 77.
    Zhao YL, Johnson PG, Jahreis GP, Hui SW. 1999. Increased DNA synthesis in INIT/10T1/2 cells after exposure to a 60 Hz magnetic field: a magnetic-field or a thermal effect? Radiat Res 151: 201–8.CrossRefGoogle Scholar
  78. 78.
    Zwingelberg R, Obe G, Rosenthal M, Mevissen M, Buntenkotter S, Loscher W. 1993. Exposure of rats to a 50-Hz, 30-mT magnetic field influences neither the frequencies of sister-chromatid exchanges nor proliferation characteristics of cultured peripheral lymphocytes. Mutat Res 302: 39–44.CrossRefGoogle Scholar
  79. 1.
    National Institutes of Environmental Health(NIEHS). Health Effects from Exposure to Power-Line Frequency Electric and Magnetic Fields. (C. Portier, M. Wolfe, eds.) Research Triangle Park, NC (1998).Google Scholar
  80. 2.
    Ahlbom, N. Day, M. Feychting, E. Roman, J. Skinner, J. Dockerty, M. Linet, M. McBride, J. Michaelis, J.H. Olsen, T. Tynes, P.K. Verkasalo. A Pooled Analysis of Magnetic Fields and Childhood Leukemia. Brit. J. Cancer 83: 692–698 (2000).CrossRefGoogle Scholar
  81. 3.
    S Greenland, AR Sheppard, WT Kaune, C Poole, MA Kelsh. A Pooled Analysis of Magnetic Fields, Wire Codes, and Childhood Leukemia. Epidemiology 11: 624–634 (2000).CrossRefGoogle Scholar
  82. 4.
    S Milham, EM Osslander. Historical evidence that residential electrification caused the emergence of the childhood leukemia peak. Medical Hypotheses 56: 290–295 (2001).CrossRefGoogle Scholar
  83. 5.
    R Goodman, M Blank. A non-thermal low-energy agent that induces stress response proteins: Magnetic Fields. Cell Stress and Chaperones 3: 79–88 (1998).CrossRefGoogle Scholar
  84. 6.
    Blank M, Soo L. The threshold for Na,K-ATPase stimulation by electromagnetic fields. Bioelectrochem Bioenerg 40: 63–65 (1995).CrossRefGoogle Scholar
  85. 7.
    Blank M, Soo L. Enhancement of cytochrome oxidase activity in 60Hz magnetic fields. Bioelectrochem Bioenerg 45: 253–259 (1998).CrossRefGoogle Scholar
  86. 8.
    M Blank, L Soo. Electromagnetic acceleration of electron transfer reactions. J Cell Biochem 81: 278–283 (2001).CrossRefGoogle Scholar
  87. 9.
    R Goodman, CAL Bassett, AS Henderson. Pulsing electromagnetic fields induce cellular transcription. Science 220: 1283–1285 (1983).CrossRefGoogle Scholar
  88. 10.
    EM Goodman, B Greenebaum, MT Marron. Effects of electromagnetic fields on molecules and cells. Int Rev Cytol 158: 238–279 (1995).Google Scholar
  89. 11.
    M Blank, O Khorkova, R Goodman. Changes in polypeptide distribution stimulated by different levels of electromagnetic and thermal stress. Bioelectrochem Bioenerg 33: 109–114 (1994).CrossRefGoogle Scholar
  90. 12.
    JM Mullins, LM Penafiel, J Juutilainen, TA Litovitz. Dose-response of electromagnetic field-enhanced ornithine decarboxylase activity. Bioelectrochem Bioenerg 48: 193–199 (1999).CrossRefGoogle Scholar
  91. 13.
    L Han, H Lin, M Head, M Jin, M Blank, R Goodman. Application of magnetic field-induced hsp70 for pre-surgical cytoprotection. J Cell Biochem 71: 577–583 (1998).CrossRefGoogle Scholar
  92. 14.
    N Wertheimer. Comment on 2mG Intensity Cutpoint. Bioelectromagnetics Newsletter, number 138: 4–5, 8–10, Sept/Oct 1997.Google Scholar
  93. 15.
    RP Liburdy, R Skolic, P Yaswen. ELF magnetic fields and melatonininduced growth inhibition of ER’ breast cancer cells. IN: Electricity and Magnetism in Biology and Medicine ( M Blank ed) San Francisco: San Francisco Press. 1993; 398–399.Google Scholar
  94. 16.
    CJ Murphy, MR Arkin, Y Jenkins, ND Ghatlia, SH Bossman, NJ Turro, JK Barton. Long-range photoinduced electron transfer through a DNA helix. Science 262: 1025–1029 (1993).CrossRefGoogle Scholar
  95. 17.
    M Blank, R Goodman. Stimulation of the Cellular Stress Response by Low Frequency Electromagnetic Fields: Possibility of Direct Interaction with DNA. IEEE Trans Plasma Sci 28: 168–172 (2000).CrossRefGoogle Scholar
  96. 18.
    H Lin, M Blank, R Goodman. field-responsive domain in the human HSP70 promoter. J Cell Biochem 75: 170–176 (1999).CrossRefGoogle Scholar
  97. 19.
    SO Kelley, JK Barton. Electron Transfer Between Bases in Double Helical DNA. Science 283: 375–381 (1999).CrossRefGoogle Scholar
  98. 20.
    E Meggers, ME Michel-Beyerle, B Giese. Sequence dependent long range hole transport in DNA. J Am Chem Soc 120: 12950–12955 (1998).CrossRefGoogle Scholar
  99. 21.
    C Wan, T Fiebig, SO Kelley, CR Treadway, JK Barton. Femtosecond dynamics of DNA-mediated electron transfer, Proc Nat Acad Sci USA 96: 6014–6019 (1999).CrossRefGoogle Scholar
  100. 22.
    S Carmody, XL Wu, H Lin, M Blank, H Skopicki, R Goodman. Cytoprotection by Electromagnetic Field-Induced hsp70: A Model for Clinical Application. J Cell Biochem 79: 453–459. (2000).CrossRefGoogle Scholar
  101. 23.
    IJ Benjamin, DR McMillan. Stress (heat shock) proteins. Molecular chaperones in cardiovascular biology and disease. Circ Res 83: 117–132 (1998).Google Scholar
  102. 24.
    H Lin, M Blank, R Goodman. Regulating Genes with Electromagnetic Response Elements J Cell Blochern 81:143–148 (2001).Google Scholar
  103. 25.
    CAL Bassett. Bioelectromagnetics and Medicine. Adv Chem 250: 261–275, (1995).Google Scholar
  104. 1.
    Abou-Samra AB, Jueppner H, Westerberg D, Potts JT Jr, Segre GV. Parathyroid hormone causes translocation of protein kinase-C from cytosol to membranes in rat osteosarcoma cells. Endocrinology. 1989 Mar; 124 (3): 1107–13.CrossRefGoogle Scholar
  105. 2.
    Adey WR. Biological effects of electromagnetic fields. J Cell Biochem. 1993 Apr; 51(4):410–6. Review.Google Scholar
  106. 3.
    Afzal, S.M.J. and Liburdy, R.P. (1998). Magnetic fields reduce the growth inhibitory effects of tamoxifen in a human brain tumor cell line. In Electricity and Magnetism in Biology and Medicine., Bersani, F. (ed), Vol. In press. Plenum Press: Bologna, Italy.Google Scholar
  107. 4.
    Ager, D.D. and Radul, J.A. (1992). Effect of 60 Hz magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae. Mutation Research, 283, 279–286.Google Scholar
  108. 5.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D., 1994: “Molecular Biology ofthe cell”. 3rd edition, New York, Garland Publishing, 1994.Google Scholar
  109. 6.
    Aldrich TE, Laborde D, Griffith J, Easterly C. 1992. A meta-analysis of the epidemiological evidence regarding human health risk associated with exposure to electromagnetic fields. Electro Magnetobiol 11: 127–143.Google Scholar
  110. 7.
    Antonopoulos, A., Yang, B., Stamm, A., Heller, W.-D. and Obe, G. (1995). Cytological effects of 50 hz electromagnetic fields on human lymphocytes in vitro. Mutation Research, 346, 151–157.Google Scholar
  111. 8.
    Balcer-Kubiczek, E.K., Zhang, X.-F., Harrison, G.H., McCready, W.A., Shi, Z.-M., Han, L.-H., Abraham, J.M., Ampey, L.L., III, Meltzer, S.J., Jacobs, M.C. and Davis, C.C. (1996). Rodent cell transformation and immediate early gene expression following 60 Hz magnetic field exposure. Environmental Health Perspectives, 104, 1188–1198.CrossRefGoogle Scholar
  112. 9.
    Bates MN. Extremely low frequency electromagnetic fields and cancer: the epidemiologic evidence. Environ Health Perspect. 1991 Nov;95:147–56. Review.Google Scholar
  113. 10.
    Becker, R.O. and Marino, A. (1982). Electromagnetism and Life. State University of New York Press, Albany.Google Scholar
  114. 11.
    Berczi: Gonadotropins and sex hormones. In Berczi (ed.) Pituitary Function and Immunity. Boca Raton, FL: CRC Press Inc, 1986.Google Scholar
  115. 12.
    Binninger, D.M. and Ungvichian, V. (1997). Effects of 60 Hz AC magnetic fields on gene expression following exposure over multiple cell generations using Saccharomyces cerevisiae. Bioeletrochemistry and Bioenergetics, 43, 83–89.CrossRefGoogle Scholar
  116. 13.
    Blackman, C.F., 1990: “ELF effects on calcium homeostasis”. In “Extremely low frequency electromagnetic fields: The question of cancer”, BW Wilson, RG Stevens, LE Anderson Eds, Publ. Battelle Press Columbus: 1990; 187–208.Google Scholar
  117. 14.
    Blackman, C.F. (1994). Effect of electrical and magnetic fields on the nervous system. The Vulnerable Brain and Environmental Risks, Vol. 3: Toxins in Air and Water, R. L. Isaacson, K. F. Jensen, eds., New York: Plenum Press, 341–355.Google Scholar
  118. 15.
    Blackman, C.F., Benane, S.G. and House, D.E. (1993a). Evidence for direct effect of magnetic fields on neurite outgrowth. FASEB Journal, 7, 801–806.Google Scholar
  119. 16.
    Blackman, C.F., Benane, S.G., House, D.E. and Pollock, M.M. (1993b). Action of 50 Hz magnetic fields on neurite outgrowth in pheochromocytoma cells. Bioelectromagnetics, 14, 273–286.CrossRefGoogle Scholar
  120. 17.
    Blackman, C.F., Blanchard, J.P., Benane, S.G. and House, D.E. (1994). Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics, 15, 239–260.CrossRefGoogle Scholar
  121. 18.
    Blackman, C.F., Blanchard, J.P., Benane, S.G., House, D.E. and Elder, J.A. (1998). Double blind test of magnetic field effects on neurite outgrowth. Bioelectromagnetics, in press.Google Scholar
  122. 19.
    Blask, D.E. (1993). Melatonin in oncology. In Melatonin: Biosynthesis, Physiological Effects, ‘A’ and Clinical Applications., Yu, H.S., Reiter, R. (ed). CRC: Boca Raton, FL.Google Scholar
  123. 20.
    Boseila A-W: Hormonal influence on blood and tissue basophilic granulocytes. Ann NY Acad Sci 1963; 103: 394–407.CrossRefGoogle Scholar
  124. 21.
    Brueve, R., Feldmane, G., Heisele, O., Volrate, A. and Balodis, V., 1998: “Several immune system functions of the residents from territories exposed to pulse radio-frequency radiation”. Presented to the Annual Conference of the ISEE and ISEA, Boston Massachusetts July 1998.Google Scholar
  125. 22.
    Cadossi R, Bersani F, Cossarizza A, Zucchini P, Emilia G, Torelli G, Franceschi C. Lymphocytes and low-frequency electromagnetic fields. FASEB J. 1992 Jun;6(9):2667–74. Review.Google Scholar
  126. 23.
    Chiabrera A, Cadossi R, Bersani F, et al. 1994. Electric and magnetic field effects on the immune system. In: Carpenter DO, Ayrapetyan S, editors. Biological effects of electric and magnetic fields. New York: Academic Press, pp 121–145.CrossRefGoogle Scholar
  127. 24.
    Cossarizza, A., Monti, D., Sola, P., Moschini, G., Cadossi, R., Bersani, F. and Franceschi, C. (1989). DNA repair after gamma irradiation in lymphocytes exposed to low-frequency pulsed electromagnetic fields. Radiation Research, 118, 161–168.CrossRefGoogle Scholar
  128. 25.
    Cossarizza, A., Angioni, S., Petraglia, F., Genazzani, A.R., Monti, D., Capri, M., Bersani, F., Cadossi, R. and Franceschi, C., 1993: “Exposure to low frequency pulsed electromagnetic fields increases interleukin-1 and interleukin-6 production by human peripheral blood mononuclear cells”. Exp Cell Res 204 (2): 385–387.CrossRefGoogle Scholar
  129. 26.
    Da Silva, J. A. and Hall, G. M. (1992) The effects of gender and sex hormones on outcome in rheumatoid arthritis. Baillieres Clinical Rheumatology 6: 196–219.Google Scholar
  130. 27.
    Da Silva, J. A. P., Colville-Nash, P., Spector, T. D., Scott, D. L. and Willoughby, D. A. (1993) Inflammation-induced cartilage degradation in female rodents. Arthritis and Rheumatism 36: 1007–1013.CrossRefGoogle Scholar
  131. 28.
    Dees, C., Garrett, S., Henley, D. and Travis, C. (1996). Effects of 60 Hz fields, estradiol and xenoestrogens on human breast cancer cells. Radiation Research, 146, 444–452.CrossRefGoogle Scholar
  132. 29.
    Desjobert, H., Hillion, J., Adolphe, M., Avenant, G. and Nafziger, J. (1995). Effects of 50 Hz magnetic fields on c-myc transcript levels in nonsynchronized and synchronized human cells. Bioelectromagnetics, 16, 277–283.CrossRefGoogle Scholar
  133. 30.
    Dibirdik, I., Kristupaitis, D., Kurosaki, T., Tuel-Ahlgren, L., Chu, A., Pond, D., Tuong, D., Luben, R. and Uckun, F. (1998). Stimulation of Src family protein-tyrosine kinases as a proximal and mandatory step for SYK kinase-dependent phospholipase C(gamma)2 activation in lymphoma B-cells exposed to low energy electromagnetic fields. The Journal of Biological Chemistry, 273, 4035–4039.CrossRefGoogle Scholar
  134. 31.
    Dmoch, A. and Moszczynski, P., 1998: “Levels of immunoglobulin and subpopulations of T lymphocytes and NK cells in men occupationally exposed to microwave radiation in frequencies of 6–12GHz”. Med Pr 49 (1): 45–49.Google Scholar
  135. 32.
    Farndale, R.W. and Murray, J.C. (1985). Pulsed electromagnetic fields promote collagen production in bone marrow fibroblasts via athermal mechanisms. Calcified Tissue International, 37, 178–182.CrossRefGoogle Scholar
  136. 33.
    Feychting, M., Schulgen, G., Olsen, J.H. and Ahlbom, A. (1995). Magnetic fields and childhood cancer-a pooled analysis of two Scandinavian studies. European Journal of Cancer, 31A, 2035–2039.CrossRefGoogle Scholar
  137. 34.
    Fitzsimmons, R.J., Farley, J., Adey, W.R. and Baylink, D.J. (1986). Embryonic bone matrix formation is increased after exposure to a low-amplitude capacitively coupled electric field, in vitro. Biochimica et Biophysica Acta, 882, 51–56.CrossRefGoogle Scholar
  138. 35.
    Fitzsimmons, R.J., Strong, D.D., Mohan, S. and Baylink, D.J. (1992). Low- amplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-ii release. Journal of Cellular Physiology, 150, 84–89.CrossRefGoogle Scholar
  139. 36.
    Folkman, J. and Moscona, A. (1978). Role of cell shape in growth control. Nature, 273, 345–349.CrossRefGoogle Scholar
  140. 37.
    Fujimori A, Cheng SL, Avioli LV, Civitelli R. Structure-function relationship of parathyroid hormone: activation of phospholipase-C, protein kinase-A and -C in osteosarcoma cells. Endocrinology. 1992 Jan; 130 (1): 29–36.CrossRefGoogle Scholar
  141. 38.
    Gey, K.F., 1993: “Prospects for the prevention of free radical disease, regarding cancer and cardiovascular disease”. British Medical Bulletin, 49 (3): 679–699.Google Scholar
  142. 39.
    Gold, S., Goodman, R. and Shirley-Henderson, A. (1994). Exposure of simian virus-40-transformed human cells to magnetic fields results in increased levels of T-antigen mRNA and protein. Bioelectromagnetics, 15, 329–336.CrossRefGoogle Scholar
  143. 40.
    Goldsmith, J.R., 1995: “Epidemiological Evidence of Radiofrequency Radiation (Microwave) Effects on Health in Military, Broadcasting, and Occupational Studies”. International Journal of Occupational and Environmental Health, 1, pp 47–57, 1995.Google Scholar
  144. 41.
    Goldsmith, J.R., 1996: “Epidemiological studies of radio-frequency radiation: current status and areas of concern”. The Science of the Total Environment, 180: 3–8.CrossRefGoogle Scholar
  145. 42.
    Goldsmith, J.R., 1997: “TV Broadcast Towers and Cancer: The end of innocence for Radiofrequency exposures”. Am. J. Industrial Medicine 32: 689–692.Google Scholar
  146. 43.
    Goldsmith, J.R., 1997a: “Epidemiologic evidence relevant to radar (microwave) effects”. Environmental Health Perspectives, 105 (Suppl 6): 1579–1587.MathSciNetCrossRefGoogle Scholar
  147. 44.
    Goodman, H. M. (1994) Basic Medical Endocrinology. 2nd ed. Raven Press, New York.Google Scholar
  148. 45.
    Goodman, E.M., Greenebaum, B. and Marron, M.T. (1994a). Magnetic fields after translation in Escherichia coli. Bioelectromagnetics, 15, 77–83.CrossRefGoogle Scholar
  149. 46.
    Goodman, R., Blank, M., Lin, H., Dai, R., Khorkova, O., Soo, L., Weisbrot, D. and Henderson, A. (1994b). Increased levels of hsp70 transcripts induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochemistry and Bioenergetics, 33, 115–120.CrossRefGoogle Scholar
  150. 47.
    Goodman, R., Bumann, J., Wei, L.-X. and Shirley-Henderson, A. (1992). Exposure of human cells to electromagnetic fields: effect of time and field strength on transcript levels. Electro-and Magnetobiology, 11, 19–28.Google Scholar
  151. 48.
    Goodman, R., Wei, L.-X., Xu, J.-C. and Henderson, A. (1989). Exposure of human cells to low-frequency electromagnetic fields results in quantitative changes in transcripts. Biochimica et Biophysica Acta, 1009, 216–220.Google Scholar
  152. 49.
    Graham, C., Cohen, H.D. and Cook, M.R. (1990). Immunological and biochemical effects of 60 Hz electric and magnetic fields in humans. Midwest Research Institute: Kansas City, MO.Google Scholar
  153. 50.
    Greene, J.J., Pearson, S.L., Skowronski, W.J., Nardone, R.M., Mullins, J.M. and Krause, D. (1993). Gene-specific modulation of RNA synthesis and degradation by extremely low frequency electromagnetic fields. Cellular and Molecular Biology, 39, 261–268.Google Scholar
  154. 51.
    Greenebaum, B., Sutton, C.H., Subramanian Vadula, M., Battocletti, J.H., Swiontek, T., DeKeyser, J. and Sisken, B.F. (1996). Effects of pulsed magnetic fields on neurite outgrowth from chick embryo dorsal root ganglia. Bioelectromagnetics, 17, 293–302.CrossRefGoogle Scholar
  155. 52.
    Griffin, G.D., Dowray, V., Miller, E.J., Williams, M.W. and Gailey, P.C. (1998). Effects of magnetic field exposure on gap juctional communication in clone 9 cells treated with chloral hydrate: a replication study. Bioelectromagnetics, in press.Google Scholar
  156. 53.
    Harland, J.D., Levine, G.A. and Liburdy, R.P. (1998). Differential inhibition of tamoxifen’s oncostatic functions in a human breast cancer cell line by a 12 mG (1.2 pt) magnetic field. In Electricity and Magnetism in Biology and Medicine, Bersani, F. (ed). Plenum Press: Bologna, Italy.Google Scholar
  157. 54.
    Harland, J.D. and Liburdy, R.P. (1997). Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line. Bioelectromagnetics, 18, 555–562.CrossRefGoogle Scholar
  158. 55.
    Harrison, G.H., Balcer-Kubiczek, E.K., Shi, Z., Zhang, Y., McCready, W.A. and Davis, C.C. (1997). Kinetics of gene expression following exposure to 60 Hz, 2 mT magnetic fields in three human cell lines. Bioelectrochemistry and Bioenergetics, 43, 1–6.CrossRefGoogle Scholar
  159. 56.
    Hauf, R. (1982). Electric and magnetic fields at power frequencies with particular reference to 50 and 60 Hz. In Nonionizing Radiation Protection, Suess, M. (ed). World Health Organization: Copenhagen.Google Scholar
  160. 57.
    Haußler, M., Thun-Battersby, S., Mevissen, M. and Loscher, W. (1999). Exposure of Rats to a 50-Hz, 100 mTesla magnetic Field Does Not Affect the Ex Vivo Production of Interleukins by Activated T or B Lymphocytes. Bioelectromagnetics 20: 295–305 (1999)Google Scholar
  161. 58.
    Hefeneider, S.H., McCoy, S., Hausman, F.A., Christensen, H.L., Takahashi, D., Perrin, N., Bracken, T.D., Shin, K.Y. and Hall, A.S. (2001). Long-Term Effects of 60-Hz Electric vs.Magnetic Fields on IL-land IL-2 Activity in Sheep. Bioelectromagnetics 22: 170–177.CrossRefGoogle Scholar
  162. 59.
    Hiraoka, M., Miyakoshi, J., Li, Y.P., Shung, B., Takebe, H. and Abe, M. (1992). Induction of c-fos gene expression by exposure to a static magnetic field in HELAS3 cells. Cancer Research, 52, 6522–6524.Google Scholar
  163. 60.
    Holian, O., Astumian, R.D., Lee, R.C., Reyes, H.M., Attar, B.M. and Walter, R.J. (1996). Protein kinase C activity is altered in HL60 cells exposed to 60 Hz AC electric fields. Bioelectromagnetics, 17, 504–509.CrossRefGoogle Scholar
  164. 61.
    Horton, P. (1993). Stimlution of neuronal differentiation proteins in PC12 cells by combined AC/DC magnetic fields. In Electricity and Magnetism in Biology and Medicine., Blank, M. (ed) pp. 619–622. San Francisco Press, Inc.: San Francisco, CA.Google Scholar
  165. 62.
    House, R.V., Ratajczak, H.V., Gauger, J.R., Johnson, T.R., Thomas, P.T. and McCormick, D.L. (1996). Immune function and host defense in rodents exposed to 60 Hz magnetic fields. Fundamental Applied Toxicology, 34, 228–239.CrossRefGoogle Scholar
  166. 63.
    Ismael, S., Callera, F., Garcia, A., Baffa, O. and Falcao, R. (1998). Increased dexamethasone-induced apoptosis of thymocytes from mice exposed to longterm extremely low frequency magnetic fields. Bioelectromagnetics, 19, 131–135.CrossRefGoogle Scholar
  167. 64.
    Jin, M., Lin, H., Han, L., Opler, M., Maurer, S., Blank, M. and Goodman, R. (1997). Biological and technical variables in myc expression in KL60 cells exposed to 60 Hz electromagnetic fields. Bioelectrochemistry and Bioenergetics, 44, 111–120.CrossRefGoogle Scholar
  168. 65.
    Karabakhtsian, R., Broude, N., Shalts, N., Kochlatyi, S., Goodman, R. and Henderson, A.S. (1994). Calcium is necessary in the cell response to EM fields. FEBS Letters, 349, 1–6.CrossRefGoogle Scholar
  169. 66.
    Katsir, G., Baram, S. and Parola, A. (1998). Effect of sinusoidally varying magnetic fields on cell proliferation and adenosine deaminase specific activity. Bioelectromagnetics, 19, 46–52.CrossRefGoogle Scholar
  170. 67.
    Kikkawa, U., Kishimoto, A. and Nishizuka, Y. (1989). The protein kinase C family: heterogeneity and its implications. Annual Review of Biochemistry, 58, 31–44.CrossRefGoogle Scholar
  171. 68.
    Koana, T., Okada, M.O., Ikehata, M. and Nakagawa, M. (1997). Increase in the mitotic recombination frequency in Drosophila melanogaster by magnetic field exposure and its suppression by vitamin E supplement. Mutation Research, 373, 55–60.CrossRefGoogle Scholar
  172. 69.
    Kristupaitis, D., Dibirdik, l., Vassilev, A., Mahajan, S., Kurosaki, T., Chu, A., Tuel- Ahlgren, L., Tuong, D., Pond, D., Luben, R. and Uckun, F.M. (1998). Electromagnetic field-induced stimulation of Bruton’s tyrosine kinase. Journal of Biological Chemistry, 273, 12397–12401.CrossRefGoogle Scholar
  173. 70.
    Kuby J. 1992. Immunology. New York: W.H. Freeman.Lee JM, Stormshak F, Thompson J, et al. 1997. Studies on melatonin, cortisol, progesterone, and interleukin-1 in sheep exposed to EMF from a 500-kV transmission line. In: Stevens RG, Wilson BW, Anderson LE, editors. The melatonin hypothesis-Breast cancer and use of electric power. Columbus, OH: Battelle Press, pp 391427.Google Scholar
  174. 71.
    Kula, B. (1996). A study of magnetic field effects on fibroblast cultures. Part 3. The evaluation of the effects of static and extremely low frequency ( ELF) magnetic fields on glycosaminoglycan metabolism in fibroblasts, cell coats and culture medium. Bioelectrochemistry and Bioenergetics, 39, 31–37.Google Scholar
  175. 72.
    Lacy-Hulbert, A., Metcalfe, J.C. and Hesketh, R. (1998). Biological responses to electromagnetic fields. FASEB Journal, 12, 395–420.Google Scholar
  176. 73.
    Lacy-Hulbert, A., Wilkins, R.C., Hesketh, T.R. and Metcalfe, J.C. (1995). No effect of 60 Hz electromagnetic fields on myc or beta-actin expression in human leukemic cells. Radiation Research, 144, 9–17.CrossRefGoogle Scholar
  177. 74.
    Lagroye, I. and Poncy, J.L. (1997). The effect of 50 Hz electromagnetic fields on the formation of micronuclei in rodent cell lines exposed to gamma radiation. International Journal of Radiation Biology, 72, 249–254.CrossRefGoogle Scholar
  178. 75.
    Lagroye, I. and Poncy, J.L. (1998). Influence of 50 Hz magnetic fields and ionizing radiation on c-jun and c-fos oncoproteins. Bioelectromagnetics, 19, 112–116.CrossRefGoogle Scholar
  179. 76.
    Lahita, R. G. (1992) The effects of sex hormones on the immune system in pregnancy. American Journal Of Reproductive Immunology 28: 136–137.Google Scholar
  180. 77.
    Lee, J.H. and McLoed, K.J. (1998). Morphologic responses od osteoblast-like cells in monolayer culture to ELF electromagnetic fields. Bioelectromagnetics, in press.Google Scholar
  181. 78.
    Libertin, C.R., Panozzo, J., Groh, K.R., Chang-Liu, C.-M., Schreck, S. and Woloschak, G.E. (1994). Effects of gamma rays, ultraviolet radiation, sunlight, microwaves and electromagnetic fields on gene expression mediated by human immunodeficiency virus promoter. Radiation Research, 140, 91–96.CrossRefGoogle Scholar
  182. 79.
    Liburdy, R.P., Callahan, D.E., Harland, J., Dunham, E., Sloma, T.R. and Yaswen, P. (1993a). Experimental evidence for 60 Hz magnetic fields operating through the signal transduction cascade effects on calcium influx and c-myc messenger-RNA induction. FEBS Letters, 334, 301–308.CrossRefGoogle Scholar
  183. 80.
    Liburdy, R.P. and Levine, G.A. (1998). Magnetic fields and formation of organized structures in normal human mammary cells. In BEMS Annual Meeting.Google Scholar
  184. 81.
    Liburdy, R.P., Sloma, T.R., Sokolic, R. and Yaswen, P. (1993b). ELF magnetic fields, breast cancer, and melatonin: 60 Hz fields block melatonin’s oncostatic action on ER+ breast cancer cell proliferation. Journal of Pineal Research, 14, 89–97.CrossRefGoogle Scholar
  185. 82.
    Lin, H., Goodman, R. and Henderson, A.S. (1994). Specific region of the c-myc promoter is responsive to electric and magnetic fields. Journal of Cellular Biochemistry, 54, 281–288.CrossRefGoogle Scholar
  186. 83.
    Lin, H., Opler, M., Head, M., Blank, M. and Goodman, R. (1997). Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells. Journal of Cellular Physiology, 66, 482–488.Google Scholar
  187. 84.
    Lindstrom E, Lindstrom P, Berglund A, Lundgren E, Mild KH. Intracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics. 1995; 16 (1): 41–7.CrossRefGoogle Scholar
  188. 85.
    Liu, H., Abbott, J. and Bee, J.A. (1996). Pulsed electromagnetic fields influence hyaline cartilage extracellular matrix compsition without affecting molecular structure. Osteoarthritis and Cartilage, 4, 63–76.CrossRefGoogle Scholar
  189. 86.
    Loscher W, Mevissen M. Animal studies on the role of 50/60-Hertz magnetic fields in carcinogenesis. Life Sci. 1994;54(21):1531–43. Review.Google Scholar
  190. 87.
    Loscher W, Liburdy RP. Animal and cellular studies on carcinogenic effects of low frequency (50/60-Hz) magnetic fields. Mutat Res. 1998 Apr;410(2):185–220. Review. No abstract available.Google Scholar
  191. 88.
    Luben, R.A. (1993). Effects of low-energy electromagnetic fields (EMF) on signal transduction by G Protein-linked receptors. Electricity and Magnetism in Biology and Medicine. M. Blank, ed., San Francisco Press, Inc., 57–62.Google Scholar
  192. 89.
    Luben, R.A. (1994). In vitro systems for the study of electromagnetic effects on bone and connective tissue. Biological Effects of Electric and Magnetic Fields. Volume II: Beneficial and Harmful Effects. D. O. Carpenter, S. Ayrapetyan, eds., San Diego: Academic Press, 103–119.CrossRefGoogle Scholar
  193. 90.
    Luster, M., Germolec, D. and Rosenthal, G. (1990). lmmunotoxicology: review of current status. Annuls of Allergy, 64, 427–432.Google Scholar
  194. 91.
    Luster, M., Pait, D., Portier, C., Rosenthal, G., Germolec, D., Comment, C., Munson, A., White, K. and Pollock, P. (1992a). Qualitative and quantitative experimental models to aid in risk assessment for immunotoxicology. Toxicology Letters, 64 /65, 71–78.CrossRefGoogle Scholar
  195. 92.
    Luster, M., Portier, C., Pait, D. and Germolec, D. (1994). Use of animal studies in risk assessment for immunotoxicology. Toxicology, 92, 229–243.CrossRefGoogle Scholar
  196. 93.
    Luster, M., Portier, C., Pait, D., Rosenthal, G., Germolec, D., Corsini, E., Blaylock, B., Pollock, P., Kouchi, Y., Craig, W., White, K., Munson, A. and Comment, C. (1993). Risk assessment in immunotoxicity. Fundamental and Applied Toxicology, 21, 71–82.CrossRefGoogle Scholar
  197. 94.
    Luster, M., Portier, C., Pait, D., White, K., Gennings, C., Munson, A. and Rosenthal, G. (1992b). Risk assessment in immunotoxicology. Fundamental and Applied Toxicology, 18, 200–210.CrossRefGoogle Scholar
  198. 95.
    Lyle DB, Fuchs TA, Casamento JP, Davis CC, Swicord ML. Intracellular calcium signaling by Jurkat T-lymphocytes exposed to a 60 Hz magnetic field.Google Scholar
  199. 538.
    Biological Effects of EMFsGoogle Scholar
  200. Bioelectromagnetics. 1997;18(6):439–45.Google Scholar
  201. 96.
    MacGinitie, L.A., Gluzband, Y.A. and Grodzinsky, A.J. (1994). Electric field stimulation can increase protein systhesis in articular cartilage explants. Journal of Orthopaedic Research, 12, 151–160.CrossRefGoogle Scholar
  202. 97.
    Marino, A.A., Wolcott, R., Chervenak, R., Jourd’heuil, F., Nilsen, E. and Frilot, C. (2001). Nonlinear Dynamical Law Governs Magnetic Field Induced Changes in Lymphoid Phenotype. Bioelectromagnetics 22: 529–546.CrossRefGoogle Scholar
  203. 98.
    McCann, J., Dietrich, F. and Rafferty, C. (1998). The genotoxic potential of electric and magnetic fields-an update. Mutation Research, 7481.Google Scholar
  204. 99.
    McCann, J., Dietrich, F., Rafferty, C. and Martin, A.O. (1993). A critical review of the genotoxic potential of electric and magnetic fields. Mutation Research, 297, 61–95.CrossRefGoogle Scholar
  205. 100.
    McLeod, K.J. and Guilak, F. (1993). Differential effects of normal and tangenital ELF electric field exposure on bone cells (ROS 17/2.8) growing in monolayer. In BEMS pp. 99–100: Los Angeles, CA.Google Scholar
  206. 101.
    McLeod, K.J., Lee, R.C. and Ehrlich, H.P. (1987c). Frequency dependence of electric field modulation of fibroblast protein synthesis. Science, 236, 1465–1469.CrossRefGoogle Scholar
  207. 102.
    McLeod, K.J. and Rubin, C.T. (1998). In vivo sensitivity of bone tissue to electromagnetic field exposure, in press.Google Scholar
  208. 103.
    Meltz, M.L., 1995: “Biological effects versus health effects: an investigation of the genotoxicity of microwave radiation”. In: Radiofrequency Radiation Standards, NATO ASI Series (B.J. Klauebberg Ed). New York, Plenum Press, 1995: 235241.Google Scholar
  209. 104.
    Mevissen, M., Morris, J., House, R. EMF Science Review Symposium, www.niehs.nih.gov/emfrapid/html/symposium3/Immunotox.html Google Scholar
  210. 105.
    Mevissen, M., Haussier, M., Szamel, M., Emmendorffer, A., Thun-Battersby, S. and Löscher, W. (1998b). Complex effects of long-term 50 Hz magnetic field exposure in vivo on immune functions in female Sprague-Dawley rats depend on duration of exposure. Bioelectromagnetics, 19, 259–270.CrossRefGoogle Scholar
  211. 106.
    Mevissen, M., Lerch!, A., Szamel, M. and Löscher, W. (1996b). Exposure of DMBAtreated female rats in a 50 Hz, 50 microtesla magnetic field: effects on mammary tumor growth, melatonin levels and T-lymphocyte activation. Carcinogenesis, 17, 903–910.CrossRefGoogle Scholar
  212. 107.
    Miller, S.C. and Furniss, M.J. (1998). No effect of low energy 60 hz electromagnetic field on inositol-1,4,5-trisphosphate level in the DT-40 lymphoma B cell model system. Journal of Biological Chemistry, in press.Google Scholar
  213. 108.
    Miller, S.C. and Moulder, J.E. (1998). Publication of negative results is an essential part of the scientific process. Radiation Research, in press.Google Scholar
  214. 109.
    Miyakashi, J., Koji, Y., Wakasa, T. and Takebe, H. (1998). Long-term exposures to magnetic field (5mT at 60 Hz) do not increase mutations, but slightly enhance Xray-induced mutations. Radiation Research, in press.Google Scholar
  215. 5.
    Effects of Electromagnetic Fields on the Immune System 539Google Scholar
  216. 110.
    Miyakoshi, J., Mori, Y., Yamagishi, N., Yagi, K. andTakebe, H. (1998). Suppression of high-density magnetic field (400 mT at 50 Hz)-induced mutations by wild-type p53 expression in human osteosarcoma cells. Biochemical and Biophysical Research Communications, 243, 579–584.CrossRefGoogle Scholar
  217. 111.
    Miyakoshi, J., Ohtsu, S., Shibata, T. and Takebe, H. (1996). Exposure to magnetic field (5 mT at 60 Hz) does not affect cell growth and c-myc gene expression. Journal of Radiation Research (CHIBA), 37, 185–191.CrossRefGoogle Scholar
  218. 112.
    Monti, M.G., Pernecco, L., Moruzzi, M.S., Battini, R., Zaiol, P. and Barbiroli, B. (1991). Effect of ELF pulsed electromagnetic fields on protein kinase C activation process in HL-60 leukemia cells. Journal of Bioelectricity, 10, 119–130.Google Scholar
  219. 113.
    Morandi, M.A., Pak, C.M., Caren, R.P. and Caren, L.D. (1996). Lack of an EMFinduced genotoxic effect in the Ames assay. Life Science, 59, 263–271.CrossRefGoogle Scholar
  220. 114.
    Moszczynski, P., Lisiewicz, J., Dmoch, A., Zabinski, Z., Bergier, L., Rucinska, M. and Sasiadek, U., 1999: “The effect of various occupational exposures to microwave radiation on the concentrations of immunoglobulins and T lymphocyte subsets”. Wiad Lek 52 (1–2): 30–34.Google Scholar
  221. 115.
    Murray, J.C. and Ferndale, R.W. (1985). Modulation of collagen production in cultured fibroblasts by a low-frequency pulsed magnetic field. Biochimica et Biophysica Acta, 838, 98–105.CrossRefGoogle Scholar
  222. 116.
    Murthy, K.K., Rogers, W.R. and Smith, H.D. (1995). Initial studies on the effects of combined 60 Hz electric and magnetic field exposure on the immune system of nonhuman primates. Bioelectromagnetics, 3, 93–102.CrossRefGoogle Scholar
  223. 117.
    Nafziger, J., Desjobert, H., Benamar, B., Guillosson, J.J. and Adolphe, M. (1993). DNA mutations and 50 Hz electromagnetic fields. Bioelectrochemistry and Bioenergetics, 30, 133–141.CrossRefGoogle Scholar
  224. 118.
    Nakamura, H., Seto,T., Nagase, H., Yoshida, M., Dan, S. and Ogina, K., 1997: “Effects of exposure to microwaves on cellular immunity and placental steroids in pregnant rats. Occup Environ Med 54(9):676–680.Google Scholar
  225. 119.
    NTP. Toxicology and Carcinogenesis Studies of 60-Hz Magnetic Fields in F344/N Rats and B6C3F1 Mice (Whole Body Exposure Studies). Technical Report Series No. 488 NIH Publication No. 98–3978. Research Triangle Park: U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Toxicology Program, 1998.Google Scholar
  226. 120.
    Ohtsu, S., Miyakoshi, J., Tsukada, T., Hiraoka, M., Abe, M. and Takebe, H. (1995). Enhancement of beta-galactosidase gene expression in rat pheochromocytoma cells by exposure to extremely low frequency magnetic fields. Biochemical and Biophysical Research Communications, 212, 104–109.CrossRefGoogle Scholar
  227. 121.
    Otter, W. D. Tumor cells do not arise frequently. Cancer Immunol Immunother 19: 159–162, 1985.CrossRefGoogle Scholar
  228. 122.
    Owen, R.D. (1998). MYC mRNA adundance is unchanged in subcultures of HL60 cells exposed to power-line frequency magnetic fields. Radiation Research, 150.Google Scholar
  229. 540.
    Biological Effects of EMFsGoogle Scholar
  230. 123.
    Pakhomova, O.N., Belt, M.L., Mathur, S.P., Lee, J.C. and Akyel, Y. (1998). Ultra-wide band electromagnetic radiation and mutagenesis in yeast. Bioelectromagnetics, 19, 128–130.CrossRefGoogle Scholar
  231. 124.
    Parker, J.E. and Winters, W. (1992). Expression of gene-specific RNA in cultured cells exposed to rotating 60 Hz magnetic fields. Biochemistry and Cell Biology, 70, 237–241.CrossRefGoogle Scholar
  232. 125.
    Pattengale PK, Taylor CR. Experimental models of lymphoproliferative disease. The mouse as a model for human non-Hodgkin’s lymphomas and related leukemias. Am J Pathol. 1983 Nov; 113 (2): 237–65.Google Scholar
  233. 126.
    Penn, 1. (1989) Why do immunosuppressed patients develop cancer? Crit Rev Oncogen 1: 27–52.Google Scholar
  234. 127.
    Phillips, J.L., Haggren, W., Thomas, W.J., Ishida-Jones, T. andAdey, W.R. (1992). Magnetic field-induced changes in specific gene transcription. Biochimica et Biophysica Acta, 1132, 140–144.Google Scholar
  235. 128.
    Phillips, J.L., Haggren, W., Thomas, W.J., Ishida-Jones, T. and Adey, W.R. (1993). Effect of 72 Hz pulsed magnetic field exposure on ras p21 expression in CCRFCEM cells. Cancer Biochemistry Biophysics, 13, 187–193.Google Scholar
  236. 129.
    Phillips, J.L. and McChesney, L. (1991). Effect of 72 Hz pulsed magnetic field exposure on macromolecular synthesis in CCRF-CEM cells. Cancer Biochemistry Biophysics, 12, 1–7.Google Scholar
  237. 130.
    Polk, C. (1992b). Dosimetric extrapolations of extremely-low-frequency electric and magnetic fields across biological systems. Bioelectromagnetics, 1, 205–208.CrossRefGoogle Scholar
  238. 131.
    Polk, C. (1992c). Dosimetry of extremely-low-frequency magnetic fields. Bioelectromagnetics, 13, 209–235.CrossRefGoogle Scholar
  239. 132.
    Polk, C. (1995). Bioelectromagnetic Dosimetry. In Electromagnetic Fields Biological Interactions and Mechanisms, Blank, M. (ed) pp. 57–78. American Chemical Society: Washington, DC.CrossRefGoogle Scholar
  240. 133.
    Price, J.A. and Strattan, R.D. (1998). Analysis of the Effect of a 60 Hz AC Field on Histamine Release by Rat Peritoneal Mast Cells. Bioelectromagnetics 19: 192–198.CrossRefGoogle Scholar
  241. 134.
    Quan, R., Yang, C., Rubinstein, S., Lewiston, N.J., Sunshine, P., Stevenson, D.K. and Kerner, J.A., 1992: “Effects of microwave radiation on anti-infective factors in human milk”. Pediatrics 89 (4): 667–669.Google Scholar
  242. 135.
    Radon, K., Parera, D., Rose, M., Jung, D. and Vollrath, L. (2001). No Effects of Pulsed Radio Frequency Electromagnetic Fields on Melatonin,Cortisol, and Selected Markers of the Immune Systemin Man. Bioelectromagnetics 22: 280287.Google Scholar
  243. 136.
    Ramoni C, Dupuis ML, Vecchia P, Polichetti A, Petrini C, Bersani F, Capri M, Cossarizza A, Franceschi C, Grandolfo M. Human natural killer cytotoxic activity is not affected by in vitro exposure to 50-Hz sinusoidal magnetic fields. Int J Radiat Biol. 1995 Dec; 68 (6): 693–705.CrossRefGoogle Scholar
  244. 5.
    Effects of Electromagnetic Fields on the Immune System 541Google Scholar
  245. 137.
    Rao, S. and Henderson, A.S. (1996). Regulation of c-fos is affected by electromagnetic fields. Journal of Cellular Physiology, 63, 358–365.Google Scholar
  246. 138.
    Reisert, I. and Pilgrim, C. (1991) Sexual differentiation of monoaminergic neurons-genetic or epigenetic? Trends in Neuroscience 14: 468–473.CrossRefGoogle Scholar
  247. 139.
    Reiter, R.J., 1994: “Melatonin suppression by static and extremely low frequency electromagnetic fields: relationship to the reported increased incidence of cancer”. Reviews on Environmental Health. 10 (3–4): 171–86, 1994.Google Scholar
  248. 140.
    Reiter, R.J. and Robinson, J, 1995: “Melatonin: Your body’s natural wonder drug”. Publ. Bantam Books, New York.Google Scholar
  249. 141.
    Rodemann, H.P., Bayreuther, K. and Pfleiderer, G. (1989). The differentiation of normal and transformed human fibroblasts in vitro is influenced by electromagnetic fields. Experimental Cell Research, 182, 610–621.CrossRefGoogle Scholar
  250. 142.
    Rosen, L.A., Barber, I. and Lyle D.B., 1998: “A 0.5 G, 60 HZ magnetic field suppresses melatonin production in pinealocytes”. Bioelectromagnetics 19: 123127.Google Scholar
  251. 143.
    Rosenthal, M. and Obe, G. (1989). Effects of 50-hertz electromagnetic fields on proliferation and on chromosomal alterations in human peripheral lymphocytes untreated or pretreated with chemical mutagens. Mutation Research, 210, 210 (2) 329–335.CrossRefGoogle Scholar
  252. 144.
    Rubin, J., McLeod, K.J., Titus, L., Nanes, M.S., Catherwood, B.D. and Rubin, C.T. (1996). Formation of osteoblast-like cells is suppressed by low frequency, low intensity electric fields. Journal of Orthopaedic Research, 14, 7–15.CrossRefGoogle Scholar
  253. 145.
    Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, van Zwieten MJ. Comparative study of human and rat mammary tumorigenesis. Lab Invest. 1990 Mar;62(3):244–78. Review. No abstract available.Google Scholar
  254. 146.
    Saffer, J.D. and Thurston, S.J. (1995). Short exposure to 60 Hz magnetic fields do not alter myc expression in H160 or Daudi cells. Radiation Research, 144, 18–25.CrossRefGoogle Scholar
  255. 147.
    Savitz DA, Ahlbom A. Power lines, viruses, and childhood leukemia. Cancer Causes Control. 1994 Nov;5(6):579–80. No abstract available.Google Scholar
  256. 148.
    Scarfi, M.R., Bersani, F., Cossarizza, A., Monti, D., Castellani, G., Cadossi, R., Franceschetti, G. and Franceschi, C. (1991). Spontaneous and mitomycin-Cinduced micronuclei in human lymphocytes exposed to extremely low frequency pulsed magnetic fields. Biochemical and Biophysical Research Communication, 176, 194–200.CrossRefGoogle Scholar
  257. 149.
    Schimmelpfeng, J. and Dertinger, H. (1993). The action of 50 Hz magnetic and electric fields upon cell proliferation and cyclic AMP content of cultured mammalian cells. Bioelectrochemistry and Bioenergetics, 30, 143–150.CrossRefGoogle Scholar
  258. 150.
    Schimmelpfeng, J. and Dertinger, H. (1997). Action of a 50 Hz magnetic field on proliferation of cells in culture. Bioelectromagnetics, 18, 177–183.CrossRefGoogle Scholar
  259. 151.
    Schimmelpfeng, J., Stein, J.-C. and Dertinger, H. (1995). Action of 50 Hz magnetic fields on cyclic AMP and intercellular communication in monolayers and spheroids of mammalian cells. Bioelectromagnetics, 16, 381–386.CrossRefGoogle Scholar
  260. 152.
    Selmaoui, B., Bogdan, A., Auzeby, A., Lambrozo, J. and Touitou, Y. (1996a). Acute exposure to 50 hz magnetic field does not affect hematologic or immunologic functions in healthy young men: a circadian study. Bioelectromagnetics, 17, 364372.Google Scholar
  261. 153.
    Shumaker, D.K., Sklar, M.D., Prochownik, E.V. and Varani, J. (1994). Increased cell-substrate adhesion accompanies conditional reversion to the normal pheotype in ras-oncogene-transformed NIH-3T3 cells. Experimental Cell Research, 214, 440–446.CrossRefGoogle Scholar
  262. 154.
    Simko, M., Kriehuber, R., Weiss, D.G. and Luben, R.A. (1998). Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics, 19, 85–91.CrossRefGoogle Scholar
  263. 155.
    Smith, O.M., Goodman, E.M., Greenebaum, B. and Tipnis, P. (1991a). An increase in the negative surface charge of U937 cells exposed to a pulsed magnetic field. Bioelectromagnetics, 12, 197–202.CrossRefGoogle Scholar
  264. 156.
    Smith 0 (1996): Cells, stress and EMFs. Nature Med 2: 23–24.CrossRefGoogle Scholar
  265. 157.
    Spadinger, I., Agnew, D. and Palcic, B. (1995). 3T3 cell motality and morphology before, during, and after exposure to extremely-low-frequency magnetic fields. Bioelectromagnetics, 16, 178–187.Google Scholar
  266. 158.
    Stark, K.D.C., Krebs, T., Altpeter, E., Manz, B., Griol, C. and Abelin, T., 1997: “Absence of chronic effect of exposure to short-wave radio broadcast signal on salivary melatonin concentrations in dairy cattle”. J Pineal Research 22: 171–176.CrossRefGoogle Scholar
  267. 159.
    Steinberg, M.S. and Foty, R.A. (1997). Intercellular adhesions as determinants of tissue assembly and malignant invasion. Journal of Cellular Physiology, 173, 135–139.CrossRefGoogle Scholar
  268. 160.
    Stevens, R.G. (1987). Electic power use and breast cancer: A hypothesis. American Journal of Epidemiology, 125, 556–561.Google Scholar
  269. 161.
    Strausser H, et al.: Alterations in immune function with age, sex hormones and stress. In Cooper EK (ed.) Stress, Immunity and Aging: Immunology Series 24. New York: Marcel Dekker Inc, 1984; 157–171.Google Scholar
  270. 162.
    Suri, A., deBoer, J., Kusser, W. and Glickman, B.W. (1996). A 3 millitesla 60 Hz magnetic field is neither mutagenic nor co-mutagenic in the presence of menadione and MNU in a transgenic rat cell line. Mutation Research, 372, 23–31.CrossRefGoogle Scholar
  271. 163.
    Szabo, I., Rojavin, M.A., Rogers, T.J. and Ziskin, M.C. (2001). Reactions of Keratinocytes to InVitroMillimeter Wave Exposure. Bioelectromagnetics 22: 358364.Google Scholar
  272. 164.
    Szekeres-Bartho, J. (1992) Immunosuppression by Progesterone in Pregnancy. CRC Press, Boca Raton.Google Scholar
  273. 165.
    Szmigielski, S., 1991: International Science Meeting, Beograd, 8–11 April 1991, p 34.Google Scholar
  274. 166.
    Szmigielski, S., 1996: “Cancer morbidity in subjects occupationally exposed to high frequency (radiofrequency and microwave) electromagnetic radiation”. Science of the Total Environment, Vol 180, 1996, pp 9–17.CrossRefGoogle Scholar
  275. 5.
    Effects of Electromagnetic Fields on the Immune System 543Google Scholar
  276. 167.
    Szmigielski S. 1993. Electromagnetic fields and neoplasms with special reference to extremely low frequencies. Bioelectrochem Bioenerg 30: 1–3.MathSciNetCrossRefGoogle Scholar
  277. 168.
    Tofani, S., Ferrara, A., Anglesio, L. and Gilli, G. (1995). Evidence for genotoxic effects of resonant ELF magnetic fields. Bioelectrochemistry and Bioenergetics, 36, 9–13.CrossRefGoogle Scholar
  278. 169.
    Tofani, S., Barone, D., Cintorino, M., Santi, M.M., Ferrara, A., Orlassino, R., Ossola, P., Peroglio, F., Rolfo, K. and Ronchetto, F. (2001). Static and ELFMagnetic Fields Induce Tumor Growth Inhibition and Apoptosis. Bioelectromagnetics 22: 419–428.CrossRefGoogle Scholar
  279. 170.
    Tonascia, J.A. and Tonascia, S., 1969: “Hematological Study: progress report on SCC 31732”, George Washington University, Department of Obstectrics and Gynecology, February 4, 1969.Google Scholar
  280. 171.
    Tremblay, L., Houde, M., Mercier, G., Gagnon, J. and Mandeville, R. (1996). Differential modulation of natural and adaptive immunity in fischer rats exposed for 6 weeks to 60 Hz linear sinusoidal continuous-wave magnetic fields. Bioelectromagnetics, 17, 373–383.CrossRefGoogle Scholar
  281. 172.
    Ubeda, A., Trillo, M.A., House, D.E. and Blackman, C.F. (1995). A 50 Hz magnetic field blocks melatonin-induced enhancement of junctional transfer in normal C3H/10T1/2 Cells. Carcinogenesis, 16, 2945–2949.CrossRefGoogle Scholar
  282. 173.
    Uckun, F.M., Kurosaki, T., Jin, J., Jun, X., Morgan, A., Takata, M., Bolen, J. and Luben, R. (1995). Exposure of B-lineage lymphoid cells to low energy electromagnetic fields stimulates lyn kinase. Journal of Biological Chemistry, 270, 27666–27670.CrossRefGoogle Scholar
  283. 174.
    Urban JL, Schreiber H. Host-tumor interactions in immunosurveillance against cancer. Prog Exp Tumor Res. 1988; 32:17–68. Review. No abstract available.Google Scholar
  284. 175.
    Van Goozen, S.H.M., Cohen-Kettenis, P.T., Gooren, L.J.G., Fruda, N.H., and Van De Poll, N.E. (1995) Gender differences in behaviour: activating effects of cross-sex hormones. Psychoneuroendocrinology 4: 343–363.CrossRefGoogle Scholar
  285. 176.
    Vander Molen, M. (1997). The integrative role of gap juctional intercellular in bone remodeling: an osteoblast model. In Physiology and Biophysics, State University of New York at Stony Brook pp. 1–159.Google Scholar
  286. 177.
    Walleczek, J., 1992: “Electromagnetic field effects on cells of the immune system: the role of calcium signaling”. FASEB J., 6: 3176–3185.Google Scholar
  287. 178.
    Walleczek, J., Shiu, E. and Hahn, G.M. (1998). Increase in radiation-induced HPRT gene mutation frequency from nonthermal exposure to non-ionizing 60 Hz electromagnetic fields. Radiation Research, In press, 1–30.Google Scholar
  288. 179.
    Walter, R.J., Shtil, A.A., Roninson, I.B. and Holian, O. (1997). 60 Hz electric fields inhibit protein kinase C activity and multidrug resistance gene ( MDRI) up-regulation. Radiation Research, 147, 369–375.CrossRefGoogle Scholar
  289. 180.
    Weisbrot, D.R., Khorkova, O., Lin, H., Henderson, A.S. and Goodman, R. (1993). The effect of low frequency electric and magnetic fields on gene expression in Saccharomyces cerevisiae. Bioelectrochemistry and Bioenergetics, 31, 167–177.CrossRefGoogle Scholar
  290. 181.
    West, R.W., Hinson, W.G., Lyle, D.B. and Swicord, M.L. (1994). Enhancement of anchorage-independent growth in JB6 cells exposed to 60 hertz magnetic fields. Bioelectrochemistry and Bioenergetics, 34, 39–43.Google Scholar
  291. 182.
    Wilson, B.W., Wright, C.W., Morris, J.E., Buschbom, R.L., Brown, D.P., Miller, D.L., Sommers-Flannigan, R. and Anderson, L.E. (1990). Evidence for an effect of ELF electromagnetic fields on human pineal gland function. Journal of Pineal Research, 9, 259–269.Google Scholar
  292. 183.
    Woloschak, G.E., Paunesku, T., Chang-Liu, C., Loberg, L., Gauger, J. and McCormick, D. (1998). Changes in gene expression following EMF exposure. In press, 1–5.Google Scholar
  293. 184.
    Yost MG, Liburdy RP. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Lett. 1992 Jan 20;296(2):117–22.Google Scholar

Internet Sources

  1. 185.
    http://info.med.yale.edu/obgyn/reproimmuno/Immunology.html/img003.html
  2. 186.
    http://info.med.yale.edu/obgyn/reproimmuno/aging.html
  3. 187.
    http://www.cogsci.soton.ac.uk/bbs/Archive/bbs.neur5.berkley.html
  4. 188.
    http://www.alternatives.com/library/hea/hecfs/efhormn.txt
  5. 189.
    http://www.who.int/peh-emf/publications
  6. 190.
    http://www.emfquru.com/EMF/genotoxic-EMR-paper.html
  7. 191.
    http://www.ortho.lsume.edu/faculty/Marino/EL/ELTOC.html
  8. 192.
    http://www.ortho.lsume.edu/Faculty/Marino/Papers/Cite93.html
  9. 193.
    http://www.ortho.lsume.edu/Faculty/Marino/BEMS.html
  10. 194.
    http://www.who.int/inf-fs/en/fact184.html
  11. 195.
    http://www.niehs.nih.gov/emfrapid/html/Symposium3/Immunotox.html [Mevissen, M., Morris, J., and House, R. EMF Science Review Symposium]
  12. 196.
    http://www.niehs.nih.gov/emfrapid/html/WGReport
  1. 1.
    Abrahamson, S., Bender, M.A., Conger, A.D. and Wolff, S. (1973), “Uniformity of radiation-induced mutation rates among different species”, Nature 245, 460–462.CrossRefGoogle Scholar
  2. 2.
    ANSI, (1982) Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, Report No. ANSI C95. 1–1982, ( The Institute of Electrical and Electronic Engineers, Inc., New York ).Google Scholar
  3. 3.
    Ashburner M. and Wright T.R.F., (Eds), (1980): “The Genetics and Biology of Drosophila”, Academic Press, New York.Google Scholar
  4. 4.
    Bawin,S.M., Kaczmarek, L.K. and Adey, W.R., (1975): “Effects of modulated VMF fields on the central nervous system”, Ann. N.Y..Acad.Sci., 247, 74–81.CrossRefGoogle Scholar
  5. 5.
    Bawin,S.M., Adey, W.R., (1976). “Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency”. Proc. Natl.Acad.Sci., U.S.A., 73, 1999–2003.CrossRefGoogle Scholar
  6. 6.
    Bawin,S.M., Adey, W.R., Sabbot,I.M., (1978), “Ionic factors in release of 45Ca 2’ from chick cerebral tissue by electromagnetic fields”. Proc.Natl.Acad.Sci., U.S.A., 75, 6314–6318.Google Scholar
  7. 7.
    Bedlack,R.S., Wei,M. and Loew,L.M., (1992): “Localized membrane depolarizations and localized calcium influx during electric field neurite growth”. Neuron, 9, 393–403.CrossRefGoogle Scholar
  8. 8.
    Berridge, M.J., (1975a), “The interaction of cyclic nucleotides and calcium in the control of cellular activity”,.Adv Cyclic Nucleotide Res. 6:1–98.Google Scholar
  9. 9.
    Berridge, M.J., (1975b), “Control of cell division: a unifying hypothesis”,.Adv Cyclic Nucleotide Res. 1(5):305–320.Google Scholar
  10. 10.
    Blackman,C.F., Benane,S.G., Elder,J.A., House, D.E., Lampe, J.A. and Faulk,J.M., (1980), “Induction of calcium-ion efflux from brain tissue by radiofrequency radiation: Effect of sample number and modulation frequency on the power-density window”. Bioelectromagnetics, (N.Y.), 1, 35–43.Google Scholar
  11. 11.
    Blackman,C.F., Kinney,L.S., House, D.E., Joines, W.T., (1989), “Multiple power-density windows and their possible origin”, Bioelectromagnetics, 10 (2), 115–128.CrossRefGoogle Scholar
  12. 12.
    Bos M. and Boerema A. (1981), “Phenetic distances in the Drosophila melanogaster - subgroup species and oviposition-site preference for food components”, Genetica 56, 175–183CrossRefGoogle Scholar
  13. 13.
    Connolly, J.B. and Tully, T. (1998) in Drosophila; A Practical Approach, (D.B.Roberts, ed.), Oxford University Press, New York.Google Scholar
  14. 14.
    Dutta, S.K., Subramaniam, A., Ghosh, Parshad, R., (1984), “Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture”. Bioelectromagnetics, (N.Y.), 5, 71–78.Google Scholar
  15. 15.
    Fitzsimmons,R.J., Farley,J., Adey,W.R., Baylink,D.J., (1986): “Embryonic bone matrix formation is increased after exposure to a low amplitude capacitively coupled electric field in vitro”. Biochim. Biophys. Acta, 882, 51–56.CrossRefGoogle Scholar
  16. 16.
    Fitzsimmons, R.J., Farley,J., Adey,W.R., Baylink,D.J., (1989), “Frequency dependence of increased cell proliferation in vitro in exposures to a low-amplitude, low-frequency electric field: Evidence for dependence on increased mitogen activity released into culture”. J. Cell Physiol., 139, 586591.Google Scholar
  17. 17.
    Fitzsimmons,R.J., Strong,D.D., Mohan,S., Baylink,D.J., (1992), “Low-amplitude, low-frequency electric field stimulated bone cell proliferation may in part be mediated by increased IGF-II release”, J. Cell. Physiol., 150, 84–89.Google Scholar
  18. 18.
    Goodman,E.M., Greenebaum,B. and Marron,M.T., (1995), “Effects of Electromagnetic Fields on Mollecules and Cells”, International Rev. Cytol. 158, 279338.Google Scholar
  19. 19.
    Goodman, R., Basset, C.A.L. and Henderson, A.S., (1983): “Pulsing electromagnetic fields induce cellular transcription”, Science 220, 1283–1285.CrossRefGoogle Scholar
  20. 20.
    Goodman, R., Henderson, A.S., (1988): “Exposure of salivary glands to low-frequency electromagnetic fields alters polypeptide synthesis”. Proc. Natl. Acad. Sci. U.S.A., 85, 3928–3932.CrossRefGoogle Scholar
  21. 21.
    Goodman, R., Chizmadzhev, Y., and Henderson, A.S., (1993): “Electromagnetic fields and cells”. J. Cell. Biochem., 51, 436–441.Google Scholar
  22. 22.
    Greene,J.J., Skowronski,W.J., Mullins,J.J., Nardone,R.M., Penafiel,M. and Meister,R., (1991): “Delineation of electric and magnetic field effects of extremely low frequency electromagnetic radiation on transcription”. Biochem. Biophys. Res. Commun., 174, 742–749.CrossRefGoogle Scholar
  23. 23.
    IEEE Standard for Safety Levels with Respect to Human Exposure to Radio-Frequency Electromagnetic Fields, 3kHz to 300 GHz (IEEE C95. 1–1991 ). The Institute of Electrical and Electronics Engineers, Inc., New York, 1992.Google Scholar
  24. 24.
    ICNIRP (1998), “Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300GHz)”, Health Phys. 74, 494522.Google Scholar
  25. 25.
    IRPA (International Non-ionizing Radiation Committee of the International Radiation Protection Association), (1990): “Interim Guidelines on Limits of Exposure to 50/60 Hz Electric and Magnetic Fields”, Health Physics, Vol. 58, 1Google Scholar
  26. 26.
    IRPA (1988), “Guidelines on limits of exposure to radiofrequency electromagnetic fields in the frequency range from 100kHz to 300GHz”, Health Phys., 54, 115–123.Google Scholar
  27. 27.
    Jaffe, L.A., Robinson, K.R., (1978), “Membrane potential of the unfertilized sea urchin egg”, Dey. Biol., 62 (1): 215–228.CrossRefGoogle Scholar
  28. 28.
    Khalil,A.M. and Qassem,W., (1991): “Cytogenetic effects of pulsing electromagnetic field on human lymphocytes in vitro. Chromosome aberrations, sister-chromatid exchanges and cell Kinetics”. Mutation Res., 247, 141–146.CrossRefGoogle Scholar
  29. 29.
    King, R.C. (1970) Ovarian Development in Drosophila Melanogaster. Academic Press.Google Scholar
  30. 30.
    Koval, T.M. and Kazmar, E.R. (1988), “DNA double-strand break repair in eukaryotic cell lines having radically different radiosensitivities”, Radiat. Res. 113, 268–277.CrossRefGoogle Scholar
  31. 31.
    Koval, T.M., Hart, R.W., Myser, W.C. and Hink, W.F. (1979), “DNA single-strand break repair in cultured insect and mammalian cells after x-irradiation”, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 35, 183–188.CrossRefGoogle Scholar
  32. 576.
    Biological Effects of EMFsGoogle Scholar
  33. 32.
    Koval, T.M., Hart, R.W., Myser, W.C. and Hink, W.F. (1977), “A comparison of survival and repair of UV-induced DNA damage in cultured insect versus mammalian cells”, Genetics 87, 513–518.Google Scholar
  34. 33.
    Kwee, S. and Raskmark, P., (1995), “Changes in cell proliferation due to environmental non-ionizing radiation: 1. ELF electromagnetic fields”, Bioelectrochemistry and Bioenergetics, 36, 109–114.CrossRefGoogle Scholar
  35. 34.
    Kwee, S. and Raskmark, P., (1998), “Changes in cell proliferation due to environmental non-ionizing radiation: 2. Microwave radiation”, Bioelectrochemistry and Bioenergetics, 44, 251–255.CrossRefGoogle Scholar
  36. 35.
    Liburdy, R.P., (1992), “Calcium signalling in lymphocytes and ELF fields: Evidence for an electric field metric and a site of interaction involving the calcium ion channel”, FEBS Lett. 301, 53–59.CrossRefGoogle Scholar
  37. 36.
    Lijnen, P. and Petrov, V, (1999), “Proliferation of human peripheral blood mononuclear cells during calcium entry blockade. Role of protein kinase C”, Methods Find. Exp. Clin. Pharmacol., 21 (4): 253–259.CrossRefGoogle Scholar
  38. 37.
    Lin-Liu, S. and Adey, W. R. (1982), “Low frequency amplitude modulated microwave fields change calcium efflux rates from synaptosomes”, Bioelectromagnetics, (N.Y.), 3, 309–322.Google Scholar
  39. 38.
    Lindstrom,E., Lindstrom,P., Berglund,A., MiId,K.H. and Lundgren,E., (1993): “Intracellular calcium oscillations induced in a T-cell line by weak 50Hz magnetic field”, J. Cell. Physiol., 156, 395–398.CrossRefGoogle Scholar
  40. 39.
    Luben,R.A., (1991), “Effects of low-energy electromagnetic fields, (pulsed and DC), on membrane signal transduction processes in biological systems”, Health Phys., 61, 15–28.CrossRefGoogle Scholar
  41. 40.
    Luben,R.A., Cain,C.D., Chen,M.C.Y., Rosen,D.M. and Adey,W.R., (1982), “Effects of electromagnetic stimuli on bone and bone cells in vitro: Inhibition of responses to parathyroid hormone by low-energy, low-frequency fields”, Proc.Natl.Acad.Sci. U.S.A., 79, 4180–4184.Google Scholar
  42. 41.
    Ma TH, Keh-Chang Chu: “Effect of Extremely Low Frequency-ELF Electromagnetic Field, on developing embryos of the fruit fly-Drosophila melanogaster L”, Mutation Research, 303, 1993.Google Scholar
  43. 42.
    Maber, J., (1999): “Data Analysis for Biomolecular Science”, Longman, England.Google Scholar
  44. 43.
    McCaig C.D.and Dover P.J., (1989): “On the mechanism of oriented myoblast differentiation in an applied electric field”. Biol. Bull. (Woods Hole, Mass.), 176, 140–144.CrossRefGoogle Scholar
  45. 44.
    McCaig, C.D. and Zhao, M. (1997), “Physiological electric fields modify cell behaviour”, Bioessays 19 (9), 819–826.CrossRefGoogle Scholar
  46. 45.
    NCRP, (1995) “Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields”, NCRP Report No. 86, Bethesda, Maryland, USA.Google Scholar
  47. 46.
    Nuccitelli, R., (1988), “Ionic currents in morphogenesis”, Experientia 44, 657666.Google Scholar
  48. 47.
    Ozawa H., Abe E., Shibasaki Y., Fukuhara T.and Suda T., 1989, “Electric fields stimulate DNA synthesis of mouse osteoblast-like cells, (MC3T3–E1), by a machanism involving calcium ions”, Journal of Cellular Physiology, 138, 477–483.CrossRefGoogle Scholar
  49. 48.
    Panagopoulos D. J., Messini, N., Karabarbounis, A., Philippetis, A. L., and Margaritis, L.H., (2000), “A mechanism for action of oscillating electric fields on cells”, Biochem. Biophys. Res. Commun., 272, 634–640.CrossRefGoogle Scholar
  50. 49.
    Pay TL, Andersen FA and JessupGL, Jr, (1978): “A comparative study of the effects of microwave radiation and conventional heating on the reproductive capacity of Drosophila melanogaster”, Radiation Research, 76, 271–282.CrossRefGoogle Scholar
  51. 50.
    Petrov, V. and Lijnen, P., (2000), “Inhibition of proliferation of human peripheral blood mononuclear cells by calcium antagonists. Role of interleukin-2”, Methods Find Exp Clin Pharmacol, 22 (1), 19–23.CrossRefGoogle Scholar
  52. 51.
    Polk C. and Postow E., (Edts): “Biological Effects of Electromagnetic Fields”, 1996, CRC Press.Google Scholar
  53. 52.
    Pollack,S.M., Reinbold,K.A. and Da Silva,O.L., (1992). “Changes in cytosolic calcium concentration of primary bone cell cultures due to electric fields at 10mV/cm from 6 kHz to 600 kHz”. World Congr. Electr. Magn. Biol. Med., 1st Orlando FL, 1992, p. 12.Google Scholar
  54. 53.
    Ramirez, E., Monteagudo, J.L., Garcia-Gracia, M., Delgado, J.M.R. (1983), “Electromagnetic Effects in Drosophila”, Bioelectromagnetics, 4, 315–326.CrossRefGoogle Scholar
  55. 54.
    Rodan,G.A., Bourret,L.A., NortonL.A., (1978): “DNA synthesis in cartilage cells is stimulated by oscillating electric fields”. Science, 199, 690–692.CrossRefGoogle Scholar
  56. 55.
    Schimmelpfeng,J. and Dertinger,H., (1993), “The actionof 50Hz magnetic and electric fields upon cell proliferation and cyclic AMP content of cultured mammalian cells”. Bioelectrochem. Bioenerg. 30, 143–150.CrossRefGoogle Scholar
  57. 56.
    Shorrocks, B. (1972), “Drosophila”, Ginn, London,.Google Scholar
  58. 57.
    Srivastava, T., Singh, B.N., (1998), “Effect of temperature on oviposition in four species of the melanogaster group of Drosophila”, Rev. Bras. Biol., 58 (3), 491–495.CrossRefGoogle Scholar
  59. 58.
    Stromnaes O and Kvelland I, (1962): “Sexual activity of Drosophila melanogaster males”, Hereditas, 48, 442–470.CrossRefGoogle Scholar
  60. 59.
    Stryer L.: “Biochemistry”, 4th ed., 1996, W.H.Freeman and Co, N.Y., U.S.A.Google Scholar
  61. 60.
    Tisal J., (1998), “GSM Cellular Radio Telephony”, J.Wiley and Sons, West Sussex, England.Google Scholar
  62. 61.
    Tran, P.O., Tran, Q.H., Hinman, L.E., Sammak, P.J., (1998), “Co-ordination between localized wound-induced Cat signals and pre-wound serum signals is required for proliferation after mechanical injury”, Cell Prolif 31(3–4), 155170.Google Scholar
  63. 62.
    Velizarov,S, Raskmark,P, Kwee,S, (1999): “The effects of radiofrequency fields on cell proliferation are non-thermal”, Bioelectrochemistry and Bioenergetics, 48, 177–180.CrossRefGoogle Scholar
  64. 63.
    Weiss N.A., (1995): “Introductory Statistics”, Addison-Wesley Publ.Co.lnc.Google Scholar
  65. 64.
    Weisenseel M.H., (1983), “Control of Differentiation and growth by Endogenous Electric Currents”, in Biophysics, pp. 460–465. Eds. Hoppe W., Lohmann W., Markl H.and Ziegler H.. Springer —Verlag, Berlin.Google Scholar
  66. 65.
    Yost, M.G. and Liburdy, R.P., (1992). “Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte”. FEBS Lett. 296, 117–122.CrossRefGoogle Scholar
  67. 1.
    Taflove A., ed., Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston: Artech House, 1998.MATHGoogle Scholar
  68. 2.
    CENELEC ENV50166–2, 1996. Human exposure to electromagnetic fields. High frequency (10 KHz to 300 GHz).Google Scholar
  69. 3.
    Deschaux P, Jimenez C, Santini R and Pellissier J: Effet d’ un rayonnement micro-onde sur la reproduction de la souris male. Econ, progrs electr., No 8–9. Mars-Juin, 15–17, 1983.Google Scholar
  70. 4.
    Gioultsis T. 2001, Personal communication.Google Scholar
  71. 5.
    IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields. IEEE C95.1, IEEE New York, 1995.Google Scholar
  72. 6.
    IEEE Std C95.3.1991, 1991. IEEE recommended practice for the measurement of potentially hazardous electromagnetic fields — RF and microwave.Google Scholar
  73. 7.
    Lu S, Lotz G and Michaelson S: Advances in microwave induced neuroendocrine effects: the concept of stress. Proc. IEEE, 68, No 1, 73–77, 1980.CrossRefGoogle Scholar
  74. 8.
    Magras I. N., th. d. Xenos and s. s. Kouris. 1998. Experimental exposure of embryos to radiowave radiation. Archives Hellenic Medicine, 15: 6, 560–564 (in Greek).Google Scholar
  75. 9.
    Magras I. Xenos Th (1997): Assessment of the effects of RF radiation on the prenatal development. J. Bioelectromagnetics 18 (6): 455–461.CrossRefGoogle Scholar
  76. 10.
    Peters PWJ: Double staining of foetal skeletons for cartilage and bone. In: D. Neubert, H.J. Merker and T.E. Kwasogroch (eds). “Methods in Prenatal Toxicology”. George Thieme, Stuttgart, 1977.Google Scholar
  77. 11.
    Saito K., and k. Suzuki. 1995. Maldevelopment of early chick embryos induced by non thermogenic dose radio-frequency radiation at 428 MHz for the first 48 hours. Conj. Anom. 35: 275–283.Google Scholar
  78. 12.
    Sisken B. F., I. Fowler, C. Mayland, J. Ryaby and A. A. Pilla. 1986. Pulsed E/M fields and normal chick development. J. of Bioelectricity. 5: 25–34.Google Scholar
  79. 13.
    Sisken BF. Fowler I. Mayland C. Ryaby J. and Pilla A A(1986) Pulsed E/M fields and normal chick development. J. of Bioelectricity 5: 25–34.Google Scholar
  80. 14.
    Xenos Th. D. and I. N. Magras. 1999. An FDTD simulation for very low power density microwave effects on chicken embryos during organogenesis, URSI XXVI general assembly, BP1. 4. 6: 173.Google Scholar
  81. 15.
    Xenos Th. D. and I. N. Magras. 2000a, A pulsed microwave power density distribution study on chicken embryos during the prehatching period, Proc. Millenium Int. Workshop on Biological Effects of Electromagnetic Fields. 302–305.Google Scholar
  82. 16.
    Xenos Th. D., I. N. Magras and A. Pourlis. 2000b, Very low power density pulsed microwave effects on quail embryos, Proc. Millenium Int. Workshop on Biological Effects of Electromagnetic Fields. 306–309.Google Scholar
  83. 17.
    Xenos Th. D., Th. Tsiligianni, T. Gioultsis, I. N. Magras, Th. Tsiboukis. 2000c, Pulsed microwave effects on rat embryos, Proc. Millenium Int. Workshop on Biological Effects of Electromagnetic Fields. 306–309.Google Scholar
  84. 1.
    Adair E.R. and Adams B.W.: Microwave exposure at resonant frequency alters behavioural thermoregulation. In Abstract 10th, Annual Meeting of the Bioelectromagnetics Society, Stamford, Connecticut, p.45, June-1988.Google Scholar
  85. 2.
    Adair E.R.: Sensation, subleties and standards: synopsis of a panel discussion. In: Adair R.R., ed. Microwaves and thermoregulation. New York, Academic Press, pp. 231–238, 1983.Google Scholar
  86. 3.
    Adair RK: Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys Rev A 43: 1039–148, 1991.CrossRefGoogle Scholar
  87. 4.
    Bonhomme-Faivre L., Mace A., Bezie Y., Marion S., Bindoula G., Szel A.M., Frenois N., Auclar H., Orbach-Arbouys S., Bizi E.: Alterations of Biological parameters in mice chronically exposed to low-frequency (50 Hz) electromagnetic fields. Life Sci 62 (14): 1271–80, 1998.CrossRefGoogle Scholar
  88. 5.
    Bornhausen M., Scheingraber H.: Prenatal exposure to 900 MHz, cell-phone electromagnetic field had no effect on operant-behaviour performance of adult rats. Bioelectromagnetics 21 (8): 566–74, 2000.CrossRefGoogle Scholar
  89. 6.
    Bren S.P.A.: Historical Introduction to EMF Health Effects. IEEE Engineering in Medicine and Biology, 1996.Google Scholar
  90. 7.
    Catravas G.N.: Styrofoam Cages for Rats Used in Microwave Research: Coating with Quinine, Health Phys., vol. 31, pp. 33–39, 1976.CrossRefGoogle Scholar
  91. 8.
    Davis H.P. Behavioural studies with mice exposed to DC and 60-Hz magnetic fields. Bioelectromagnetics 5: 147–164 (1984).CrossRefGoogle Scholar
  92. 9.
    D’Andrea J.A., Dewitt J.R., Emmerson R.Y., Bailey C., Stensaas S., Gandhi O.P.: Intermitten exposure of rats to 2450 MHz microwaves at 2.5 mW/cm2. Behavioural and Physiological effects. Bioelectromagnetics 7: 315–328, 1982.CrossRefGoogle Scholar
  93. 10.
    D’Andrea J.A., Dewitt J.R., Gandhi O.P., Stensaas S. Lords J.L., Neilson H.C.: Behavioural effects of chronic 2450 MHz microwave irradiation of the rat at 0.5 mW/cm. Bioelectromagnetics, 7. 45–56, 1986.CrossRefGoogle Scholar
  94. 11.
    D’Andrea J.A., Gandhi O.P., Kesner R.P.: Behavioral effects of resonant electromagnetic power absorption in rats. In: Johnson, C.C. and Shore M.L. Biological effects of electromagnetic waves. Rockville, Maryland, US Department of Health, Education and Welfare, FDA, Vol. I pp. 257–273, 1976.Google Scholar
  95. 12.
    D’Andrea J.A., Dewitt J.R., Gandhi O.P.: Behavioral and thermal effects of microwave radiation at resonant and nonresonant wavelengths. Radio. Sci. 12, 251–256, 1977CrossRefGoogle Scholar
  96. 13.
    D’Andrea J.A., Gandhi O.P., Durney C.H., Johnson C.C. and Astle L.: Physiological and behavioural effects of chronic exposure to 2450 MHz microwaves. J. Microwave Power 14: 351–362, 1979.Google Scholar
  97. 14.
    Dewitt J.R., D’Andrea J.A., Emmerson R.Y., Gandhi O.P.: Behavioural effects of chronic exposure to 0.5 mW/cm2 of 2,450 MHz microwaves. Bioelectromagnetics 8: 149–157, 1987.CrossRefGoogle Scholar
  98. 15.
    Djordjevic Z., Lazarevic N., Djokovic V.: Studies on the haematologic effect of long-term, low-dose microwave exposure. Aviat. Space Environ. 48: 516–518, 1977.Google Scholar
  99. 16.
    Djordjevic Z., Kolak A.: Change in the peripheral blood of the rat exposed to microwave radiation (2400 MHz) in conditions of chronic exposure. Aerosp. Med. 44: 1051–1054, 1973.Google Scholar
  100. 17.
    Durney C.H., Iskander M.F., Massoudi H., Allen S.J., Mitchell J.C.: Radio frequency Radiation Dosimetry Handbook. Defence Technical Information Centre, 1980.Google Scholar
  101. 18.
    File S.E., Baldwin H.A.: Effects of ß-Carbolines in Animal Models of Anxiety. Brain Research Bull. Vol. 19 pp. 293–299, 1987.CrossRefGoogle Scholar
  102. 19.
    Franceschetti G., Gandhi O.P., Grandolfo M.: Electromagnetic Biointeraction Pleum Press New York and London, 1989.Google Scholar
  103. 20.
    Frey A.H. and Feld S.R.: Avoidance by rats of illumination with low power non-ionising electromagnetic energy. J.Comp. Physiol. Psychol., 89: 183–188, 1975.CrossRefGoogle Scholar
  104. 21.
    Gage M.I.: Behaviour in rats after exposure to various power densities of 2450 MHz microwaves. Neurobehay. Toxicol. 1: 137–143, 1979.Google Scholar
  105. 22.
    Galvin M.J., Ortner M.J., McRee D.I.: Studies on acute in vivo exposure of rats to 2450 MHz microwave radiation. Ill. Biochemical and haematologic effects. Radiat Res. 90: 558–563, 1982.CrossRefGoogle Scholar
  106. 23.
    Gandhi O.P.: Advances in Dosimetry of Radiofrequency Radiation and their Past and Projected Impact on Safety Standards. IEEE Proc. IMTC San Diego USA, pp. 109–113, April 1988.Google Scholar
  107. 24.
    Gordon C.J.: Behavioural and autonomic thermoregulation in mice exposed to microwave radiation. J.Appl. Physiol. Respirat. Environ. Exercise Physiol. 55 1242, 1983.Google Scholar
  108. 25.
    Gordon C.J.: Normalizing the thermal effects of radiofrequency radiation: body mass versus total body surface area. Bioelectromagnetics. 8: 111–118, 1987.CrossRefGoogle Scholar
  109. 26.
    Guy A.W.: Miniature Anechoic Chamber for Chronic Exposure of Small Animals to Plane-wave Microwave Fields. J.Microwave Power, vol 14, no. 4, pp. 327–338, 1979.MathSciNetGoogle Scholar
  110. 27.
    Guy A.W., Chou C.K.: Systems for Quantitative Chronic Exposure of a Waves vol. II, C.C. Jhonson and M.L. Shore, Eds. Rockvill, MD: HEW Pub. (FDA) 77–8011, pp. 389–407, 1976.Google Scholar
  111. 28.
    Guy A.W., Chou C.K., Kunz L.L., Crowley J.: Krupp J.: Effects of long-term low-level radiofrequency radiation exposure on rats. Volume 9, Summary Texas, Brooks Air Force Base, USAF Scholl of Aerospace Medicine (USFSAM-TR-85–11) 1985.Google Scholar
  112. 29.
    Hjeresen D.L.: Effects of 60-Hz electric field on avoidance behaviour and activity of rats. Bioelectromagnetics 1: 299–312 (1980).CrossRefGoogle Scholar
  113. 30.
    Ho H.S.: Effects of Plexiglass Animal Holders on Microwave Energy Absorbtion, IEEE Trans. Biomed. Eng., vol. BME-25, no 5, pp. 474–476, 1978.CrossRefGoogle Scholar
  114. 31.
    Ho H.S. and Edwards W.P.: Oxygen-consumption rate of mice under differing dose rates of microwave radiation. Radio. Sci. 12; 131–138, 1977.CrossRefGoogle Scholar
  115. 32.
    Hunt E.L., King N.W. and Phillips R.D.: Behavioural effects of pulsed microwave radiation. Ann. N.Y. Acad. Sci. 12: 440–453, 1975.CrossRefGoogle Scholar
  116. INIRC 1988. Guidelines on limits of exposure to radiofrequency electromagnetic fields in the frequency range 100 kHz to 300 GHz; Health Physics 54, 115. 1988.Google Scholar
  117. 34.
    Kalkan M.T., Körpinar M.A.,,Seker S., Birman H., Hacibekiroglu M.: The effect of the 50 Hz frequency sinusoidal magnetic field on the Stress-related behavior of rats. IEEE. Proceedings of the 1998 2nd International Conference Biomedical Engineering Days. Istanbul-TURKEY. p.78–81. May 20–22, 1998.Google Scholar
  118. 35.
    Kitchen R.: RF Radiation Safety Handbook. Butterworth-Heinemann Ltd. Linacre House, Jordan Hill Oxford OX2 8DP p: 74–85, 1993.Google Scholar
  119. 36.
    Klauenberg B.J., Grandolfo M., Erwin D.N.: Radiofrequency Radiation Standards. Plenum Press New York and London, 1993.Google Scholar
  120. 37.
    Liburdy R.P.: Rf efects of radio-frequency radiation on inflammation. Radio Sci. 12: 179–183, 1977.CrossRefGoogle Scholar
  121. 38.
    Lin J.C., Bassen H.I., and Wu C.L.: Perturbation Effect of Animal Restraining Metarials on Microwave Exposure, IEEE Trans.Biomed. Eng., vol. BME-24, no. 1 pp. 8083, 1977.Google Scholar
  122. 39.
    McKinary A.: Electromagnetic Fields (300 Hz to 30 GHz) WHO, 1993.Google Scholar
  123. 40.
    Mitchell C.L., McRee D.I., Peterson J., Tilson H.A.: Some behavioural effects of short-term exposure of rats to 2.45 GHz microwave radiation. Bioelectromagnetics, 9. 259–268, 1988.CrossRefGoogle Scholar
  124. 41.
    Moe K.E., Lovely R.H., Myers D.E., Guy A.W.: Physiological and behavioural effects of chronic low level microwave radiation in rats. Annual Meeting Colorado, Vol. 1 pp. 248–256 October 1975.Google Scholar
  125. 42.
    Moulder JE, Foster KR: Biological effects of power-frequency fields as they to carcinogenesis. Proc Soc Exp Biol Med 209: 309–324, 1995.Google Scholar
  126. 43.
    Pellow S., Chopin P., File S. E., Briley M.: Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods. 14: 149–167, 1985.CrossRefGoogle Scholar
  127. 44.
    Roberti B., Heebels G.H., Hendricx J.C.M., De Greef A.H.A.M., and Wolthuis O.L.: Preliminary investigations of the effects of low-level microwave radiation on spontaneous motor activity in rats. Ann. N. Y. Acad. Sci. 247: 417–424, 1975.CrossRefGoogle Scholar
  128. 45.
    Rosenberg R.S.: Relationship between field strength and arousal response in mice exposed to 60-Hz electric fields. Bioelectromagnetics 4: 181–191 (1983).CrossRefGoogle Scholar
  129. 46.
    Sanza J.N., De Lorge J.: Fixed interval behaviour of rats exposed to microwaves at low power densities. Radio Sci. 12: 273–277, 1977.CrossRefGoogle Scholar
  130. 47.
    Stern S.: Behavioural detection of 60-Hz electric fields by rats. Bioelectromagnetics 4: 215–247 (1983).CrossRefGoogle Scholar
  131. 48.
    Schrot J., Thomas J.R., Banvard R.A.: Modification of the repeated acquisition of response sequences in rats by low-level microwave exposure. Bioelectromagnetics 1: 88–89, 1980.CrossRefGoogle Scholar
  132. 49.
    Shandala M.G., Rudnev M.I., Navakation M.A.: Patterns of change in behavioral reactions to low power densities of microwaves. International Symposium on the Biological Effects of Electromagnetic Waves (URSI), Airlie, Virginia, p. 88–93, 1977.Google Scholar
  133. 50.
    Smialowicz R.J.: Haematologic and immunologic effects. In: Biological effects of radiofrequency radiation. Health effect Research Lab. USEPA pp: 5–28, 1984.Google Scholar
  134. 51.
    Smialowicz R.J., Ali J.S., Berman E., Bursain S.J., Kinn J.B., Liddle C.G., Reither L.W., Weil C.M.: Chronic exposure of rats to 100 MHz (CW) radio frequency radiation: Assessment of biological effects. Radiat. Res. 86: 488505, 1981.Google Scholar
  135. 52.
    Smialowicz R.J., Weil C.M. Marsh P., Riddle M.M., Rogers R.R., Rehnberg B.F.: Biological effects of long-term exposure of rats to 970 MHz radiofrequency radiation. Bioelectromagnetics, 2: 279–284, 1981.CrossRefGoogle Scholar
  136. 53.
    Smialowicz R.J., Weil C.M., Kinn J.B., Elder J.A.: Exposure of rats to 425 MHz (CW) radiofrequency radiation: Effects on lymphocytes. J. microwave Power 17, 211–221, 1982.Google Scholar
  137. 54.
    Smialowicz R.J., Riddle M.M., Brugnolotti P.L., Sperrazza J.M., Kinn J.B.: Evaluation of lymphocyte function in mice exposed to 2450 MHz (CW) microwaves. In: Stuchly S.S. Electromagnetic fields in biological systems. Edmonton Canada, International Microwave Power Institute pp. 122–152, 1979.Google Scholar
  138. 55.
    Smith R.F., Clarke R.L., Justesen D.R.: Behavioural sensitivity of rats to extremely-low-frequency magnetic fields. Bioelectromagnetics 15 (5): 411–26, 1994.CrossRefGoogle Scholar
  139. 56.
    Smith R.F. and Justesen D.R.: Effects of a 60-Hz magnetic field on activity levels of mice. Radio science 12: 279–285 (1977).CrossRefGoogle Scholar
  140. 57.
    Spalding J.F., Freyman R.W., Holland L.M.: effects of 800 MHz electromagnetic radiation on body weight, activity, haematopoiesis and life span in mice. Health Phys. 20: 421, 1971.CrossRefGoogle Scholar
  141. 58.
    Stern S., Margolin L., Weiss B., Michaelson S.M.: Microwaves: Effects on thermoregulatory behaviour in rats. Science 206: 1198–1201, 1979.CrossRefGoogle Scholar
  142. 59.
    Suess M.J., Benwell-Morison D.A.: Nonionizing Radiation Protection. WHO, 1989.Google Scholar
  143. 60.
    Thomas J.R., Yeandle S.S., Burch L.S.: Modification of internal discriminative stimulus control of behaviour by low levels of pulsed microwave radiation. USNC/URSI Annual Meeting, Boulder Colorado, Vol. 1 pp. 201–214, October 1975.Google Scholar
  144. 61.
    Tsuji Y., Nakagawa M., Suzuki Y.: Five-tesla static magnetic fields suppress food and water consumption and weight gain in mice. Ind. Health 34 (4): 34757, 1996.CrossRefGoogle Scholar
  145. 62.
    Weil C.M.: Propagation of Plane Waves through Two Parallel Dielectric Sheets. IEEE Trans.Biomed.Eng., vol. BME-21, no.2 pp. 105–108, 1974, addendum and Corrections, vol BME-24, no. 1, pp. 78, 1977.Google Scholar
  146. 63.
    Wilkening G.M.: Radiofrequency Electromagnetic Fields. NCRCP and Measurements, 1981.Google Scholar
  147. 64.
    Wong L.S., Merriy J.H., Kiel J.L.: Effects of 20-MHz radiofrequency radiation on rat haematology; spleenic function, and serum chemistry. Radiat. Res. 103: 186–195, 1985.CrossRefGoogle Scholar
  148. 65.
    Van Den Heuvel R., Leppens H., Nemetova G., Verschaeve L.: Haemopoietic cell proliferation in murine bone marrow cells exposed to extreme low frequency (ELF) electromagnetic fields. Toxicol In Vitro 15 (4–5): 351–5, 2001.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Kui Nie
  • Ana Micic-Vasovic
  • Ann S. Henderson
  • Martin Blank
  • Reba Goodman
  • Handan Tuncel
  • Dimitris J. Panagopoulos
  • Lukas H. Margaritis
  • Th. D. Xenos
  • I. N. Magras
  • Mehmet Ali Körpinar
  • Mustafa Tunaya Kalkan

There are no affiliations available

Personalised recommendations